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O N  T H E  I N T E R A C T I O N  O F  C R A C K S  W I T H  B I M A T E R I A L  I N T E R F A C E S  

R. O. Ritchie 

Mechanical properties of engineering materials are primarily controlled by interfaces that they contain, 
i.e., free surfaces, grain boundaries, and phase boundaries. The fracture and fatigue properties, in par- 
titular, are a function of the interaction of such boundaries with eracksl In the present paper, we review 
the various types of interaction between cracks propagating at or near such bimaterial interfaces. In- 
deed, the nature of these interactions is critical in determining trajectories of cracks in both homoge- 
neous and layered structures, which in turn has a direct influence on their fracture toughness and resis- 
tance to subcdtical crack growth. 

Introduct ion 

The mechanical integrity and lifetime of most engineering materials, wear/thermal protective coatings, and 
microelectronic components invariably depend on the nature of interfaces that they contain. In particular, the 
strength and crack-propagation behavior of metal- and intermetailic-matrix composites and laminates are not gener- 

ally limited by bulk properties but rather by the local  interaction of cracks with such interfaces. This in turn is con- 
trolled by such factors as the relative strength of the interface and the matrix and reinforcement phases, and the 
elastic compliance and thermal-expansion mismatch across the interface, which generally dictates the nature of the 
crack path. 

The selection of a crack trajectory in such bimaterial layered or sandwich structures is determined by a mutual 
competition between the direction of "maximum" mechanical driving force and the "weakest" microstructural path 
[ 1]. If'the directional and microstructural resistance effects are commensurate, stable crack extension, often at low 
energy, ensues; where the two effects are incommensurate, erratic, often unstable, crack extension, generally with 
far higher fracture energies, is obtained [1, 2]. Various criteria have been hypothesized to define the driving force 
directionality. For entirely linearly elastic homogeneous materials, these proposals include that cracks follow a path 
of maximum tangential stress, or, equivalently, zero shear stress [3], or proceed along a direction of the maximum 

mode I stress intensity, KI, vanishing shear stress intensity (i.e., Kit = 0), or maximum strain-energy release rate 

Gma x [4-7]. All these criteria have been shown to be essentially identical for slightly curved cracks under in-plane 
loading. However, for large shear loadings and resultant large kink angles, the planes given by the latter conditions 
are still practically (but not exactly) identical [5-1 l], but define a larger kink angle than do the radial planes given 
by the first mentioned stress-based criteria [3]. In addition, for largerkinks, the optimal angle changes significantly 

[5-  10] in a manner which can be anticipated from the effect of the T stress (the second nonsingular term in the 
Williams expansion), which depends upon the specimen geometry and parallel residual stresses [5, 12, 13]. Simi- 
larly, for semibrittle materials in which the critical kinking angle is supposed to be dictated by the tangential stress 
at a critical distance ahead of the crack tip, nonsingular stresses cause measurable differences in kinking angle 
[14-16]. 

For interface cracks, similar criteria for kinking off the interface have been evaluated [11 ], but application is far 
more complex owing to the spatial variability of stress fields inherent to interface cracks [17]. Combining asymp- 
totic solutions for cracks near interfaces [18] with asymptotic solutions for interface cracks [13] can provide insights 
as to the expected trends in behavior with respect to the directionality of driving force [1, 2]. 
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Crack-Tip Fields 

The elastic compliance discontinuity across a bimaterial interface modifies the stress field for cracks located at 
or near the interface. Crack-tip fields for such interfacial and near-interfacial cracks, which have been expressed by 
using linear elastic and nonlinear elastic fracture mechanics [3-6,  9], show that the ratio of  normal to shear stresses 
ahead of the tip can vary markedly from that induced solely by the (applied) far-field loading. For the determination 
of crack trajectories, the characterization of these local fields is vital as the local stresses dictate the preferred direc- 
tion for crack extension. 

Interface Cracks. For a crack on the interface between two isotropic homogeneous elastic solids (Fig. I a), the 
near-tip stress intensity, which describes important aspects of the near-tip stress field, is conveniently expressed in 

complex notation as K= K I + iK 2, where i =~L-~. The effect of the difference in elastic properties across the in- 
terface on the crack-tip fields, termed the elastic modulus mismatch effect, may be described by using two dimen- 

sionless Dundurs' parameters, cx and ~, which are defined as follows [20]: 

a = e f  - E-i (1 )  
Ef + 

13 = 1 ktl(l - 2 v 2 ) -  ~t2(1 - 2v t ) ,  (2) 
2 ~h(1 - v2) + ~1.2(1 - vl) 

where E/" are Young's moduli E in plane stress and E/( I - v 2) in plane strain, ~t i and v i are, respectively, the 

shear moduli and Poisson's ratios, and the subscripts i = I, 2 refer to materials above and below the crack. By 

using this definition of ct and 13, the stress intensity for a crack on the interface, K I and K 2, may be expressed in 

terms of the far-field modes I and 11 stress intensities, K~* and K~, as [ 13] 

K t + iK 2 = g(ot, [3) (K~* + iK~l)L-iee ito(a'~'L), ( 3 )  

where 

1 in (1 - [3"] 

and g(tx, [3) is a geometry-specific function of the elastic mismatch. The function m(cx, [3, L) may be thought of 

as a phase shift, which describes the rotation of the stress field, at a specified distance L from the crack tip, rela- 
tive to that expected from the far-field loading. This orientation of the stress field is reflected in the ratio of shear to 

normal stresses acting on the interface which may depend upon the specified distance x ahead of the crack tip [13]; 

commonly, this ratio is expressed as a phase angle, ~: 

u/ = tan- '  tan- '  ~. ~ i ) ,  
,. O'yy / x  

(4a) 

and, equivalently, from (3) 

~ (4b) 
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It can be seen that the spatial variability in near-tip normal and shear stresses depends only on 13 through the oscil- 

lation index c. Thus, as conventionally defined [13, 18], the crack-tip stress intensities K I and K 2 are strictly de- 

terminate only if 13 = 0, whereas the interfacial stresses are uniquely determined in terms of the geometry and far- 
field loading. 
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Fig. 1. Conventions for crack tip (a) at the interface between two linear-elastic materials 1 and 2 with Young's  moduli E i and Poisson's 

ratios v i, (b) nearly parallel and close to the interface in the layer of  material 2 sandwiched between material 1, and (c) nearly 

parallel and close to the interface outside the layer of material 2. 

Near-Interface Cracks. For a bimaterial sandwich geometry (Fig. 1) of the system consisting of two linear- 

elastic materials subjected to remote loading defined by the far-field stress intensities, K~ and K~,  the local 

crack-tip stress intensities K l and K n for a crack nominally parallel to, and just above, the top interface (Fig. lc) 
may be expressed as [ 1 ] 

K[ + iK[i = (K~ + iK~)  e i(~ (5) 

and the phase angle of the loading at the crack tip becomes 

l ~ = tan -t ~ ) - q ~  +cob + E l n  Y , (6) 

provided the layer thickness h 2 and the distance from the layer to the crack Y are small compared to all other in- 

plane dimensions, and Y/h z << 1. Equation (5) was obtained by using the relationship between the crack-tip stress 
intensities for a crack just below the interface and those for a similarly loaded crack exactly on the interface from 
Hutchinson, Meat, and Rice [18]. This relationship has an adjustment in magnitude and phase shift, including the 

normalizing function ~ ( a ,  13) which is tabulated in [18]. Here, q~ = q~(- or, - [3). Equation (5) also incorporates 
the explicit solution for a crack on the top interface of a thin sandwiched layer from [21 ], wherein the shift function 

c%(ot, 13) for L = h-, is tabulated. 
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The corresponding solution for the crack within the layer, again nominally parallel and close to the interface, 

i.e., where hz/a and c/h z << i in Fig. lb [13, 18], has the form 

KI + iKu = Li--~. l  (K~* + iK~) e-i(,, +o), (7) 

where ~ is given by 

V = ~.ln + 2 - ~ [{0h(a,  13) + o (c t ,  [~)], (8) 

and the functions q)h(CZ, [3) and co(c~, ~) are tabulated [18, 21]. 

Nonlinear Elastic Fields and Crack-Tip Plasticity. Solutions for interface cracks where one material plasti- 
cally deforms have been derived by Shih and co-workers [22, 23]. However, if small-scale yielding prevails, i.e., 

the plastic zone is much less than the characteristic dimension, rp << L, then the stress distributions are approxi- 

mately determined by the linear elastic solutions given above. 
For an interface crack loaded in tension between a rigid substrate and an elastic-plastic solid obeying the Ram- 

berg--Osgood constitutive law 6 / c  0 = e/e o + k(6/6o) n, where k is the order unity and e 0 = G0/E, the small- 
displacement-gradient near-tip field is of the HRR type [22, 23]: 

( j ,~l/(n+l) 

~ i j  = ~OtkelTeor ) fo(O,r,~,n) , (9) 

J is Rice 's  J-integral, ~ = W + e In [I KI2/(ooL)]  is a dimensionless number representing the traction ratio 

tan-l(Oxy/Oyy) at the distance r =  (]KI/c0) 2, just outside the plastic zone, 60 is the lower yield strength of 

either material, and f :  is a bounded function dependent upon the plastic mode mixity. 
Solutions for interface cracks in the presence of finite-deformation effects, i.e., within the plastic zone, are 

bounded by the length scales, rp and fit, where 8 t iS the crack-tip opening displacement. Solutions for the plastic- 

zone size give 

rp = )~1 (10) 

where the dimensionless factor ~ ~, which depends upon mode mixity and, to a lesser extent, on material constants, 

varies from - 0.15 to -0 .65  as I t [  increases from 0 to ~ / 2  [24]. The crack-tip opening displacement, con- 
versely, is given by 

5t = X2 (ii) 

where Z2 varies from 0.5 to 0.7 for ]~,1 < ~ /6  (for a strain hardening exponent, n <0.1).  The values of the 

length scales, rt, and 5 r, differ by a factor comparable with oo/E [24]. 
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Fig. 2. (a) Ratio o f  shear  stress to tension stress, ( ~ m / o ' . ,  and (b) the normalized tensile (hoop) stress, (~ . /o"  o , ahead of  a crack tip 

on the metal /ceramic interface, in the range fit < r <  r V Metal properties are n = 0.1, (~o/E = 0.002, and v = 0.3 (after [24]). 

Solutions are shown in Fig. 2, where the traction ratio, Cxy/cry, and normalized tensile (hoop) stress, e y e / c  0, 

are plotted ahead of  the blunted crack tip on the interface within ~5 t < r < r F For far-field mode I loading where 

= 0, the traction ratio remains close to zero; under mixed-mode loading, however, a moderate variation is seen 

(Fig. 2a). For the tensile stress distribution (Fig. 2b), the maximum hoop stress is reached at r " J/Gy. At distances 

closer to the tip, the blunted crack acts to relieve a constraint resulting in lower tensile stresses. It should be noted 
that the stiffer substrate provides additional constraint to the plastic zone which raises the stress some 10 % com- 

pared to that in a homogeneous material (at ~ = 0); where higher applied shear stresses are present, this constraint is 
partially relieved. Under cyclic loading, crack-tip fields ahead of  a nonmoving interface crack are essentially identi- 

cal to that shown in Fig. 2a (for ~ = 0) over a major portion of  the plastic zone during the initial loading cycle; 

however, on unloading, a mixed-mode field is generated, inducing strong shear tractions ahead of the crack tip [25]. 

Crack Tra jec tor ies  

The trajectory of  a crack in a homogeneous material or a dissimilar material layered structure is controlled by 

the mutual competition of  two primary factors: the direction in which the fracture-mechanics driving force is highest 
and the direction where the microstructural resistance is lowest. As noted above, for linearly elastic homogeneous 

materials, these criteria include cracking along paths of 

- maximum tangential stress or, equivalently, zero shear stress [3], 

- maximum mode I stress intensity, K I, 

- zero mode II stress intensity, Kll = 0, or 

- maximum strain-energy release rate, Gma x [4-7] .  

These criteria are essentially identical for slightly curved cracks under in-plane loads. For example, for a crack 

kinking through an angle ~ from its plane (Fig. 3a), the local stress intensities at the crack tip, K t and K 2, can be 

computed from the far-field K~ and K~' values [7] and used to calculate G = (K~ + K 2 ) / E "  (provided the kink 

size is small compared to all in-plane lengths). The resulting kink angles, computed lor K u = 0 and at maximum 

Gma x, are nearly coincident; in fact, only at phase angles greater than - 5 0  ~ the difference is greater than one 
degree (Fig. 3b) [26]. Thus, t'or all practical purposes, there is no distinction between the criteria listed above. 
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Cracks Near Interfaces. Cracks Impinging Interfaces. 
dissimilar elastic materials may 

- arrest, 

113 

A crack w h i c h  i m p i n g e s  o n  an  i n t e r f a c e  b e t w e e n  t w o  

- penetrate the interface, or 

- deflect into the interface. 

Whether the crack penetrates or deflects along the interface between two isotropic elastic solids is again both a 
function of relative microstructural resistance and magnitude of the relevant crack-driving forces. This competition 
has been analyzed [27] by comparing the energy release rate for the interfacially deflected crack, GIF, with the 
maximum energy release rate for a penetrating crack, Gmax, in order to derive the range of toughnesses of the inter- 
face relative to that of the bulk material for each mode of behavior. 
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Fig. 5. (a) Crack front debond v. penetration diagram indicating relative interfacial fracture energies, G,:n/G., in which debonding oc- 

curs in preference to penetration of the interface; (b) trends in phase angle ~/with the debonded crack with elastic mismatch ot 

[271. 
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For the configuration of a crack approaching the interface from material # ! to #2 ,  the impinging crack will 

likely be deflected along the interface if GIF/Gma x exceeds the ratio of the interface to matrix (material #2)  

fracture toughnesses, GdFIG c, at the relevant phase angle ~,  i.e., that Eq. (12) applies; conversely, the crack will 

penetrate the interface when the equality is reversed [27]. Solutions to this problem (with 13 = O) for a crack sub- 
jected to mode I loading are given in Fig. 5. For the crack initially aligned perpendicular to the interface (with 

c t  - 0), Fig. 5a indicates that, provided the fracture toughness of the interface is less than one fourth of the matrix 

toughness of material # 2, the crack will deflect at the interface, i.e., when GelF/G c < 1/4 (note that Go[ F depends 

strongly on ~) .  The critical ratio increases to - 1/2 when (z = I /2 ,  corresponding to a plane strain Young's 
modulus of material # 1 being three times that of material # 2. 

I Z,21 IPenetrationl 
= 3 0 *  

,, ~ 

/ / / '  IDeloondingi 
I , ~ I i 

-0.5 o 0.5 1.0 
Elastic Mismatch, ct 

Fig. 6, Effect of the orientation of the crack relative to the interface on the requirements for debonding versus penetration [27, 28]. 

For a crack approaching the interface obliquely, GiF/Gmax increases as the interface angle q) decreases (Fig. 6). 

Consequently, deflection along the interface occurs at higher values of GcI~/G c [27, 28]. 
These criteria are critically important in the understanding of the fracture and fatigue properties of fiber-rein- 

forced composites and laminates where delamination at the fiber/matrix interface, as opposed to failure of the fiber, 
can result in significantly improved crack-growth resistance [28]. 

Crack Nearly Parallel to an Interface. Considering first the nature and stability of the crack path in layered 
or sandwich structures where the crack exists close, and nearly parallel, to an interface [1, 2, 29], such as that de- 

picted in Fig. 1 b, under pure mode I far-field loading ( K~ = 0), linear-elastic analysis would dictate that a straight 

crack within the central layer # 2 would sit along the centerline (c/h 2 = 0.5) to satisfy the Kll = 0 condition. 

Note that to preserve stability a compressive T-stress must also exist, as the presence of a positive T-stress results in 
a tendency for this crack path to become unstable [7]. For a crack above the centerline, kinking down toward the 

centerline will occur if K H > 0. In general terms (Fig. lc), the K H = 0 criterion implies that straight cracks mis- 

placed from the centerline (i.e., the Kll = 0 path) will only head toward the centerline if the Kirderivative is posi- 

tive, i.e., OKll/~c > 0. If 3Kll/Oc < 0, the negative Kll will drive the crack away from this preferred path and the 
crack will kink toward the interface. However, as shown below, with certain layered material combinations, an ad- 

ditional straight crack path satisfying the Kix = 0 criterion is found away from the centerline close to one of the in- 
terfaces. 
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In general, for a given bimaterial couple with a strong interface, subjected to applied (far-field) mode I or 

mixed-mode loading, the expected trends in crack paths can be deduced from the sign of Kll, the location of the 

preferred K H = 0 paths for straight parallel cracks, and the sign of the Kirderivative, 3KH/~c. The sign of the Kit 
derivative is an important consideration for determining the trajectories of cracks initially misplaced or perturbed 

from a Kll = 0 path; such cracks are only able to reach the Kli = 0 path if this gradient is positive [29]. These fac- 
tors can be determined from the relevant crack-tip field solutions for near-interface cracks [18] and sandwich layers, 
e.g., Eq. (7) for cracks within the central layer # 2 (Fig. lb), and Eq. (5) for cracks outside this layer (Fig. lc), and 

depend solely upon the elastic mismatch (Dundurs') parameters ~t and 13- Thus, by using this approach and as- 
suming that linear-elastic conditions prevail, it is possible to predict the likely crack path for all bimaterial combina- 
tions in terms of their relative elastic moduli and Poisson's ratios. 

Thus, we can generate crack-path predictions based on asymptotic straight crack analyses for cracks initially 
inside and outside the metal layer # 2 in a ceramic/metal sandwich geometry for all possible combinations of the 
modulus mismatch parameters. Derived below are plane-strain solutions where the far-field loading is pure mode I. 
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Fig. 7. Plot of the elastic mismatch (Dundurs') parameters ot and l} in plane strain, showing three predicted regimes of crack-path trajec- 
tories with K u = 0 for ceramic/metal sandwich geometries subjected to far-field mode I loading [ I, 2]. 

Cracks within the Metal Layer. For cracks initiated within the metal layer (Fig. lb), the location c/h 2 of the 

path where Kil = 0, and the nature of the Kirderivatives can be derived from Eqs. (7) and (8) in terms of all pos- 

sible combinations of ct and 13. Three general regimes of expected behavior are found; these are plotted in the 

or/13 space in Fig. 7 [I, 2, 29]. For 13<0 with any value of cc (e.g., metal bonded to silica), as shown by the 
lighter hatched region in Fig. 7, the centerline of the metal layer satisfies KII = 0 but is an unstable path in the sense 

that ~Ktl/Oc < 0. Accordingly, the driving force for cracks preexisting within the metal layer will tend to deflect 
these cracks toward the interface, whereas near-interface cracks in ceramic substrates will have a tendency to deflect 
away from the interface. This behavior should be shown by geometries consisting of metal layers sandwiched be- 
tween more compliant glass substrates (e.g., a Cu layer sandwiched between glass or silicon substrates). 

For [3 > 0 (e.g., metal bonded to alumina), the centerline of the metal layer again satisfies Kll = 0, but the gra- 

dient ~Kil/Oc in this vicinity is only positive for the range of values of et shown by the darker hatched area in 
Fig. 7. In this regime, the crack should seek the center of the metal layer. If it lies off the center within the metal 

layer, it should kink toward the centerline because of the positive Kll, whereas if it preexists outside the layer in the 
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substrate, it should be drawn into the interface. Examples of this behavior should be seen with metal layers sand- 
wiched between stiffer ceramic substrates, such as AI203-Cu and AI203-A1. 

For the remaining values of o~ with 13 > 0, shown by the two unhatched regions in Fig. 7, three locations 

within the layer satisfy Kll = 0, namely, the centerline at c/h 2 = 0.5 (but this represents an unstable path in the 

sense that OKlllOc < 0) and two other locations close to the interface where clh 2 --+ 0 or 1, both of which are 

stable as ~Kll/Oc > 0. In this regime, which should be seen in A1203-Au and A1203-Pt, cracks should follow a 
trajectory in the metal parallel but close to the interface. 

Cracks outside the Metal Layer. For cracks initially outside the metal layer (Fig. Ic), similar predictions, now 

based on Eqs. (5) and (6), suggest that only two regimes of behavior exist (Fig. 7) [1, 2]. For 13 > 0, a positive gra- 

dient in KII exists for cracks initiated above the layer such that they should be drawn to the interface with the metal 

layer. Conversely, for 13 < 0, a negative KII suggests that cracks should deflect away from the interface into the 
ceramic. 

Comparison with Experiment 

"Weak" Interfaces. The presence of a "weak" interface generally results in interfacial failure. Such a be- 

havior is invariably shown by glass/Cu bonds, where 13 < 0, and depending on the processing, on occasion by 

AI203/Cu, A1203/Au, and A1203/Pt bonds, where [3 > 0 [1, 2]. However, with somewhat better bonding, par- 
ticularly with a tougher metal, or following interactions with detects in the vicinity of the interface, the interfacial 

cracks in these systems often deflect into the ceramic, with their subsequent behavior depending upon the sign of 13. 

/ 

AI 0.3 

Fig. 8. Scanning electron image of crack path in AI203 /Cu / AI203 (I ] > 0) C(T) sandwich sample, showing predominantly interfacial 
failure with deflected cracks being drawn back to the interface. This cracking morphology effectively "plucks" pieces out of the 
ceramic [2]. 

Where cracks are deflected from the interface into the ceramic, it would be anticipated from consideration of 

the Kll = 0 path and the signs of K H and bKll/Oc (Fig.7) that in the glass/Cu system, the crack should kink away 

from the interface as 13 < 0, which in fact is what is seen [1, 2, 30]. Conversely, with the A1203/metal systems 

where 13 > 0, cracks deviated from the interface are drawn back again, so that pieces of the ceramic are plucked out, 

as illustrated for AI203/Cu interfaces in Fig. 8. 

A further demonstration of the prominent role of 13 in dictating whether cracks are drawn to, or deflected away 

from, the ceramic/metal interface is shown by results from the 4-point bend tests on glass-Cu (13<0) and 

AI203/AI (13 > O) sandwich specimens, where notches placed in the ceramic substrate initiated cracking at varying 
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distances from the interface. Results [30] shown in Fig. 9 clearly indicate that in AI203/AI samples, the effect of 

the positive 13 is the draw cracks in the ceramic into the interface (Fig. 9a); in fact, cracks which initiate at distances 

of over four timcs the metal-layer thickness are attracted to the metal layer. Conversely, where [3 is negative in 

glass/Cu/glass specimens, cracks initiated in the glass at the interface and up to three times the metal-layer thick- 

ness away are all deflected away from the metal layer (Fig. 9b). Numerical computations for both the AI203/AI 

and glass/Cu systems show that the local phase angle, ~ = tan -I (KH/K O, for these crack trajectories is within 

- 1 ~ near zero, indicating that the cracks do indeed follow a path dictated by the Kit = 0 criterion [30]. 
Clearly, with "weak" interface systems, the crack trajectory is generally along the interface because the micro- 

structural crack-path resistance is lower there; cracks in the ceramic will only find the interface if the compliance 

mismatch is such that 13 > 0. 

Crack propagation 

Fig. 9. Scanning electron micrographs of the crack-path profiles showing cracks (a) being drawn to the metal layer with AI203/AI 
([3 > 0), and (b) deflected away from the layer in glass/Cu ([3 < 0) [30]. 

"Weak" Metal An example where cracking in ceramic/metal/ceramic layered structures is confided to the 

metal layer is shown by the 13 < 0 system A1203/AI. For such a configuration, Fig. 7 predicts a stable K11 = 0 

path down the center if [3/I c~l exceeds a critical range versus stable Kll = 0 paths near either interface if [3/I etl is 

less, but positive, i.e., the darker hatched region versus the unhatched region in Fig. 7. Therefore, on the basis of 

and 13 values of +0.686 and +0.143, respectively, for the AI203/AI system, a centered crack within the metal 

layer is predicted. Contrary to these predictions, however, cracks in A1203 /AI flexure samples generally propagate 

in the pure aluminum but well off the centerline within - 50 I.tm or so of the interface (Fig. 10) [I, 2]. Whereas this 
effect could be associated with easier initiation in the vicinity of the interface, the prime cause may be associated 
with the inevitable presence of plasticity in metal. Since crack-tip plasticity would have the effect of making the 
metal more compliant and incompressible, the observed cracking configurations would be anticipated simply by de- 

creasing EAI and increasing VAI --~ 0.5. Crack paths near the interface would then be predicted since ~ --~ I and 

[3 --~ 0; 2EAI/3 and the self-consistent VAI- 0.4 are sufficient. 
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Fig.  10. Scanning electron image of an Al203/pure AI/AI203 ([3 > 0) 4-point bend sandwich sample, showing failure in the pure alu- 

minum. Note that cracking in the metal layer proceeds near the interface and not along the centerline [1]. 

"Weak"  Ceramic. Where the ceramic provides a weaker microstructural crack path, cracking predominates in 
this phase and the crack path generally conforms to the linear-elastic predictions of Fig. 7. For example, as described 

above, the modulus mismatch acts to drive cracks away from the metal layer into the ceramic where 13 < 0, i.e., in 

glass/Cu sandwich samples (Fig. 9b), resulting in a low toughness of the joint. Where 13 > 0, cracks are con- 

versely attracted to the metal layer and tend to pluck out pieces of the ceramic, as shown by the A 1 2 0 3 / C u  system 

in Fig. 8. In fact, in the positive 13 system, cracks are drawn away from the weaker microstructural path in the ce- 
ramic to the stronger interface and metal, and can often blunt out in the metal phase with resulting high toughness. 
In these cases, the mutually opposing influence on the crack path of the lowest microstructural resistance and high- 
est crack-tip driving force (due to far-field loading and modulus mismatch effects) generally results in complex 
cracking configurations with high yet erratic toughness values [1, 2]. 

SUMMARY 

1. Asymptotic crack-tip field solutions are available for cracks at, or near, bimaterial interfaces separating lin- 
ear elastic, and to a limited extent, elastic/plastic materials. The compliance discontinuity across the interface modi- 
fies the stress fields, such that the ratio of normal to shear stresses ahead of the tip varies markedly from that in- 

duced solely by the applied far-field loading. 

2. Linear-elastic driving force calculations predict that cracks will follow a path where KII = 0 (essentially 
equivalent to where G is maximum). Accordingly, for cracks at an interface where the far-field loading is mode I, 
cracks will kink away from the metal layer for bimaterial couples where the second Dundurs' parameter [3 = 0, ir- 
respective of the value of the first Dundurs' parameter ct; conversely, where ~ = 0, cracks will kink into the metal 

layer for 13 > 0 and away from the layer if 13 < 0. 
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3. For a crack lying in the interface, the condition for it to leave the interface and kink into the matrix is gov- 

erned by the relative toughness of the interface (Gcl F) and the matrix (Gc) for that phase angle, specifically by the 
relationship 

Gmax > a c  

GIF GclF 

where GIF is the driving force for interfacial crack extension, and Gma x is the maximum driving force for exten- 
sion into the matrix. 

4. For a crack impinging on an interface, the condition governing whether the crack will deflect along the in- 

terface or penetrate it, is again given by the same expression. Specifically, for two linear elastic solids (ct = 13 - 0) 

under far-field tensile loads, the crack will deflect along the interface when GdF/G e < 1/4. This condition is less 

stringent for bimaterial systems with a more positive ct, and for cracks approaching the interface obliquely. 

5. For a crack near an interface, linear-elastic projections imply that cracks will follow a straight parallel path 

if KII = 0 and ~Kii /~c  > O. For mode I far-field loading, however, three regimes of cracking configurations exist 

depending upon the value and sign of ~x and [3. 

6. Some, but not all, key trends for crack trajectory, and by implication for the pertinent fracture resistance, 
match the linear-elastic predictions for modulus mismatch effects; however, often the plastic zones in metal are too 
large relative to a layer thickness to confidently use computations based on elastic stress fields to deduce crack 
kinking tendencies. 

7. At "weak" interfaces, the crack generally stays at the interface; near such interfaces, the crack will be drawn 

into the interface only if the compliance mismatch is such that 13 is positive. Where metal provides a "weak" path, 

cracks are drawn to the metal layer where 13 > 0, and deflected from the weak path where [3 < 0; here, the tough- 

ness Gc depends on the location and stability of a crack. However, where 13 > 0, the location of the crack path 
within the metal layer often does not match prediction, primarily because of plasticity within the layer. Where the 
ceramic provides the "weak" path, cracks deflect away from the metal layer and remain in the ceramic where [3 < O. 

Where 13 > 0, conversely, cracks are drawn from the weak path to the "stronger" interface and metal; cracking con- 
figurations in this case can become complex, resulting in very high, but erratic, toughness values. 

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Mate- 
rials Sciences Division of the U.S. Department of Energy under Contract No. DE-ACO3-76SF00098. Parts of this 
work were performed in collaboration with R. M. Cannon and J. M. McNaney. 
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