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ABSTRACT: Six groups of rats were fed diets low, but ade- 
quate, in a-tocopherol but high in 7-tocopherol. The six diets 
differed only in their contents (0, 0.25, 0.5, 1.0, 2.0, and 4.0 
g/kg, respectively) of sesamin, a lignan from sesame oil. After 
four weeks of ad libitum feeding, the rats were sacrificed and 
the concentrations of et- and 7-tocopherols were measured in 
the plasma, livers, and lungs. Sesamin-feeding increased y-to- 
copherol and 7-/cc-tocopherol ratios in the plasma (P < 0.05), 
liver (P < 0.001 ), and lungs (P < 0.001 ). The increase was non- 
significant for ct-tocopherol. Thus, sesamin appears to spare 7- 
tocopherol in rat plasma and tissues, and this effect persists in 
the presence of o~-tocopherol, a known competitor to 7-toco- 
pherol. This suggests thai the bioavailability of 7-tocopherol is 
enhanced in phenol-containing diets as compared with purified 
diets. 
Lipids 30, 499-505 (1995). 

Sesame seed (Sesamum indicum, Linn., Pedaliaceae) is 
known for its high nutritional value, and for having high oil 
(ca. 50%) and protein (20-25%) content (1). Sesame oil is 
characterized by a very high oxidative stability compared 
with other vegetable oils (2,3). The oil is composed of ca. 
98% glycerides and 1.5-2% unsaponifiables (4,5). The fatty 
acid composition of sesame oil is palmitic (7-12%), stearic 
(3.5--6%), oleic (35-50%), and linoleic acid (35-50%) 
(4,6,7). Two lignan-type compounds, sesamin and sesamolin, 
a r e  the major constituents of sesame oil unsaponifiables (5,8). 
Sesamol (a sesamolin derivative) can be present in sesame 
seeds and/or oils in very small amounts. Other lignans and 
sesamol are also present in sesame seeds and/or oils in very 
small amounts as aglycones, but are present in considerable 
amounts in the seeds as glucosides (9-14). The structures of 
all sesame seed lignans are shown in Figure 1, and their sys- 
tematic names and levels in sesame seeds are presented in 
Table 1. Crude sesame oil also contains ca. 50(0700 mg to- 
copherols per kg, which are about 97% y-tocopherol (T-T) (5). 

Sesame seed lignans were reported to be responsible for 
many unique chemical and physiological properties of sesame 
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FIG. 1. The chemical structures of sesamin and related compounds in 
sesame seeds. 

oil (2,9.15-21). It is of special interest to note that they have 
antioxidant and antimutagenic properties (9,22). Sesamin has 
no antioxidant activity in itself, but it is possible that its 
metabolites can act as antioxidants in vivo. Recently, Ya- 
mashita et al. (23) suggested that certain antioxidants in 
sesame, other than tocopherols, suppressed senescence in 
mice. Sesamin also caused a significant increase in y-T levels 
in the plasma and liver of rats (24). In their experiment, Ya- 
mashita et al. (24) studied the effect of addition of sesame 
seed, sesamin, and sesaminol (a transformation compound 
from sesamolin in refined sesame oil) to rat diets containing 
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TABLE 1 
Trivial and Systematic Names and Levels a of tignans and tignan Glucosides in Sesame Seeds (Sesamum indicum, Linn.) 

Weight % Reference 
Trivial names Systematic names in seed number 

Lignans 
Sesamin 2,6-bis-(3,4-methylenedioxy phenyl)-cis-3,7-dioxabicyclo-[3.3.0]-octane 0.2-0.5 9 
Sesamolin 2-(3,4-methylenedioxy phenoxy)-6-(3,4-methylenedioxy phenyl)-cis-3,7-dioxabicyclo-[3.3.0]-octane 0.2-0.3 9 
Sesamol 3,4-methylenedioxy phenol 0.0004 10 
P1 2-(3-methoxy-4-hydroxy phenyl)-6-(3,4-methylenedioxy phenyl)-cis-3,7-dioxabicyclo-[3.3.0]-octane 0.002 11 
Sesamolinol (P2) 2-(3-methoxy-4-hydroxy phenoxy)-6-(3,4-methylenedioxy phenyl)-cis-3,7-dioxabicyclo[3.3.0]-octane 0.006 11 
Sesaminol (P3) 2-(3,4-methylenedioxy-6-hydroxy phenyl)-6-(3,4-methylenedioxy phenyl)-cis-3,7-dioxabicyclo 

[3.3.0J-octane 0.002 11 
Pinoresinol 2,6-bis-(3-methoxy-4-hydroxy phenyl)-cis-3,7-dioxabicyclo[3.3.0]-octane - -  12 

Lignan glucosides total ca. 1% 12 
- -  Sesaminol 2'-o-g-D-glucopyranoside - -  13 
- -  Sesaminol 2'-O-g-D-glucopyranosyl(1 -~2)-ff,-D-glucopyranoside - -  13 
- -  Sesaminol 2'-O-g-D-glucopyranosyl(1 -~2)-O-ll3-D-glucopyranosyl(1 --~6)]-g-D-glucopyranoside - -  13 
KP1 Pinoresinol 4'-O-g-D-glucopyranosyl(1 -->6)-g-D-glucopyranoside - -  12 
KP2 Pinoresinol 4'-O-g-D-glucopyranosyl(1 -~2)-g-D-glucopyranoside - -  12 
KP3 Pinoresinol 4'-O-g-D-glucopyranosyl(1 ~2)-O-[g-D-glucopyranosyl(1 -~6)]-g-D-glucopyranoside - -  14 

"qhe levels of total lignans and lignan glucosides in sesame seeds can range from 1-1.5%. 

practically no t~-tocopherol (t~-T) but being rich in y-T. It has 
been reported that y-T can be present in plasma at fairly high 
concentrations in cases of ct-T deficiency (25,26). On the 
other hand, with increased intake, t~-T displaces y-T in serum 
(27,28) as well as in red blood cells, platelets, and lympho- 
cytes (29). 

As mixed diets for humans and animals generally contain 
both ot-T and y-T as major dietary tocopherols, we considered 
it relevant to study the effects of dietary sesamin on the reten- 
tion of y-T in the rat in the presence of low, but adequate, lev- 
els of t~-T (30). 

M A T E R I A L S  A N D  M E T H O D S  

Chemicals and reagents. Sesamin, DL-y-T and groundnut oil 
were gifts from Takemoto Oil & Fat Co., Ltd. (Gamagori 
Aichi, Japan), F. Hoffmann-La Roche (Basel, Switzerland), 
and from Aarhus Olie (Aarhus, Denmark), respectively. The 
authentic ct- and y-T used as external standards in high-per- 
formance liquid chromatography (HPLC) analyses were pur- 
chased from Merck (Darmstadt, Germany). All other chemi- 
cals and reagents were of analytical grade and were used 
without further purification. 

Animals, diets, and study design. Thirty-six male, 25-day- 
old Sprague-Dawley rats (B & K Universal, Sollentuna, Swe- 
den) weighing on average 70 g, were used. The rats were 
housed individually in wire-bottom cages in a room kept at 
25~ and 50% relative humidity. A 12-h light (07:00- 
19:00)/dark (19:00-07:00) cycle was used. Six groups, of six 
rats each, were fed the various experimental diets (Table 2). 
Groundnut oil (containing 13 mg of endogenous t~-T and 10 
mg of endogenous y-T per 100 g and fortified with additional 
y-T, 40 mg/100 g) was added, at a level.of 100 g/kg diet, as a 
source of energy, essential fatty acids, and vitamin E. Thus, 
the vitamin E content of the six diets was 13 mg/kg ct-T and 

TABLE 2 
Composition of the Basal Experimental Diet a 

Ingredient g/ks 

Maize starch 
Casein, vitamin free 
Groundnut oil b 
Cellulose powder 
Mineral and trace element 3remix c 
Sucrose 
Vitamin premix ~ 

570 
200 
100 
40 
40 
40 
10 

aOn dry weight basis, seamm was added to the six diets at levels of 0, 
0.25, 0.50, 1.0, 2.0, and 4.0 g/kg diet, respectively. 
tqhe groundnut oil had the following fatty acid composition, based on 
gas chromatographic analysis of the fatty acid methyl esters: 16:0 
(12.7%), 18:0 (2.4%), 18:1 (51.3%), 18:2 (31.4%), 20:0 (1.0%), and 
20:1 (1.2%). The oil contained (mS/100 g): c~-tocopherol ((x-T; 13), ~- 
tocotrienol (0.1), g-tocopherol (0.4), y-tocopherol (y-T; 10) and 8-toco- 
pherol (8-T; 0.6). The oil was supplemented with additional y-T (40 
ms/100 g). Thus, each diet contained 13 and 50 mg/kg of @-T and y-T, 
respectively. 
CThe composition of mineral and trace element premix (g/kg) was: Ca, 
220; P, 58; Ms, 5; Na, 79; 1, 0.065; Se, 0.010; Fe, 2; Co, 0.020; Cu, 
0.600; Mn, 2.50; Zn, 3.00. 
alhe composition of the vitamin premix (g/ks) was: vitamin A (retinol), 
0.5835; vitamin B1, 2.57; vitamin B2, 1.09; vitamin B6, 1.93; vitamin 
B12, 0.0028; vitamin C, 0.800; vitamin D 3 (cholecalciferol), 0.0106; 
pantothenic acid, 3.90; vitamin K3, 0.430; choline chloride, 188.2; bi- 
otin, 0.030; g-carotene, 0.02; folic acid, 0.27; myo-inositol, 206.4; and 
nicotinic acid, 8.15. 

50 mg/kg y-T. Sesamin was the only variable in the diets and 
was present in diets 1-6 at levels of 0.0, 0.25, 0.50, 1.0, 2.0, 
and 4.0 g/kg, respectively. The rats were allowed free access 
to tap water and were fed experimental diets ad libitum for 
four weeks. Feed was given daily (13:00), and feed wastage 
was determined at the same time. The rats were weighed 
every week and the tissues were weighed at sacrifice. This 
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study was approved by the Ethical Committee for animal ex- 
periments of the Uppsala region. 

Blood and tissue collections. Rats were deprived of feed 
for 24 h before sacrifice. Rats were anaesthetized by an in- 
traperitoneal injection of sodium pentobarbital, blood was 
withdrawn from vena cava, and rats were killed by exsan- 
guination. Blood was collected in tubes containing EDTA as 
anticoagulant, and plasma was isolated following centrifuga- 
tion (3000 rpm, 4~ 10 min). The plasma was stored at 
-20~ until analyzed for tocopherol concentration. The livers 
and lungs were quickly removed, weighed, immersed in iso- 
propanol (10 mL), and stored at -20~ until analyzed. 

Chemical analysis. The tocopherols were extracted from 
500 pL portions of the plasma in glass tubes. Ethanol (500 
laL) was added to each tube, and the lipids were extracted 
twice with 2 mL of n-hexane after shaking and centrifugation. 
The lipid extracts were dried over anhydrous sodium sulfate, 
centrifuged (4000 rpm, 5 min), quantitatively transferred to 
other tubes, flushed with nitrogen, and sealed and stored at 
-20~ until analyzed by HPLC within the same or next day. 
Before HPLC analyses, the hexane extracts were dried under 
nitrogen and redissolved in 200 laL of hexane. 

The livers and lungs were extracted in hexane/isopropanol 
(3:2, vol/vol) according to Hara and Radin (31) using an 
Ultra-Turrax homogenizer (Janke and Kunkel GmbH & Co. 
KG, Breisgau, Germany). Briefly, the livers were homoge- 
nized in 100 mL hexane/isopropanol (3:2, vol/vol) and cen- 
trifuged at 3000 rpm for 10 min. The lipid extracts were de- 
canted, the tissue was rehomogenized in 50 mL hexane/iso- 
propanol (3:2, vol/vol), and extracts pooled. The extracts 
were washed twice with aqueous sodium sulfate, and the salt 
solution was then washed twice with hexane/isopropanol 
(7:2, vol/vol) (31). The lipid extracts were concentrated under 
vacuum and transferred to glass tubes containing anhydrous 
sodium sulfate. The tubes were centrifuged (4000 rpm, 5 
min), and the lipid extracts were quantitatively transferred to 
other tubes. The hexane/isopropanol was evaporated to dry- 
ness under nitrogen because a-T has a higher oxidation rate 
in protic polar solvents. The extracts were then dissolved in 
hexane, flushed with nitrogen, and sealed and stored at -20~ 
until analyzed by HPLC within 1-2 d. The solvent was com- 
pletely evaporated under nitrogen, and the residue was recon- 
stituted in n-hexane directly before HPLC analyses. 

The tocopherol levels in the plasma and tissues were quan- 
tified by HPLC analysis on a Hibar pre-packed LiChrosorb 
NH 2 column (25 cm x 4 mm i.d., particle size 5 lam; E. Merck). 
The mobile phase was n-heptane/methyl-tertiary butyl ether/tetra- 
hydrofuran/methanol (79:20:1:0. I, by vol) at a flow rate of 
1.0 mL/min. The HPLC system consisted of a Merck-Hitachi 
HPLC L-6200A Intelligent pump, a 20 laL injection loop, and 
a Merck F-1050 Fluorescence spectrophotometer. The peaks 
were detected at an excitation wavelength of 295 nm and an 
emission wavelength of 320 nm, and were recorded using an 
HP 3396A integrator (Hewlett Packard, Avondale, PA). The 
tocopherol peaks were identified and quantified against au- 
thentic tocopherols used as external standards. 

Statistical analysis. Statistical analyses were performed by 
using the Statistical Analysis System (32). Linear regression 
analyses of tocopherol concentrations (Y) against sesamin 
level (X) were done by using the regression procedure (PROC 
REG) and analysis of variance by using the general linear 
model with level of sesamin as the only main effect. 

RESULTS 

The relationships between the sesamin levels in the diets and 
the a- and y-T concentrations in the plasma, livers, and lungs 
of the experimental rats are shown in Figure 2. Positive re- 
gression slopes were obtained for both a- and y-T, showing 
an increasing effect with increasing sesamin levels in the 
diets. 

For y-T, the following regression equation was obtained 
for the plasma: GTL (y-T level) = 0.270 + 0.214 SL (sesamin 
level), with a correlation coefficient (r) of 0.60. The intercept 
(0.270) shows y-T level (pmole/L plasma) in the control 
group, and the slope (0.214) shows the rate of increase in T-T 
level with increasing sesamin level (SL, g/kg diet) in the ex- 
perimental groups. The regression equations for y-T in the 
liver and lungs were: GTL = 2.913 + 2.072 SL (r = 0.839) and 
GTL = 1.898 + 2.663 SL (r = 0.86), respectively. The regres- 
sion analysis procedure showed significant correlations be- 
tween SL and GTL in plasma (P < 0.005). liver (P < 0.001), 
and lungs (P < 0.001). On the other hand, the relationships 
between the sesamin level in the diet (SL) and a-T levels in 
the plasma, liver, and lungs were not statistically significant 
(Fig. 2). 

The effects of increasing sesamin concentration on the 
means of a-T, y-T, and a-T + y-T levels and on the ratios of 
y-T/a-T in the plasma and tissues of experimental rats were 
assessed by analysis of variance (Table 3). Plasma y-T con- 
centrations generally increased from 0.06 to 1.07 ramol/L, 
whereas a-T concentrations varied between 3.06 and 4.79 
mmol/L. The concentration of T-T in the plasma was signifi- 
cantly increased (P < 0.05) by sesamin level, whereas the in- 
crease in a-T concentration was not statistically significant. 
The sesamin feeding did not change total body weights nor 
weights of livers and lungs of experimental rats. In the livers, 
T-T increased from 2.12 to 11.03 nmol/g fresh weight 
(P < 0.001) as a result of increasing dietary sesamin. Al- 
though a -T  concentrations were not significantly changed, 
they varied between 16.96 and 27.03 nmol/g fresh weight. 
Similar results were obtained in the lungs, where y-T concen- 
trations increased from 1.55 to 13.07 nmol/g fresh weight 
(P < 0.001) and a -T  concentrations did not change signifi- 
cantly. 

DISCUSSION 

In this study, the rat diets were rich in y-T and contained an 
adequate level of a-T, as judged from the results of Hakkari- 
nen et al. (30). The minimum vitamin E requirement for rat 
survival was reported as 7 mg DL-a-tocopherylacetate per kg 
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FIG. 2. Linear relationships between 0c- and 7-tocopherol levels (ATL and GTL, respectively) in rat plasma (A), liver (B), and lungs (C), and sesamin 
level (SL) in the diet (g/kg). The points show the tocopherol levels for 3-5 rats per sesamin level (group); r denotes the correlation coefficients: the 
correlations were nonsignificant in the case of 0c-Tocopherol (ct), but significant in the case of y-tocopherol (7) (plasma, P < 0.005; liver and lungs, 

P< 0.001 ). 

feed when the selenium content of the diet is 6.6 pg/kg and 
the vitamin E/polyunsaturated fatty acid ratio is 0.45 (30). 
This experimental approach was introduced to explore if the 
presence of the adequate (z-T levels will mask the reported 
effect of sesamin on 7-T retention (24). The experiment was 

designed so that sesamin content was the only differing vari- 
able in the experimental diets. Groundnut oil was chosen be- 
cause of its resemblance to sesame oil in fatty acid composi- 
tion and for the fact that it contains only oc-T and y-T as major 
tocopherols (Refs. 4, 6, Table 2). 

TABLE 3 
Concentrations of c~-, 7-, and c( + y-Tocopherols and "y-/(~-Tocopherol Ratios in Plasma (pmol/L) and Liver and Lungs (nmol/g wet weight) 
of Rats Fed a Basal Diet with Increasing Levels of Sesamin a " 

P value for 

Sesamin level (g/kg diet) 0 0.25 0.50 1.0 2.0 4.0 analysis of 
Number of  observations 4 4 3 5 4 4 variance (P <) 

Plasma 
o~-Tocopherol 3.1 • 0.56 4.4 • 0.43 3.8 • 1.29 4.8 • 1.04 4.0 • 0.82 4.6 • 0.88 N.S. 
7-Tocopherol O.1 • b 0.4 • 0.21 b'd 0.3 •  b'c 0.6 • 0.13 b'd 0.7 • O.41 c'd 1.1 •  d 0.05 

~t -~ y-Tocopherol 3.1 + 0.54 4.9 +_ 0.46 4.1 • 1.37 5.4 + I .I I 4.7 + 1.21 5.7 + I .O1 N.S. 
7-Tocopherollot-tocopherol O.0 • 0.01 b 0.1 • 0.05 b'C 0.I  • 0.02 b'c 0.1 • 0.03 c'd O.1 + 0.07 b'd 0.2 + 0.23 d 0.05 

Liver 
o~-Tocopherol 17.0 • 1.64 17.1 • 1.45 26.5 • 8.41 18.9 • 1.21 27.0 • 5.45 23.6 • 4.83 N.S. 
T-Tocopherol 2.1 •  b 3.0 • O.36 b 4 . 2 •  b,c 6.3 • 0.60 c 6.6 + 0.85 c 11.O • 1.90 d O.001 

~t + T-Tocopherol 19.1 + 1.91 20.2 • 1.42 30.7 • 9.39 25.2 • 1.74 33.6 • 6.26 34.7 • 6.56 N.S. 
7-Tocopherollo~-tocopherol 0.1 • 0.01 b 0.2 • O.03 b'c 0.2 • O.01 b,c 0.3 • 0.O2 d 0.3 • 0.O2 c'd 0.5 • 0.05 e O.001 

Lungs 
o~-Tocopherol 21.3 + 2.26 18.6 • 1.67 28.7 _+ 3.95 28.1 + 4.25 26.9 • 3.03 28.9 • 2.98 N.S. 
y-Tocopherol 1.5 + O.14 b 2.3 • 0.39 b'c 3.5 _+ O.40 b'd 6.O • 1.23 d 5.2 • O.89 c'd 13.1 • 1.90 e 0.001 
0c § T-Tocopherol 22.9 + 2.35 b 20.9 • 1.84 b 32.2 • 4.O5 b'c 34.1 • 5.33 c 32.1 • 3.41b"~ 42.0 • 3.70 c 0.01 
T-Tocopherollet-tocopherol O.1 • 0.01 b 0.1 • 0.02 b'c 0.1 • 0.02 b'c 0.2 • 0.02 c 0.2 • 0.03 c 0.5 • 0.07 d 0.001 

aLevels of ct- and 7-tocopherols measured by HPLC relative to external standards. Values represent means + SEM (n = 3-5). ] he  composit ion 

diets is as in Table 2. 
b,c-d, eValues within each row not sharing a common superscript letter are statistically different at P < 0.05. N.S., not significant. 

of the 
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In the United States, the daily dietary supply of y-T is ap- 
proximately twice that of ct-T (33,34). Earlier studies showed 
that the biological activity of y-T is only about 10-35% of that 
of a -T  (26-28,35,36). Hence, ct-T is recognized as the most 
important natural lipophilic antioxidant in biological systems 
(36-39). Both isomers (ct-T and y-T) are absorbed to the same 
extent from the gastrointestinal tract (25,35,40-43), but y-T 
is cleared from the tissues at a considerably faster rate than 
o~-T (44,45). Upon feeding equal amounts of the two isomers, 
both tocopherols were found to increase similarly in the 
plasma up to 12 h. After 24 h, the level of y-T decreased dras- 
tically, while that of @-T remained almost unchanged 
(41,43,46). The latter is preferentially bound to the cellular 
membranes of the liver and to the transporting proteins, while 
y-T is excreted through bile without combining with the trans- 
porting protein (26,41,43,47). Comparative studies in humans 
using deuterium-labeled y-T also showed that there is no dis- 
crimination between y-T and t~-T during absorption and se- 
cretion in the chylomicrons, but subsequently there is a pref- 
erential enrichment of the very low density lipoprotein with 
o~-T (48). All animal studies on relative tocopherol bioavail- 
abilities were conducted using purified diets which contained 
no antioxidants other than the tocopherols. To date, there is 
no knowledge about the relative bioavailabilities of the dif- 
ferent tocopherols in mixed diets containing other antioxi- 
dants, such as plant phenols (49). 

Our results are in agreement with previous findings that 
sesamin-feeding increases y-T levels in rat plasma and in liver 
(24). Moreover, we have demonstrated that the effect persists 
even in the presence of ct-T, which is a known competitor to 
y-T expression (27-29). In addition, we observed that 
sesamin induced almost equal increases in the t~-T levels in 
rat plasma, liver, and lungs, although these increases were not 
statistically significant, perhaps due to the large within-group 
variation in the levels of this tocol in the plasma and tissues. 

The sparing effect of sesamin on vitamin E may explain 
the observation that some antioxidants, other than toco- 
pherols, in sesame suppressed senescence in mice (23). The 
resulting increase in total vitamin E bioavailability may also 
explain some interesting early observations. Tobin (15) re- 
ported that daily injection of sesame oil to adrenalectomized 
female rats increased the number of successful pregnancies, 
prolonged the survival time of those animals having a suc- 
cessful gestation, and increased their ability to rear young. 
This effect might have been related to high vitamin E 
bioavailability as vitamin E is well known to increase fertility 
in vitamin E-deficient rodents and other animals (50,51). 
Chou and Marlatt (16) found that sesame oil produced better 
carotene utilization (a factor of 1.84) than did soybean (1.00) 
and peanut oils (0.68) when fed to rats. At that time, the ef- 
fect was surprising as the sesame oil meal contained 11.5 mg 
tocopherols/kg diet and the soybean oil meal had 27.5 mg/kg. 
Sesamol was also mentioned to counteract fish oil toxicity to 
chicks in a similar manner to the antioxidants ct-T and x,x'- 
diphenyl-p-phenyl-enediamine (17). 

There is but one report on the absorption of sesamin in 

rats, where only 0.15% of the fed sesamin was recovered in 
the lymph during 24 h, suggesting limited absorption (20). 
Around 15-19% was excreted in the feces in rats fed a puri- 
fied diet and ca. 34% in rats fed a nonpurified diet. The mech- 
anism by which sesamin acts is unknown, but at least two 
possibilities exist. The mechanism may involve synergistic 
interaction with y-T (a regeneration mechanism) in a similar 
way to other antioxidant synergists, like ascorbic acid. An- 
other possibility is that sesamin may compete with y-T in its 
oxidation and/or clearance. Lignans having the methylene- 
dioxyphenyl (1,3-benzodioxole) function are known in- 
hibitors of the mixed function oxidases associated with the 
endoplasmatic reticulum of the microsomes (52). Many 
mixed function oxidases are active in the metabolism of 
lipids, steroids, and in the compounds foreign to the meta- 
bolic network (53). Thus, sesamin and related compounds 
may be regarded as xenobiotic substances by the mixed func- 
tion oxidases, and their further metabolism may competi- 
tively inhibit the activity of these enzymes toward the lipids, 
sterols, tocopherols, etc. 

The sparing of or- and y-T by sesamin may be of nutritional 
and physiological significance. A hamburger with a sesame 
bun, rather common in urban western diets, adds ca. 10 mg 
sesamin to the diet. The metabolism of sesamin in the rat was 
reported to occur, through the mixed function oxidase en- 
zymes, via oxidation of the methylene dioxy function, result- 
ing in a 1,2-diphenol (51), which is expected to have antioxi- 
dant properties, at least in vitro. Human diets are rich in an- 
tioxidant phenols, which may have comparable effects to that 
of sesamin (49). As sesamin feeding caused a high relative 
increase in y-T in rats, we postulate that the bioavailability of 
y-T may have been underestimated in the previous studies 
performed using purified diets (26-28,35,36). The metabolic 
interaction(s) of y-T with other food or feed constituents with 
an antioxidant function needs to be studied further. 
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