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HOW FAST CAN A CRACK GO ? 

K. B. Broberg 

The assumption of a material specific relation between the energy dissipation at the edge of a crack 
propagating under small scale yielding conditions leads to upper limits of the crack velocity: the Ray- 
leigh wave velocity for modes I and II, and the S wave velocity for mode III. If a mode II crack can 

pass the "forbidden" subsonic super-Rayleigh region, then the upper limit would be the P wave veloc- 

ity. Experiments invariably show lower maximum speeds, typically less than 60% of the S wave ve- 

locity, but they also frequently show accelerations to a constant velocity, depending on the acceleration 
history, and increasing surface roughness, even during the constant velocity phase. Other experiments 
show that the energy dissipation at the crack edge usually is sevend times larger at very high than at very 
low velocities. These results indicate a considerable growth of the process region, so much that the in- 
trinsic length parameter which determines its height at very low crack speeds becomes insignificant, and 
then the rationale for a material specific relation between energy dissipation and velocity disappears. 
This disappearance can contribute to the explanation of the experimental results. 

Introduction 

Determination of crack speeds might be of greater importance than satisfaction of one's curiosity. Would a 
crack in a pipeline run so fast that the gas does not flow out quickly enough to relieve the load needed to propagate 
the crack ? The higher the velocity, the higher the kinetic energy in the structure, implying greater difficulty to arrest 
the running crack. In an earthquake, more damage is caused the larger the kinetic energy is. 

It has been known for a long time (e.g., Schardin [ 1, 2]) that cracks tend to accelerate to a constant velocity. 

The highest velocities recorded in homogeneous bodies are of the order of 60 % of the S wave velocity. 
The first solutions for rapidly propagating mode I cracks indicated an upper crack speed limit at the Rayleigh 

wave velocity. This is most clearly seen by calculating the energy flux into the crack edge region at small scale 
yielding (Broberg [3, 4]). The result for mode I is shown in Fig. 1. 

For mode II, the picture is more complicated, showing a positive energy flux both for sub-Rayleigh and inter- 
sonic crack velocities, with a negative flux in the subsonic super-Rayleigh region, see Fig. 2. 
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Fig. 1. Energy flux into the dissipative region of an expanding mode I crack at small scale yielding as a function of the crack velocity. 

The energy flux is normalized with respect to the energy flux at slow crack expansion, and the velocity is normalized with respect 
to the Rayleigh wave velocity. Poisson's ratio equals 1/4 if plane strain prevails, or I /3, in the plane stress approximation for a 
thin plate. 
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Fig. 2. Energy flux into the dissipative region of an expanding mode II crack as a function of the crack velocity. The energy flux is 
normalized with respect to the energy flux at slow crack expansion, and the velocity is normalized with respect to the P wave 
velocity. Poisson's ratio equals 1/4 if plane strain prevails, or 1/3, inthe plane s t r e s s  approximation for a thin plate. Labels R 
and S show the positions of the Rayleigh and S wave velocities. Formally, the flux is negative between R and S. 
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Fig. 3. Energy flux into the dissipative region of an expanding mode III crack at small scale yielding as a function of the crack velocity. 
The energy flux is normalized with respect to the energy flux at slow crack expansion, and the velocity is normalized with respect 
to the S wave velocity. 

For sub-Rayleigh velocities, the energy flux is fairly independent of  the scale of  yielding, provided it is small. 

In the intersonic region, its dependence on the scale of yielding cannot be neglected (Broberg [ 5 ] ) - -  it vanishes at a 

vanishing scale of  yielding, except  at the curious velocity ~[2c s ,  where c s is the S wave velocity. The dashed 

curve in Fig. 2 is drawn under the assumption of the Barenbla t t -Leonov-Panasyuk-Dugdale  model of  a dissipative 

region (Barenblatt [6], Leonov and Panasyuk [7], Panasyuk [8], Dugdale [9]), with length equal to 0.001 of  the half 

crack length. 

For mode III, the picture is again simple, with positive energy flow in the whole velocity region (the maximum 

sound velocity for mode 1I[ is, of  course, the S wave speed), see Fig. 3. 

The acceleration of an expanding crack can be estimated by establishing an equation for the energy balance: the 

energy flux into the dissipative region, G, should be equal to the energy dissipation F. Approximately,  the energy 

flux can be taken as the energy flux calculated as if the current velocity had been prevailing from the onset of  crack 

growth, i.e., the result shown by Figs. 1-3 can be used. For F, the general form F(Goo, V, a~ where ~ is the re- 

mote load, V is the crack edge velocity, and a is the half length of the crack, was suggested by Broberg [41, but 

the assumption that only events at the crack edge and not the history are influential leads to the simpler form F(V). 

For an expanding crack, 
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G = Caw(V), (1) 

where C is a constant and w(V) is the energy flux normalized with respect to the energy flux at a very low crack 
velocity, i.e., the function shown in Figs. 1-3. Thus, 

r(v) 
w(V) = ' --4 0 as a--~oo. (2) 

Ca 

Since V= daldt, where t is time, this equation (which was later called "the crack tip equation of motion") is a 
differential equation for approximate determination of the crack motion. It leads to the result that an expanding 
crack would eventually reach the neighborhood of the Rayleigh wave velocity at modes I and II (or, if the region 

between the Rayleigh wave velocity and S wave velocity can be bypassed, the P wave velocity) and the neighbor- 

hood of the S wave velocity at mode I]I. 
Modes II and III are extremely difficult to realize experimentally, although they are the common modes at 

earthquakes. Some observations from the Imperial Valley Earthquake, 1979 (Archuleta [ 10], Scholtz [ I 1 ]) indicate 
mode II intersonic velocities. There are two possible mechanisms by which the "forbidden region" can be bypassed. 

One consists of slip initiation ahead of an expanding crack due to the fat shear stress peak traveling with the S wave 
velocity. The other is the convergence of crack edges traveling in somewhat different direction, as just after the 
passage of a crack edge around an obstacle. 

The Cell Model of Materials 

The discrepancy between theoretical estimates and experimental results has for a long time been a challenge for 
research workers. Could it be that local Rayleigh wave velocities near the crack edge were setting the limit at mode 
I ? Due to high tensile strains, these velocities could be substantially lower than the normal Rayleigh wave velocity. 
I assumed that so could be the case (Broberg [3]), but a closer study (Broberg [12]) revealed that it was not. This 
study was presented at a Symposium on Dynamic Crack Propagation at Bethlehem, Pennsylvania, USA, 1972. At 
the same symposium, Paxson and Lucas [13] showed results of great significance for the understanding of high- 
speed crack propagation, namely, that the energy dissipation at very high crack velocities could be as high as 50 
times the dissipation at low velocities. They used PMMA, but numerous later results have shown similar tenden- 
cies, though not always quite so pronounced. 

It seemed out of question that a 50 times increase of the energy dissipation could be caused by higher energy 
dissipation in a process region of about the same height as at slow crack growth. At slow crack growth, the height 
of the process region is given by the distance between kernels of microseparation. These kernels are often particles 
in the material, and the distance between them provides an intrinsic length parameter. 

Obviously, Paxson's and Lucas' results could only be interpreted so that the process region height increased, 
perhaps up to a factor 50. What could be the possible mechanism for such a growth ? It appeared plausible that the 
difference between low and high velocity cases had to do with the time needed for communications between micro- 
separations straight ahead of the crack and those at offside locations. Opening of a microseparation is accompanied 
by lowering of the forces in its neighborhood. This is evident from the cohesion-decohesion curve, which depicts 
loading of one material cell containing one kernel of microseparation. For cells belonging to the process region, the 
height increase continues until complete failure of the load carrying capacity, whereas the load carrying capacity of 
offside cells remains intact, see Fig. 4. 

The process region, as characterized here, consists of cells which have reached the decohesive state. Energy 
dissipation generally also occurs in offside cells as ?ordinary" plasticity. However, at small scale yielding, the 
development of the plastic region can be expected to follow the development of the process region: its current size 
ought to be essentially determined by the current size of the process region and the current velocity (cf. Broberg 
[141). 

This cell model has been describcd previously in greater detail by the author (see, e.g., [151). 
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Fig.  4. Force on a material cell containing one kernel of microseparation. The ascending part represents stable cohesive response. The 
descending part represents decohesion, which would be unstable under load controlled conditions. Cells in the process region 
belong to the decohesive branch, and cells outside to the cohesive branch. Unloading of cells follows the de.cohesive branch for 
cells which have reached the de, cohesive state, and the line of unloading indicated in the figure for other cells. 

Study a cell straight ahead of  the crack. When the crack edge moves towards the cell, the load increases until 

the maximum load carrying capacity of the cell is reached. This generally happens when the crack edge still is 
several cell distances away. Then the cell load decreases whereas the cell height continues to increase, following the 

decohesive part of the cohesion--decohesion curve. For a slowly moving crack, this load decrease is transferred to 
the neighboring offside cells, which therefore never reach their maximum load carrying capacity, but start to unload 
under decreasing cell height, following the unloading line in Fig. 4. In this way, essentially only one row of  ceils 

enters the decohesive state, i.e., the process region height will be about the same as the cell height, which equals 
approximately the intrinsic length parameter of material, in many cases, the distance between particles. 

Assume now that the crack edge is moving very fast. Load decrease at offside cells is then transferred from 
cells straight ahead of the crack edge by means of stress waves. Consequently, a delay time is involved, and the 
load decrease might arrive too late to prevent offside cells to enter the decohesive state. Then the process region 

height might be larger than the intrinsic length parameter. At very high crack speeds, it might be much larger. But 

then the significance of this parameter disappears. This implies that there is no material specific relation between F 

and V at very high crack velocities, since the dimension of F is force/length, so it cannot depend only on stresses 

(like the yield stress and the decohesive stress), elastic constants, hardening parameters, and the ratio V/cs A 
length parameter is obviously needed for a material-specific function F (V). 

This discussion was developed to greater detail by Broberg [14]. The picture appeared rather disturbing: it 

seemed that the absence of a unique relation between F and V would lead to anarchy: crack propagation at very 

high velocities would not be obliged to follow a strict law. 

Exper imenta l  Evidence and the Cell Model  

Later experimental work, particularly, by Kalthoff [16], Ravi-Chandar [17], Ravi-Chandar and Knauss [18], 
Takahashi and Arakawa [19], and by Arakawa and Takahashi [20] shed new light on the behavior of cracks at very 
high velocities. Thus, they showed that, under certain conditions, in the absence of or before crack branching, 

(i) the crack accelerates to a constant velocity; 

(ii) this constant velocity is different for different experimental conditions, although the material is the same; 
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(iii) the stress intensity factor and surface roughness increase during the constant velocity phase. 

These results are obviously not consistent with the balance equation which relates energy flux from the stress- 
strain field to a required energy dissipation, which is a function of the crack velocity, only, for each given material. 
They are, however, consistent with the loss of an intrinsic material parameter and, thereby, also of a material spe- 

cific relation between F and V. But instead of anarchy, certain law seems to compel the crack to propagate with a 
constant velocity. 

There have been several attempts, perhaps for philosophical reasons, to defend the existence of a unique rela- 
tion between energy dissipation and crack velocity. Some of these attempts focus on possible experimental errors 
related to velocity measurements, the influence of three-dimensional state of stress at the crack edge, effects of 
nonsingular stresses at methods unable to reach a sufficiently close vicinity of the crack edge (such as caustics), etc. 
(Freund [21], Dally et al. [22], Yang and Freund [23], Rosakis and Ravi-Chandar [24], Freund and Rosakis [25], 
Liu, Rosakis, and Freund [26]). However, while these experimental errors would necessitate some corrections of the 
experimental data, such corrections appear to be rather marginal and not at all sufficient for invalidating the con- 
clusions listed here as items (i)-(iii). Neither are, as it seems, attempts to explain why the highest crack speeds 
recorded in homogeneous bodies are limited to about 70 % of the Rayleigh wave speed, by oscillations of the crack 
propagation direction (Gao [27], Slepyan [28]). Such attempts seem to be unable to explain why the stress intensity 
factor and surface roughness increase during constant velocity phases, and do so to a very substantial degree. 

Further evidence in favor of a theory involving implications of an intrinsic parameter came from experiments 
by Washabaugh and Knauss [29]. They merged two PMMA plates together to form one large plate with a very thin 
connecting layer in which the material strength was considerably reduced. In this way, they effectively introduced a 
new length parameter, the layer thickness. Although this parameter is not intrinsic to the material but to the body 
geometry, it serves the purpose of limiting the height of the process region, since the decohesive force (the maxi- 
mum force in the cohesion--decohesion curve) is considerably higher in the base material than in the layer. Thus, 
cells outside the weak layer never reach the decohesive state. As a result, very high velocities were obtained, about 
90% of the Rayleigh wave velocity. 

Numerical Evidence and the Ceil Model 

The cell model was used in numerical simulations by Johnson [30, 31, 32]. He assumed a behavior of cells 
such that a cohesion-decohesion curve with a character similar to the one shown in Fig. 4 was followed at uniaxial 
loading under grip control. However, the need to incorporate a more general type of loading leads to a more com- 
plicated description of the behavior of a single cell in situ. 

The result showed that, in the absence of or before crack branching, 

(i) the crack accelerates to a constant velocity; 

(ii) this constant velocity is different for different acceleration histories, although the material parameters are 
the same; 

(iii) the stress intensity factor and the process region height increase during the constant velocity phase. 

These findings are obviously in direct agreement with experimental results. In addition, somewhat surprisingly, 
another rather common phenomenon was experienced in certain simulations, namely, attempted and successful 
branching. 

Johnson [32] also simulated crack propagation allowing only one row of cells straight ahead of the crack. This 
corresponds to the experiment by Washabaugh and Knauss [29], since it confines the process region to a thin layer 
and, in this way, introduces a significant length parameter, the cell height. The result was in full accordance with 
what was expected and later confirmed by the experiments by Washabaugh and Knauss, although the numerical 
capacity did not allow the simulations to continue towards the neighborhood of the Rayleigh speed. However, the 
crack accelerated during the whole simulation--no constant terminal velocity was obtained. 
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In one set of simulations, Johnson [31 ] investigated the role of statistical distribution of cell properties. The re- 
suits were essentially the same as for identical cell properties, although, as expected, with a less smooth develop- 
ment of the process region and a somewhat increased tendency towards branching. 

CONCLUSION 

The cell model of materials seems to be able to explain most of the experimental results about very fast crack 
propagation. However, even if one accepts that there is no unique material specific relation between energy dissipa- 
tion at the crack edge velocity, a still unanswered question is why just a conswnt velocity is the preferred choice. 
Thus, the crack seems to respond to loading by increasing the energy dissipation at the crack edge and keeping the 
edge velocity constant rather than keeping the energy dissipation at the crack edge constant and increasing the ve- 
locity, or something in between. It is difficult to imagine a thermodynamic reason for such a behavior, but, obvi- 
ously, there is a tendency towards the preference of energy dissipation rather than of kinetic energy. 
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