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This study examines the effects of the ratio of n-3/n-6 
fat ty acids (FA) on brain development in mice when long- 
chain n-3 FA are supplied in the diet. From conception 
until 12 days after birth, B6D2F i mice were fed liquid 
diets, each providing 10% of energy from olive oil, and 
a further 10% from different combinations of free FA con- 
centrates derived from safflower oil (18:2n-6), and fish oil 
(20:5n-3 and 22:6n-3). The range of dietary n-3/n-6 ratios 
was 0, 0.25, 0.5, 1.0, 2.0 and 4.0, with an n-6 content of 
greater than 1.5% of energy in all diets, and similar levels 
of total polyunsaturated fa t ty  acids (PUFA). In an addi- 
tional group of ratio 0.5, 18:2n-6 was partially replaced 
by its A6 desaturation product, 18:3n~. Biochemical analy- 
ses were conducted  on 12-day-old pup brains, as well as 
on samples of maternal milk. No obvious effects on 
overall pup growth and development were observed, apart 
from a smaller litter size at ratio 1. Co-variance analysis 
indicated that increasing the n-3/n-6 ratio was assoc ia ted  
with slightly smaller brains, relative to body weight. We 
f ou nd  that 18:2n-6 and 20:5n-3 were the predominant n-6 
and n-3 FA in the milk; in the brain these were 20:4n-6 
and 22:6n-3, respectively. Increasing dietary n-3/n-6 ratios 
generally resulted in an increase in n-3 FA, with a cor- 
responding decrease in n-6 FA. The n-3/n4] ratio of the milk 
lipids showed a strong linear relationship with the diet, 
but in the brain the rate of increase tended to decrease 
beyond 0.5 (phosphatidylchollne, PC) and 0.25 (phospha- 
tidylethanolamine, PE), such that there was a significant 
quadratic contribution to the relationship. The partial 
replacement of dietary 18:2n-6 with 18:3n-6 raised levels 
of 20:4n-6 in milk, brain PC, and brain PE. These results 
indicate that  the n-3/n-6 ratio of the phospholipids in the 
developing mouse brain responds maximally to maternal 
dietary long-chain n-3/n-6 ratios of between 0.25 and 0.5. 
Lipids 27, 98-103 (1992). 

The membrane phospholipids of the central nervous 
system contain high levels of polyunsaturated fatty acids 
(PUFA), particularly arachidonic acid, 20:4n-6, and 
docosahexaenoic acid, 22:6n-3 (1). It is known that 22:6n-3, 
occurs at high concentrations in synaptic membranes (2) 
and in photoreceptor cells in the retina 13,4). These long- 
chain PUFA accrue rapidly in the brain during the pre- 
natal and suckling periods (5-7), and are formed from their 
respective dietary precursors, 18:2n-6 and 18:3n-3, by the 
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phosphatidylcholine; PE, phosphatidylethanolamine; PUFA, polyun- 
saturated fatty acids; SAS, Statistical Analysis Systems; SFA, 
saturated fatty acids. 

same series of desaturation and elongation reactions, with 
n-3 having the competitive advantage over n-6 compounds 
in vitro (8). Both fetal liver and brain have the metabolic 
capacity to synthesize long-chain PUFA {9,10}. There is 
recent evidence suggesting that 18:3n-3 is converted in 
fetal and pup liver to 22:6n-3, which is then secreted into 
blood as lipoproteins, and incorporated selectively into 
nervous tissue (11). Studies in both developing rat and 
chick brain have demonstrated preferential uptake of 
22:6n-3 over its precursors (12,13). Dose-response studies 
conducted by varying the amount of dietary 18:3n-3 dur- 
ing the developmental period (14), and in weanling animals 
(15-17), showed a decrease in brain 22:5n-6 and an increase 
in brain 22:6n-3 with increasing dietary 18:3n-3. Much of 
this effect appeared to be in comparison with an n-3 defi- 
cient group, with smaller differences at the higher dosage 
levels, suggesting regulatory limits. The relationship be- 
tween brain FA composition and dietary long-chain n-3 
FA may be different from that  seen with dietary 18:3n-3. 
Feeding of fish off to adult rats resulted in a rapid increase 
in levels of 22:5m3 and 22:6n-3, as well as 20:5n-3 (which 
is usually present in brain only in trace amounts), with 
corresponding decreases in 22:5n-6, as well as 20:4n-6, sug- 
gesting that the brain may be vulnerable to an excess of 
long-chain no3 PUFA (18,19). The developing brelin, be- 
cause of its affinity for long-chain n-3, may be particu- 
larly susceptible to such effects. There is particular con- 
cern that decreases in 20:4n-6 may be associated with 
adverse effects (20). Thus the present study investigated 
the relationship between the dietary long-chain n-3/n-6 
ratio and the FA composition of the brain in developing 
mice. The n-3 FA were provided as the long-chain com- 
pounds found in fish oil, predominantly 20:5n-3 and 
22:6n-3, and using ratios of 0, 0.25, 0.5, 1.0, 2.0 and 4.0. 
While the 0 group was clearly an n-3 deficient group, the 
values above 0.25 considerably exceeded current dietary 
recommendations (21), with the intent of challenging the 
regulatory capacity of the system_ The study included two 
groups of ratio 0.5, one as part of the dose-response series 
where the n-6 was provided as 18:2n-6, and the other where 
a portion of the 18:2no6 was replaced by 18:3n-6. Previous 
work comparing labelled dietary 18:3n-6 with 18:2n-6 
showed increased incorporation into brain 20:4n-6 ~with 
18:3n-6 (22). Therefore comparison of these two groups ad- 
dressed whether levels of 20:4n-6 in the brain would in- 
crease in animals fed 18:3n-6 relative to those receiving 
the same amount of long-chain n-3, but only 18:2n-6 in 
the diet. The dietary treatments were imposed throughout 
gestation and lactation. The FA composition of milk lipids 
and pup brain phosphatidylcholine (PC) and phosphatidyl- 
ethanolamine (PE) fractions was determined on day 32 
postconception (12 days after birth); other measurements 
included pup body and brain growth, as well as eye- 
opening score. 
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MATERIALS AND METHODS 

Animals. Parents were 28- to 32-week-old B6D2F 1 hybrid 
mice purchased from Charles River Breeding Laboratories 
(St. Constant,  P.Q., Canada}. They were maintained under 
a reversed 12 hr light:12 hr dark  schedule at  22 +_ I~ 
with tap water  and lab chow (PMI Lab Die t - - former ly  
Pur ina--#  5001, St. Louis, MO) available ad libitum until  
breeding. The animals were group-housed in s tandard  
plast ic cages containing Beta-Chip hardwood bedding 
(Northeastern Products  Corp., Warrensburg,  NY) and 
toilet t issue for nest ing material .  

Diets. Maternal  animals were fed one of six liquid diets, 
each of which provided 20% of the calories from oil, bu t  
which varied in their n-3/n-6 r a t i a  The  diet, as used in our 
previous studies (23-25), was specifically formulated for 
our use by BioServ, ref. # F2187 (Frenchtown, NJ). This 
provided 1 kcal/mL, with 20% of the calories from pro- 
tein (fat-free casein), 20% from oil, 60% from carbohydrate 
(maltose-dextrin), supplemented  with  minerals  and 
vitamins.  The dietary oil mixtures  were prepared in our 
laboratory from olive oil (13% 18:2n-6 as triglyceride), and 
free f a t ty  acid concentrates,  Safflower 70, derived from 
safflower oil and containing 69.7% 18:2n-6, and EPA 50, 
derived from fish oil concentrate  and containing 41.2% 
20:5n-3 and 6.1% 22:6n-3 (Callanish Ltd., Breasclete, Isle 
of Lewis, U.K.). The use of these free f a t ty  acid concen- 
t ra tes  in the formulat ion of the diets allowed us to pro- 
vide high n-3/n-6 ratios (0.0, 0.25, 0.5, 1.0, 2.0, and 4.0), 
while ensuring similar levels of PUFA (approximately 8% 
of total  dietary energy) (Table 1). All groups received 

sufficient n-6 FA (>1.5% of total  dietary energy), such tha t  
we were s tudying  only the effect of increasing n-3, and 
not  tha t  of n-6 deficiency. The n-6 was supplied as 18:2n-6, 
and the n-3 predominant ly  as 20:5n-3 and 22:6n-3. This  
design therefore addressed the effects of increasing the 
die tary  n-3/n-6 ratio ((20:5n-3 + 22:6n-3)/18:2n-6) while 
keeping the to ta l  amount  of sa tura ted  (SFA), monoun- 
sa tura ted  (MUFA) and polyunsa tura ted  f a t ty  acids 
(PUFA) relatively constant;  thus, as n-3 increased, n-6 
decreased. The al ternat ive of increasing n-3 while keep- 
ing n-6 cons tant  would have had the problem of causing 
these other factors to vary  concomitantly. A similar d ip  
t a ry  formulat ion has been used in a recently published 
s tudy  of vary ing  die tary  n-6/n-3 rat io on the brain f a t t y  
acid (FA) composition in weanling rats  (27). An additional 
group was fed a diet with a n-3/n-6 ratio of 0.5 and the 
same amount  of EPA 50 as the  0.5 group. In  this group, 
18:2n-6 was replaced part ial ly by  18:3n-6 (GLA 70, con- 
taining 19% 18:2n-6 and 68.7% 18"3n-6). Additionally, 
tocopherol was added to the oil mixtures,  such tha t  the 
prepared liquid diet contained 150 i.u. per liter. 

Breeding protocol. Animals  were mated  daily, and 
checked for the presence of copulatory plugs after  7 hr. 
P regnan t  dams  were assigned randomly to each dietary 
condition on day 0, and all subsequent  days were desig- 
nated as "days post-conception:'  Dams  were fed daily pre- 
weighed amounts  of the liquid diet, based  on 0.65 kcal/g 
body wt/day, until  day 20. Fresh diet was prepared every 
two days, and diets and die tary  oils were stored in the 
refrigerator under nitrogen a t  all times. Bir th  occurred on 
day 19 or 20, and all dams and litters were weighed on 

TABLE1 

S~ectedFatty Ac~ Compo~onof ~ e t ~ y  ~ l M i ~ e s  a 

0 0.25 0.5 1.0 2.0 4.0 0.5 b 

% Energy 
Olive oil 50.00 50.00 50.00 50.00 50.00 40.00 56.7 
Safflower 70 50.00 35.70 26.70 16.00 5.85 1.00 
EPA 50 14.30 23.30 34.00 44.15 59.00 23.3 
GLA 70 20.0 

% Fatty acids 
16:0 10.8 9.8 9.1 8.4 7.7 5.9 8.3 
16:1 0.7 2.5 3.6 4.3 6.3 8.0 0.8 
18:0 2.4 3.1 3.5 4.0 4.5 5.2 3.8 
18:1n-9 39.6 38.1 37.2 36.0 35.0 28.2 37.9 
18:1n-7 0.3 0.5 0.7 0.9 1.2 0.5 
18:2n-6 41.4 31.7 25.7 18.5 11.6 7.2 11.7 
18:3n-6 0.2 0.3 0.4 0.5 0.7 14.0 
20:4n-6 0.1 0.2 0.2 0.3 0.4 0.2 
20:5n-3 5.9 9.6 14.0 18.2 24.3 9.6 
22:6n-3 0.9 1.4 2.1 2.7 3.6 1.4 
Other n-3 c 1.2 2.1 3.1 4.0 5.4 2.1 

Total SFA 13.2 12.9 12.6 12.4 12.2 11.1 12.1 
MUFA 40.3 40.9 41.3 41.0 42.2 37.4 39.2 
PUFA 41.4 40.0 39.0 38.3 37.3 41.6 39.2 
n-3 8.0 13.1 19.2 24.9 33.3 13.1 
n-6 41.4 32.0 26.2 19.1 12.4 8.3 25.9 

a Calculations are based on GLC analysis of component oils (olive oil, 13% 
70, 70% n-6; EPA 50, 4% n-6, 56% n-3; GLA 70, 88% n-6). 

bin this group the dietary 18:2n-6 was replaced partially by 18:3n-6. 
c18:4n-3, 20:4n-3, 22:5n-3. 

n-6; safflower 
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day 20. At this time. litters were culled to six (three of 
each sex). From day 20 until day 32 post-conception, when 
the pups were tested, lactat ing mothers were fed the ap- 
propriate liquid diet ad libitum at  1.5 • s t rength  (daily 
intake = 0.975 kcal/g). Differences in food intake among 
the groups were negligibl~ On day 32, two pups of each 
sex from each lit ter were assessed for eye-opening on a 
scale from 0 to 1 (detailed criteria available on request). 
One male and one female from each litter were then 
anaesthetized with Halothane and decapitated. The brains 
were extracted and t r immed by removal of the olfactory 
bulbs anteriorly and 2 mm below the medulla posteriorly. 
The two brains from each fitter were pooled, weighed 
within two minutes to the nearest 0.1 rag, and frozen at  
- 5 0 ~  until  analysis of fa t ty  acid composition. The 
hearts, livers and kidneys were also extracted, pooled and 
stored; these data are the subject of a separate report (26). 
The remaining pups were separated from the dams over- 
night, and on day 33 the dams were milked, following an 
adaptat ion of the procedure described by Mills et al. {27). 
The milk was also stored at -50~ All tissue was coded 
so tha t  biochemical analysis was done independently of 
knowledge of the t rea tment  group. 

Brain lipids. The homogenized brains were extracted ac- 
cording to a modified method of Bligh and Dyer (28), using 
chloroforrrgmethanol (1:1, v/v), in the presence of 0.02% 
B H T  (w/v). After  separation and drying under nitrogen, 
the total lipids were fractionated by thin-layer chromatog- 
raphy, using silica gel plates (Analtech GF) and a chloro- 
form]methanol/acetic acid]water (50/30/4/2, by vol) solvent 
system. The fa t ty  acids of the resulting phospholipid frac- 
tions were methylated with 14% boron trifluoride in meth- 
anol, and analyzed on a gas chromatograph (Perkin-Elmer 
8420, Norwalk, CT) equipped with a flame-ionization 
detector and a 15 m • 0.32 m (i.d.) capillary column 
(Supelco Wax 10, Bellefonte" PA). The temperature  pro- 
gram for gas-liquid chromatography (GLC) consisted of 
a 2-rain hold at 160~ followed by a 2~ increase to 
190~ After 10 min at 190~ the temperature was in- 
creased at 5~ to 220~ followed by a 2-rain hold at 
220~ Fa t ty  acids were identified by comparison of their 
retention times with those of authentic standards. 

The concentration of total  phospholipids, and the per- 
cent distribution of phospholipid subclasses were mea- 
sured by high-performance liquid chromatography (Sys- 
tem Gold, Beckman Canada, Mississauga, Ontario, 
Canada} using a Si Ultrasphere column (5 microns, 4.6 mm 
i.d. • 250 mm, Beckman) and a mass detector (ACS 
750/14, Applied Chromatography Systems Ltd., Lutons, 
Bds., U.K.) as described previously (29). 

Statistical analyses. The maternal and pup growth data 
were analyzed using the general linear model (GLM) pro- 
vided by the Statistical Analysis System (SAS) to do 
analysis of variance (ANOVA). Individual group means 
were compared using Tukey's t-test; least squares means 
resulting from covariance analysis were compared using 
t-tests; the alpha level was set at 0.05. In the absence of 
a t rea tment  by sex interaction, the lit ter mean score, col- 
lapsed across sex, was used as the unit  of analysis for the 
data  on pup growth and development. As the fa t ty  acid 
determinations were conducted on the pooled brains from 
a litter, the l i t ter also represents the unit  of analysis for 
these measures. Regression analyses described the nature 
of the dose-response relationship between the dietary 

n-3/n-6 ratio and the n-3/n-6 ratio of milk and brain lipids. 
A linear model was used initially, and, when this proved 
significant, it was subsequently determined whether the 
inclusion of a quadratic component made a significant ad- 
ditional contribution. The sample sizes are shown in the 
respective tables. 

RESULTS 

Maternal variables and pup growth and development. 
Mammal weight gain did not differ among the groups dur- 
ing pregnancy, but  litter size. as reflected by the number 
of live pups on day 20, was significantly different, 
F (5,45) -- 3.73, p < 0.01, with ratio 1.0 having smaller lit- 
ters (mean (pups) •  5.3 • 0.9) than ratio 0.25 
(9.0 • 0.5) and ratio 2.0 (9.1 • 0.8). Neither pup weight 
on day 20 and day 32, nor eye-opening score, differed 
significantly. Brain weight showed a trend toward decreas- 
ing as the n-3/n-6 ratio increased, particularly at  ratio 2.0. 
This was confirmed by a covariance analysis, where the 
least squares means of brain weight adjusted for body 
weight indicated a significant t reatment  effect, F (5,41) = 
3.08, p < 0.02, with ratio 0.25 (mean (g) • SEM: 0.347 • 
0.003), 1.0 (0.345 • 0.003), and 2.0 (0.342 + 0.003) being 
significantly lower than ratio 0 (0.356 • 0.003. Ratio 4.0 
(0.348 • 0.003) was marginally lower than ratio 0, p < 0.08. 
Ratio 0.5 (3.353 • 0.003} did not  differ from any other 
group. 

Lipid analysis. The n-3/n-6 ratio provides a summary  
of the outcome of the dietary treatment.  There was a clear 
t reatment  effect on the milk lipids, F (5,34) = 841.34, p < 
0.0001, brain phosphatidylcholine (PC), F (5,40) = 191.6, 
p < 0.0001, and brain phosphatidylethanolamine (PE), 
F (5,41) = 164.9, p < 0.0001. As is shown in Figure 1, the 
relationship between the n-3/n-6 ratio of the maternal diet 
and tha t  of the milk was represented by a linear dose- 
response model. The pat tern  in the brain phospholipids 
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FIG.  1. Effects  of maternal  dietary n-3/n-6 ratio (x) on the n-3/n-6 
ratio (y) of mi lk  lipids (El) and pup brain phosphat idylchol ine  (PC, 
O) and phosphat idylethanolamine  (PE, V). Pregnant  mice were fed 
diets  of increasing n-31n-6 ratio from conception to day 32 post- 
conception (12 days  after birth). The values represent the group mean 
___SEM. Regression analysis  shows a linear relationship of the treat- 
ment  wi th  milk lipids (y = 0.04 + 0.67x, r 2 = 0.99) whereas in brain 
the  relationship includes a quadratic  component  (PC: ~ - -  0.41 -F 
1.05x --  0.16x 2, r 2 = 0.90; PE: y = 0.70 + 0.88x --  0.09x ~, r z = 0.90. 
In PC, all groups differ except 0.25 and 0.0: in P E  all groups differ 
except 0.5 which does not  differ from 0.25 and 1.0. 
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w a s  s o m e w h a t  d i f f e r en t .  I n  b o t h  t h e  P C  a n d  P E  f r a c t i o n s  
t h e r e  w a s  an  in i t i a l  s t e e p  increase ,  fo l lowed  b y  i n c r e m e n t s  
w h i c h  w e r e  s m a l l e r  in  m a g n i t u d e ,  a l t h o u g h  s t i l l  s ign i f i -  
c a n t l y  d i f f e r e n t  f r o m  e a c h  o the r .  T h u s  t h e  r e l a t i o n s h i p  
w i t h  t h e  d i e t a r y  n-3/n-6  r a t i o  i n c l u d e d  a s i g n i f i c a n t  
q u a d r a t i c  c o m p o n e n t .  I n  PC, all  g r o u p s  d i f f e r e d  e x c e p t  
0.25 a n d  0.0; in  P E  all  g r o u p s  d i f f e r e d  e x c e p t  0.5 w h i c h  
d i d  n o t  d i f f e r  f r o m  0.25 a n d  1.0. 

T h e  v a l u e s  fo r  i n d i v i d u a l  F A  are  g i v e n  in  Tab le s  2, 3, 
a n d  4. F r o m  t h e s e  i t  i s  c l e a r  t h a t  in  b o t h  P C  a n d  P E  t h e  

i n c r e a s e  in  t h e  n-3/n-6 r a t i o  w a s  d u e  t o  a n  i n c r e a s e  in  n-3, 
w i t h  a r ec ip roca l  d e c r e a s e  in  n-6. I n  t h e  mi lk  l ipids ,  18:2n-6 
a n d  20:5n-3 were  t h e  m a j o r  FA. T h e i r  e l o n g a t i o n  p r o d u c t s ,  
20:4n-6 a n d  22:6n-3,  w e r e  t h e  p r e d o m i n a n t  n-6 a n d  n-3 
c o m p o u n d s ,  r e s p e c t i v e l y ,  in  t h e  b r a i n .  V e r y  l i t t l e  18:2n-6 
w a s  o b s e r v e d  in  t h e  b r a i n ,  a n d  20:5n-3 w a s  s e e n  o n l y  in  
a n y  a p p r e c i a b l e  a m o u n t s  (>1%) in  t h e  P E  f r a c t i o n  of  t h e  
g r o u p s  r e c e i v i n g  n-3/n-6 r a t i o s  of  2 a n d  4. Conve r se ly ,  
22:5n-6  w a s  s e e n  o n l y  a t  r a t i o  0 in  b o t h  P C  a n d  P E .  I n  
c o n t r a s t  to  o t h e r  n-6  FA, leve ls  o f  20:3n-6 i n c r e a s e d  a s  t h e  

TABLE 2 

Effects  of Maternal Dietary n-3/n-6 Ratio on Selected Fat ty  Acid Composition of Milk Lipids on Day 33 Postconception a 

n-3/n-6 0.0 0.25 0.5 1.0 2.0 4.0 0.5 b 
Ratio n = 9  n - - 7  n = 6  n = 7  n = 6  n = 6  n = 7  

14:0 13.3 • 0.3 14.0 _ 0.4 14.6 • 0.3 13.6 • 0.5 14.4 • 0.5 15.5 • 0.4 14.9 • 0.3 
16:0 21.0 • 0.4 22.1 • 0.6 22.9 • 0.6 22.5 • 0.8 22.0 • 0.6 21.6 • 1.1 19.8 • 3.2 
16:1 1.5 • 0.07 1.9 -!-_ 0.08 2.5 • 0.1 2.9 • 0.1 c 3.1 • 0.2 c 3.7 • 0.2 c 2.3 • 0.08 
t8:0 2.2 • 0.04 2.4 • 0.05 2.4 • 0.07 2.4 • 0.1 2.3 • 0.06 2.4 • 0.06 2.3 • 0.07 
18:1 24.2 • 0.5 22.6 • 0.9 22.5 • 1.0 22.1 • 1.2 19.6 • 1.1 16.6 • 1.0 c 20.5 • 0.8 
18:2n-6 13.4 • 0.2 c 12.0 • 0.2 10.4 • 0.4 c 7.6 • 0.2c, d 5.0 • 0.2c, e 3.4 • 0.2c, f 4.7 • 0.2g 
18:3n-3 0.1 • 0.01 0.2 • 0.01 0.2 • 0.03 0.2 • 0.01 0.3 • 0.01 0.2 • 0.06 0.2 • 0.03 
18:4n-3 0.9 • 0.04 c 0.6 • 0.03 0.5 • 0.03 0.5 • 0.04 0.4 • 0.02 c 0.2 • 0.06 c 0.4 • 0.02 
20:2n-6 1.0 • 0.04 c 0.5 • 0.02 0.4 • 0.03 c 0.2 • 0.02c, d 0.1 • 0.01 c 0.0 • 0.0 c 0.1 • 0.02g 
20:3n-6 0.5 • 0.07 0.5 • 0.02 0.4 • 0.02 0.3 • 0.01 0.3 • 0.01 c 0.2 • 0.05 c 3.1 +__ 0.8g 
20:4n-6 0.6 • 0.01 c 0.4 • 0.03 0.3 • 0.06 0.3 • 0.01 0.3 + 0.01 0.2 • 0.06 c 1.4 • 0.05g 
20:5n-3 0.01 • 0.01 c 0.7 • 0.02 1.5 • 0.04 c 2.5 • 0.1c, d 3.6 • 0.2 c,e 5.6 • 0.2c, f 1.6 • 0.08 
22:4n-6 0.3 • 0.07 c 0.1 • 0.0 0.06 • 0.03 0.2 • 0.003 0.2 • 0.01 0.3 • 0.06 0.09 • 0.02 
22:5n-6 0.2 • 0.05 0.1 • 0.01 0.05 • 0.02 0.05 • 0.01 0.0 • 0.0 c 0.0 • 0.0 c 0.4 • 0.02g 
22:5n-3 0.0 + 0.0 c 0.9 • 0.02 1.5 • 0.7 c 2.1 • 0.1c, d 2.7 • 0.1 c,e 3.8 • 0.2 c,f 1.5 • 0.05 
22:6n-3 0.06 • 0.02 c 0.5 -!-_ 0.02 0.7 • 0.02 c 0.9 4-_ 0.04 c,d 1.1 • 0.05 c,e 1.5 • 0.060c, f 0.6 • 0.03 

aValues are expressed in % and represent group means • SEM with n = number of dams. 
bin this group the dietary 18:2n-6 was replaced partially by 18:3n-6. 
Groups are significantly different by Tukey's t-test, p < 0.05: c, each group v s  0.25; d, 1.0 v s  0.5; e, 2.0 v s  1.0; f, 4.0 v s  2.0; g, 0.5 (18:3n-6) 
v s  0.5 (18:2n-6). 

TABLE 3 

Effects  of Maternal Dietary n-3/n-6 Ratio on Selected Fat ty  Acid Composition of Brain Phosphatidylcholine 
in B6D2F 2 Mouse Pups on Day 32 Postconception a 

0.0 0.25 0.5 1.0 2.0 4.0 0.5 b 
n = 9  n = 9  n = 6  n---- 10 n = 6  n = 6  n = 9  

14:0 2.3 + 0.1 c 3.1 • 0.2 2.3 • 0.2 c 1.7 • 0.1 c 2.3 + 0.2 c 2.3 • 0.1 c 3.1 • 0.3g 
16:0 41.9 • 0.3 c 48.3 _+ 0.4 41.1 • 0.7 c 38.0 • 0.3c, d 40.7 • 0.5 c,e 41.3 • 0.8 c 47.1 • 0.7g 
16:1 4.6 • 0.3 5.1 • 0.2 3.8 _ 0.2 c 3.8 • 0.09 c 4.4 • 0.1 4.7 • 0.1 5.4 • 0.4g 
18:0 10.5 • 0.4 c 7.2 • 0.3 12.1 • 0.4c 13.4 • 0.2 c 11.7 • 0.2c, e 10.9 • 0.3 c 7.7 • 0.6g 
18:1 19.4 • 0.3 20.2 • 0.3 19.5 • 0.2 20.1 • 0.2 19.3 • 1.8 21.5 • 0.2 19.3 + 0.4 
18:2n-6 1.3 • 0.05 c 1.5 • 0.03 1.3 • 0.04 1.3 • 0.03 c 1.3 • 0.03 c 0.9 • 0.1 c,f 0.3 • 0.05g 
18:3n-3 0.1 • 0.02 0.0 • 0.0 0.3 • 0.2 c 0.1 • 0.02 d 0.1 • 0.02 0.2 • 0.04 0.0 • 0.0g 
18:4n-3 0.5 • 0.03 0.5 • 0.03 0.6 • 0.02 c 0.6 • 0.02 c 0.6 • 0.02 c 0.7 • 0.02 c 0.3 • 0.07g 
20:2n-6 0.4 • 0.03 0.4 _ 0.04 0.5 • 0.02 0.5 • 0.01 0.1 • 0.03 c,e 0.3 • 0.1 f 0.0 + 0.0g 
20:3n-6 0.4 • 0.02 0.5 • 0.07 0.7 • 0.01 c 0.9 • 0.01c, d 0.9 • 0.06 c 0.8 • 0.03 c 0.9 • 0.05 
20:4n-6 8.7 • 0.2c 7.8 • 0.2 6.5 • 0.2 c 6.0 • 0.1 c 4 .7 .+  0.1c, e 3.8 • 0.2 c 9.0 • 0.2g 
20:5n-3 0.0 • 0.0 0.0 • 0.0 0.1 • 0.01 c 0.2 • 0.01c, d 0.4 • 0.03c, e 0.04 • 0.04 f 0.7 • 0.0g 
22:4n-6 1.6 • 0.07 c 0.5 • 0.02 0.9 - 0.03 c 0.7 +_ 0.03 c 0.3 + 0.01 c,e 0.2 • 0.04 c 0.0 • 0.05 
22:5n-6 2.5 • 0.1c 0.0 • 0.0 0.0 • 0.0 0.0 • 0.0 0.0 • 0.0 0.0 • 0.0 0.0 • 0.0 
22:5n-3 0.0 • 0.0 0.0 • 0.0 0.5 • 0.01 c 0.8 • 0.02c, d 1.0 • 0.06 c 1.1 • 0.07 c 0.1 • 0.03g 
22:6n-3 5.1 • 0.2 5.1 • 0.2 9.7 • 0.7 c 11.7 • 0.3c, d 10.0 • 0.3c, e 10.2 • 0.6 c 6.1 • 0.3g 

aValues are expressed in % and represent group means + SEM with n = number of litters. 
b in  this group the dietary 18:2n-6 was replaced partially by 18:3n-6. 
Groups are significantly different by Tukey's t-test, p < 0.05: c, each group v s  0.25; d, 1.0 v s  0.05; e, 2.0 v s  1.0; f, 4.0 v s  2.0; g, 0.5 (18:3n-6) 
v s  0.5 (18:2n-6). 
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TABLE 4 

Effects of Maternal Dietary n-3/n-6 Ratio on Selected Fatty Acid Composition of Brain Phosphatidylethanolamine 
in B6D2F 2 Mouse Pups on Day 32 Postconception a 

n-3/n-6 0.0 0.25 0.5 1.0 2.0 4.0 0 . 5  b 
Ratio n - - 9  n = 9  n =  5 n =  10 n = 7  n = 7  n = 9  

14:0 0.1 • 0.05 0.7 • 0.4 0.3 - 0.2 0.2 • 0.1 0.1 • 0.01 0.2 +_ 0.1 0.1 • 0.03 
16:0 11.4 • 0.3 10.5 • 0.3 10.9 • 0.4 11.6 • 0.2 11.3 • 0.4 11.2 • 0.3 10.8 • 0.1 
16:1 0.4 • 0.04 0.4 • 0.1 0.5 • 0.8 0.4 • 0.03 0.4 • 0.03 0.6 • 0.6 0.4 • 0.02 
18:0 24.5 • 0.5 23.7 +_ 0.5 23.2 • 0.9 25.2 • 0.3 24.3 • 0.6 22.0 + 0.9 23.6 • 0.9 
18:1 8.6 • 0.1 7.9 • 0.3 9.2 • 0.2 c 9.5 • 0.2 c 9.5 • 0.3 c 10.0 + 0.3 c 7.9 • 0.1g 
18:2n-6 0.7 • 0.03 0.6 • 0.05 0.8 • 0.03 c 0.6 • 0.03 0.6 -- 0.04 0.5 • 0.04 0.2 _+ 0.02g 
18:3n-3 0.4 • 0.8 c 0.2 • 0.03 0.4 • 0.1 0.3 • 0.02 0.3 • 0.02 0.3 • 0.02 0.2 • 0.01 
18:4n-3 0.6 +- 0.I 0.4 • 0.06 0.5 • 0.02 0.6 • 0.03 0.5 +- 0.03 0.6 • 0.04 0.4 • 0.02g 
20:2n-6 0.6 • 0.03 c 0.3 • 0.06 0.6 • 0.05 c 0.7 • 0.04 c 1.0 • 0.07 c,e 1.0 • 0.04 c 0.2 • 0.01 
20:3n-6 0.6 • 0.02 0.5 • 0.04 0.9 • 0.02 c 0.9 • 0.03 c 1.1 • 0.06 c,e 1.1 • 0.03 c 0.8 • 0.03 
20:4n-6 21.8 • 0.1 c 18.7 • 0.7 18.0 • 0.4 16.1 • 0.3 c 13.7 • 0.2c, e 11.4 • 0.6c, f 21.2 • 0.4g 
20:5n-3 0.0 • 0.0 0.1 +_ 0.03 0.3 + 0.03 0.6 • 0.02 c 1.3 • 0.07 c,e 2.3 • 0.2c, f 0.1 • 0.01 
22:4n-6 6.4 • 0.07 c 4.5 • 0.1 3.3 • 0.05 c 2.4 • 0.07c, d 1.4 • 0.07 c,e 0.9 • 0.06 c,f 5.1 • 0.1g 
22:5n-6 7.3 • 0.2 c 0.4 • 0.06 0.2 • 0.06 0.2 • 0.02 0.1 • 0.01 0.1 • 0.02 c 0.6 • 0.01 
22:5n-3 0.2 • 0.04 c 0.8 +- 0.06 1.4 • 0.04 c 2.0 +_ 0.04c, d 3.0 -4-- 0.09 c,e 3.8 • 0.09c, f 0.8 • 0.02g 
22:6n-3 15.1 • 0.5 c 27.2 + 0.7 28.1 • 1.1 27.3 • 0.5 30.1 • 0.7 33.4 • 0.8c, f 26.7 • 0.9 

aValues are expressed in % and represent group means • SEM with n = number of litters. 
bin this group the dietary 18:2n-6 was replaced partially by 18:3n-6. 
Groups are significantly different by Tukey's t-test, p < 0.05: c, each group v s  0.25.; d, 1.0 v s  0.5; e, 2.0 v s  1.0; f, 4.0 v s  2.0; g, 0.5 (18:3n-6) 
v s  0.5 (18:2n-6). 

d ie ta ry  n-3/n-6 ra t io  increased.  No cons i s t en t  dose- 
response effects were observed on the  levels of SFA in  the  
brain.  I n  PE  and  PC, levels of 18:1 increased wi th  increas- 
ing  levels of n-3; in  the  milk, levels of 18:1 decreased w i th  
increasing n-3, whereas those of 16:1 increased. Quantifica- 
t ion  of the  i nd iv idua l  phosphol ip id  classes in the  b r a i n  
showed only  a smal l  range  over the  groups  (wt%: PC: 
30.5-34.8; PE:  26.1-28.2; PI:  2.3-2.8; PS: 7.7-8.6; SM: 
3.1-4.9). Compar ison  of the  two ratio 0.5 groups indicated 
t h a t  the  effect of 18:3n-3 was to increase  levels of 20:4n-6 
in b o t h  mi lk  and  b ra in  PC and  PE.  I n  PC, b u t  no t  in  PE,  
there  was an  a c c o m p a n y i n g  s l igh t  decrease in  levels 
22:6n-3. 

DISCUSSION 

This  s t u d y  sough t  to examine  the  effects of v a r y i n g  
m a t e r n a l  d ie ta ry  long-chain  n-3 to n-6 FA rat ios  on the  
incorpora t ion  of n-3 FA in to  the  b ra ins  of the  developing 
offspring.  A ques t ion  of pa r t i cu la r  in te res t  was whe the r  
the  b ra in  would show the  capac i ty  to regula te  i ts  f a t t y  
acid composi t ion  a t  the  higher  d ie ta ry  ratios. The resul ts  
provide suppor t  for such  regula t ion .  Whi le  the  b ra in  
showed con t i nua l l y  inc reas ing  n-3/n-6 rat ios  wi th  d ie ta ry  
increases,  the  m a x i m u m  effect had  occurred by  0.5 in  PC 
and  0.25 in PE,  wi th  a s ign i f i can t ly  lower ra te  of increase  
beyond  these  values. Thus,  as wi th  the  work done wi th  
18:3n-3, the  la rges t  effect seen was in compar i son  wi th  
the  deficient  group. This  is suppor t ed  by  the  obse rva t ion  
t h a t  22:5n-6 was only  p resen t  to any  appreciable  ex t en t  
in  the  ra t io  0 group. 

A l t h o u g h  20:5n-3 was the  major  n-3 FA in  the  milk, 
22:6n-3 p redomina ted  in the  brain;  levels of 20:5n-3 in  the  
b ra in  were genera l ly  low, exceeding 1% in P E  only  a t  the  
h igher  ratios. The compan ion  s t u d y  on the  livers of these  
an imals  demons t r a t ed  t ha t  22:6n-3 was also the major  n-3 

FA in the  liver, wi th  the  m a x i m u m  22:6n-3 c on t en t  seen 
a t  ra t io  0.5 (26). A l t h o u g h  only  t race  a m o u n t s  of 20:5n-3 
a nd  22:6n-3 were found  in  the  mi lk  of ra t io  0, the  b ra ins  
of these  pups  showed 5.1% a nd  15.1% 22:6n-3 in  PC and  
PE,  respectively. These  da t a  show t h a t  there  is con- 
s iderable accret ion of long-chain  n-3 P U F A  d u r i n g  
prenata l  bra in  growth, and  t h a t  die tary n-3 deficiency dur- 
ing  ges ta t ion  ma y  be offset pa r t i a l ly  by  selective reten- 
t ion  of 22:6n-3 by  the  dam, poss ib ly  in  the  l iver (30). The  
absence  of n-3 p o s t n a t a l l y  in the  mi lk  of these  dams  m a y  
be explained by  deplet ion of these stores, or, al ternatively,  
by  m e c h a n i s m s  which va ry  in  t e rms  of p r o m o t i n g  the  
availabil i ty of stored P U F A  prenata l ly  to the  fetus as com- 
pared  w i th  p o s t n a t a l l y  to the  milk. Increases  in  n-3 were 
genera l ly  accompanied  by  decreases in  n-6, pa r t i cu l a r ly  
of 20:4n-6, thereby reflecting the  similar n-3/n-6 reciprocity 
in  the  diet. I t  was shown recent ly  in  r a t s  t h a t  wi th  a 
m i n i m a l  level of 18:2n-6 {0.3% of calories) the  a m o u n t  of 
20:4n-6 in  the  b ra in  r ema ined  cons tan t ,  and,  beyond  a 
m i n i m u m ,  was i n d e p e n d e n t  of levels of d i e t a ry  18:3n-3 
(31). This  suggests  t ha t  the present  effects on 20:4n-6 may 
be due specifically to long-chain  n-3. In teres t ingly ,  levels 
of 20:4n-6 were increased in  b o t h  mi lk  and  b ra in  by  par- 
t ial  replacement  of d ie tary  18:2n-6 wi th  18:3n-6. There are 
two possible  m e c h a n i s m s  which m a y  account  for this ,  
b o t h  re la ted  to desa tu rase  act ivi ty.  I t  is known  t h a t  
20:5n-3 and  22:6n-3 inh ib i t  56 and  55 desa turases  (32,33), 
which  reduces the  fo rma t ion  of 20:4n-6 from 18:2n-6; the  
presence of large a m o u n t s  of 18:2n-6 ma y  resul t  in  
s u b s t r a t e  i nh ib i t i on  of the  h6 desa tu rase  {34}. I n  bo th  in- 
s tances,  the  provis ion of 18:3n-6 would avoid the  effects 
of a decline in t 6  desa turase  activity.  In  con t r a s t  wi th  the  
other  n-6, 20:3n-6 increased.  This  repl icates  our  previous  
f ind ings  and  sugges t s  i nh ib i t i on  of 55 desa tu ra se  activ- 
i ty  by  FA derived from fish oil (23,25). The general absence 
of effects on the  SFA is cons i s t en t  wi th  o ther  work (35). 
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W i t h  respect  to  the  increase in 18:1 seen wi th  increas ing 
n-3, a similar finding has been reported for chick brain (36}. 

The d a t a  on the  milk lipids suppor t  previous  work  in 
showing an effect of mate rna l  d ie ta ry  P U F A  composi t ion  
(37,38); they  also ex tend  these f indings by  demons t r a t i ng  
the  dose-response na tu re  of this  relationship. I n  con t ra s t  
wi th  the  t endency  of the  n-3/n-6 rat io to level off in the  
brain, t h a t  of the  milk lipids showed a s t rong  linear in-. 
crease wi th  increas ing d ie ta ry  ratios. These resul ts  sug- 
ges t  therefore t h a t  it is t he  me tabo l i sm of the  pup, no t  
the  dam, which  is regu la t ing  ei ther  supply  or incorpora- 
t ion into the  developing brain. 

No  sys t ema t i c  effects on overall g rowth  and develop- 
m e n t  were observed,  except  at  ra t io  1.0, as seen by  the  
smaller  l i t ter  size. Als(~ relative to b o d y  weight,  increas- 
ing  the  n-3/n-6 rat io resul ted in a very  small  decrease in 
brain  weight.  We had  shown previously  t h a t  n-3 sup- 
p lementa t ion  s l ight ly  accelerated eye-opening, and  t h a t  
this  correla ted posi t ively wi th  o ther  indices of sensory-  
mo to r  development  (22). However, in the  present  study, 
no  effect on  the  ra te  of eye-opening was  observed.  

The diets  used  in this  s t u d y  were clearly exper imenta l  
in t h a t  t hey  provided  only  long-chain n-3 FA, wi th  no 
18:3n-3, and  the  n-3/n-6 rat ios beyond  0.25 were high. 
Moreover, species differences in desa turase  activit ies (39) 
m a y  limit the  general izabi l i ty  of these  results. Neverthe-  
less, the  f indings  m a y  be of relevance to  ques t ions  con- 
cerning the  provis ion of long-chain n-3 FA in h u m a n  in- 
fan t  feeding. They  sugges t  t h a t  provis ion of n-6 FA par- 
tially as 18:3n-6 may  help to offset the  decrease in 20:4n-6 
observed with dietary long-chain n-3 FA. They also clearly 
suppor t  a t rend toward regula tory  l imits on the incorpora- 
t ion  of long-chain n-3 FA into the  mouse  brain, showing  
a m a x i m u m  response to ma te rna l  d ie ta ry  n-3/n-6 rat ios  
of 0.25-0.5 
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