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1. Summary and introduction 

The purpose of this paper which is a continuation of a preliminary 
repor t  [7] of the authors is to find a condition for a rank correlation 
statistic based on a random sample from a bivariate distribution to be 
monotone with respect to the parameter  involved in the underlying dis- 
t r ibution which represents correlation be tween two variates. 

As a tool for this aim a partial ordering w is introduced in the set 
H of all permutat ions of (1, 2 , . . . ,  n) for a fixed positive integer n as 
follows. For  two elements ~ = ( r ~ , - - . ,  r~) and ~'=(s~,. . . ,  s~) of /7 we 

'to ! 

wri te  , ~ - ~  iff (if and only if) there exists a positive integer i < n  such 
zo 

t ha t  r~=sr and r,=s~ for k ~ i ,  i + 1 .  We define ~>=~' iff 
20 ZO W t 

there  exists a chain ~ = ~ 0 - - ~ - ~ . . . - - ~ , ~ = ~ .  Then, the space / /  is seen 
to be a lattice with respect  to this partial ordering, which answers  af- 
f irmatively Savage 's  question 6 [5]. 

Next ,  concepts of ' positively regression dependent '  and ' positively 
quadran t  dependent '  introduced respectively by Tukey [6] and Lehmann 
[3] are generalized to those of ' larger regression dependence '  and ' larger 
quadrant  dependence ' ,  respectively, which enable us to compare the 
degree of correlation between two variates for two bivariate distributions 
with common marginal distributions. These notions can be fu r ther  led 
to those of 'monotone regression dependence '  and 'monotone quadrant  
dependence '. 

Now one of the main results of this paper is Theorem 6.1 which 
implies (Corollary 6.1) tha t  if a family of bivariate distributions [Fo(x, y)} 
has monotone regression dependence on x and if a rank statistic is non- 
decreasing, then the statistic is stochastically nondecreasing with respect  
to a. Theorem 6.2 gives some sufficient conditions for a rank statistic 
to be nondecreasing. Several examples of nondecreasing rank statistics 
including two rank correlations, Kendall 's : and Spearman's  p, and also 
of families of distributions with monotone dependence are given. 
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In Section 8 the Blomqvist rank statistic Q [1] is shown to be sto- 
chastically nondecreasing with respect to a, provided the family {F~(x, y)} 
has monotone quadrant dependence. In testing the hypothesis of inde- 
pendence for the family ~ of distributions the Blomqvist test with a 
critical region given by Q>=c is proved to be of Neyman-Pearson type. 

2. A partial ordering in the space of permutations 

Let 1I be the space consisting of all permutations of (1, 2 , . . . ,  n) 
for a fixed positive integer n. We shall define a partial ordering in 
this space as follows. 

DEFINITION 2.1. Let z = ( r ,  . . . ,  r~) and z'=(sl, . . . ,  s~) be two ele- 
w p 

ments of H. We write , ~ - ~  iff there exists a positive integer i < n  
such that  

(2.1) r~=s~+,<r~+l=s~ and r~=s~ for k r  i + 1 .  

The element z will be said to be not smaller than ~' in the sense w 
w 

(weak sense) and denoted by ~>==' iff there exists a set of elements ~0, 
z l , ' "  ", z,, of /7 for an integer m>=0 such that  

(2.2) 
w w y2 w ! 

7 C _ ~ _ ~ 0 - - - . - > ~ I - . ~ 2 - - - - > .  �9 .--->TCn~_~_ ~ . 

The partial ordering w mentioned briefly by Lehmann [3] will be 
illustrated by Figures. 1 and 2 for two simple cases when n=3 and 4, 
respectively. 

123 

213 132 

I I 
231 312 

Fig. 1. Par t ia l  ordering w 
when  n = 3 .  

/li4 \ 
2134 1324 1243 

2314 3124 2143 1342 1423 / --%.\ 
2341 3214 3142 2413 4123 1432 \'%. \ / \ /  

3241 2431 3412 4213 4132 

Fig. 2. Par t ia l  ordering w 
when  n=-4. 
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DEFINITION 2.2. Let 2 be the set of all pairs (k,l) of integers 
satisfying l<=k<l<=n. For any element ~=(r l ,  . . . , r , , )  of H let B(z) 
denote the set of all pairs (r~, re) such tha t  i < j  and r~<rj. Clearly 
B(z) is a subset of .~. 

PROPOSITION 2.1. Let  ~ and ~' be any elements of / / .  Then a 
zV 

necessary and sufficient condition tha t  ,~>=~r is tha t  

(2.3) B(z)~B(z') . 

PROOF. The necessity is obvious, since the condition u--,~ implies 
(2.3). 

Sufficiency. Since B(~)=B(=') is equivalent to ,~=~t, suppose tha t  
(2.3) holds with a proper inclusion. Let z = ( r l ,  - . . ,  r~) and ~t=(sl, " - ,  s~). 
Let  j be the minimum value of i satisfying r~r Define k by r~=sj. 
Then the assumption (2.3) implies that  rj<sj,  r~_~<r~ and also tha t  

(r~_~, r~) e B(,x)-B(u ') .  

Let  z~ denote the element of H obtained by interchanging the two com- 
ponents r~_~ and r~ of z. Then it follows tha t  

~ - ~  and B(~)=B(~)-(r~_~,rk)DB(~'). 

By repeat ing this a rgument  we can construct  a chain =~ , . . . ,  ~ such 
tha t  

Y) w 'UP 

= - ~ , - - ~ . - . - - ~  and B ( ~ ) = B ( z ' ) ,  

which completes the proof. 

PROPOSITION 2.2. Let  B be a subset of ~ .  A necessary and suffi- 
cient condition tha t  there exists ~0 E/ /  satisfying B=B(~0) is tha t  both 
of the following two conditions are satisfied: 
(i) If (r, s) and (s,t) EB, then (r , t )  EB, 
(ii) If  ( r , t )  EB and r<s<t ,  then (r ,s)  EB or (s,t) EB. 

PROOF. The necessity may be obvious. I t  is easily seen tha t  suffi- 
ciency follows from the following fac t :  If B satisfies the conditions (i) 
and (ii) and is included by B(z) properly, then there exists n ' E / /  such 
tha t  

(2.4) ~ - ~ '  and B(~')~B.  

To prove this, let z = ( r ,  . . . ,  r~) and let (k, l) be any element of B 
which minimizes l - k  subject to the condition tha t  (r~, rt)EB(=)-B. 
Then l=k+l ,  since the assumption k < j < l  leads us to a contradiction 
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as is seen below. 
Since r~<rt by definition, we shall consider three  cases: Case 1 

when r ~ < r j < r t ,  Case 2 when r j < r k < r t  and Case 3 when r ~ < r t < r  i. 
In Case 1 it holds tha t  (r~, rj), (rj, rt) ~ B(~). Since l - k > j - k  and l - j ,  
we can conclude tha t  (rk, r j), (r~, r~)~ B, and hence (r~, r~)e B by the 
assmnption (i), which is a contradiction. In Case 2 we know (r~, r , ) e  
B(,~) and l - - lr  which implies by the definition of (k, l) tha t  (r~., r~) e 
B. Now the assumption (ii) implies tha t  (r~, r~)~ B or (r~, r t)~ B. The 
la t te r  is incompatible with the definition of (k, l). From the former  re- 
lation it follows tha t  (r~, r~)~ B(z), which contradicts with the assump- 
tion k < j .  Case 3 can be t reated similarly. 

Thus we know l----~+l. Define ~' by interchanging two components 
w ! 

r~ and r~+~ of =. Then =--~= and 

B(=') = B(~)-- (r~, r~+l) D B .  

This proves (2.4) and the proof of the proposition is complete. 
The following theorem is an answer to an open problem presented 

by Savage [5], Question 6. 

THEOREM 2.1. The space 11 is a lattice by defining the join ~r~V;r2 
of two elements ~1 and ~2 of II as the smallest (in the sense of the partial 

w 

ordering w) element ~ satisfying ~ r ~  for  i = 1 ,  2, while defining the meet 
~ A ~ dually. 

PROOF. Let  ~ ,  i = 1 ,  2, be any elements of / / .  I t  is sufficient to 
show tha t  both the join and the meet of them are uniquely determined. 

We shall show the  existence of m ~ H which satisfies tha t  ~0~=,~ for i =  
1, 2 and also tha t  

t o  w 

(2.5) ,x~z~ for i=1 ,  2 > ,~->_,~0 �9 

Let  B(z~, z2) be the set of all (r, s) e _~ for which there exists a chain 
of integers  r =r0 < r l < , -  �9 < r ~ - - s  for some m, where  

(r~, r,+,) ~ B(~I)U B(,~2) for i=  O, 1, . . . ,  m - 1 .  

Obviously it holds tha t  

(2.6) B(~,  ~.)DB(,x~) for i=1,  2 .  

Now it can be shown tha t  B=-B(~, z~) satisfies the conditions (i) and 
(ii) of Proposition 2.2, and hence there exists m ~/7 which satisfies B(,x0)= 
B(zl, ~).  By (2.6) we find tha t  B(zo)DB(,~,) for i = 1 ,  2, which is equiv- 

~v 

alent  to ~>_--~ for i=1,  2 because of Proposition 2.1. 
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w 

Suppose now that  =>__=~ for i = 1 ,  2, or equivalently, B(z)DB(=J for 
i = 1 , 2 .  Then it can be easily shown tha t  B(z)~B(z~,=2)=B(=o), and 

W 

hence zz~o.  

3. Other partial orderings of permutations 

Two kinds of partial orderings besides w can be defined in the space 
H as follows, the first of which is the same as tha t  introduced by 
Lehmann [3] as ' b e t t e r  ordered t h a n '  and the second was considered 
by Savage [4], [5]. Though they will not be used in the following 
sections of this article, they  are included here part ly because of their  
possible applicability and part ly because of their  close relationship to the 
partial ordering w which will play an important  role s tar t ing with Sec- 
tion 4. All propositions in this section will be stated without  proof. 

DEFINITION 3.1. Let ~ = ( r l , - . . ,  r~) and ,~ '=(s l , - - . ,  s~) be elements 

of f/.  We wri te  ~ - ~ '  iff there  exist two subscripts i, j ( i<j)  such 
tha t  

(3.1) r~=sj=rj--l=s~--I and rk=s~ for k ~ i ,  j ,  

while we wri te  ~-&z iff there exist two subscripts i, j ( i<j) such tha t  

(3.2) r~=sj<rj=s~ and r~=sg for k r  j .  

The element ~ will be said to be larger than ~' in the sense w' (another 
W ~ s 

weak sense) or s (strong sense) and denoted by ~>,~' or ~>__# according 
as there  exists a chain ~=~0-+~-+ . - . -+~ - -+ ,~ '  in the sense w' or s. 

The following proposition, an immediate consequence of the defini- 
tion, gives a justification of the names, ' w e a k '  and ' s t r o n g ' .  

W w I $ 

PROPOSITION 3.1. If ~>~ '  or ~>~' ,  then ,~>__,~'. 

The following proposition exhibits duality of two orderings w and 
w' and self-duality of s. 

PROPOSITION 3.2. The space / /  is a group with multiplication 

(rl, - . - ,  rn)(sl, - ' - ,  s~)= (r~, . . - ,  r ~ ) .  

Denoting by ~-~ the inverse element of ~, it holds tha t  
~0 W' $ $ 

~r>~' < ~, ~-i>~,-I ~> ~, <==> ~-i >_,~,-i 

The following two propositions are w'-analogues of Proposition 2.1 
and Theorem 2.1, respectively. 
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PROPOSITION 3.3. For any ~=(r~, . . . ,  r~)~ 17 let B'(~) be the set of 
all pairs (i, j)  of positive integers such that  i < j  and r~<rj. Then 

w '  

~>~' / ~ B'(~)DB'(~') _ _  \ / 

PROPOSITION 3.4. The space 17 is a lattice by defining the join and 
the meet in the fashion of Theorem 2.1 with the ordering w' replac- 
ing w. 

As a characterization of the partial ordering s we shall state the 
following proposition which is a generalization of Lehmann's Theorem 
5 [3]. 

PROPOSITION 3.5. Let z=(r~, . . . , r~)  and ,~ '=(sl , . . . ,  s~). For any 
positive integer m < n  let r ~ < . . .  < r ~  be the rearrangement of r~ , . . . ,  
r~ in order of magnitude, while s ,~<. . -<s~.~ be the rearrangement of 

S 

s~, . . - ,  s~. Then a necessary and sufficient condition that ,~>__~' is that  

rk~<=s~ for any k and m such that  l<=k<=m<=n. 

4. A property of wedge sets 

As noted before only the partial ordering w will be treated hence- 
forth in this paper. For simplicity, therefore, we shall drop the super- 

w 

script w in the notation ~-Z~' or ~>='. 

DEFINITION 4.1. For any positive integers k and l let [y~>y,] de- 
note the subset of R ~ consisting of the point (Yl, " " ,  Y~) which satisfies 
y,>y~. A subset [ y , > . . . > _ y J  can be defined similarly. These sets 
may be called wedge sets in RL 

The following proposition will play a key role in the proof of The- 
orem 6.1. 

PROPOSITION 4.1. For any = ~ / /  it holds that  

(4.1) U [ y s 1 ~ . - . > y j =  r'l [y~>=y,]. 
(~I ,  "" " ,Sn)~-  ~ ( ~ ,  l )  ~ B( , - . )  

PROOF. Let y0=(y~, . . . ,  yO) be any member of the left-hand side 
of (4.1). By definition there exists ~P=(s~, . . . ,  sn)>z satisfying y~l>__-.. 
>_y~. Take any (k,l) e B(z). Then Proposition 2.1 implies that  (k, l) 
B(~'), and hence yO>=y~. Thus the point y0 belongs to the right-hand 
side of (4.1). 

Conversely, let y0 be any member of the right-hand side of (4.1), i.e., 

(4.2) (k, l) ~ B(u) \ . o>~.o "Yk ~ ' Y t  �9 
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There exists ='=(s~, . - . ,s~) ~ / /  such tha t  y 0 > . . . > y ~ .  Define ~"=(t~, 
�9 . . ,  t~ )=zV~ r, the join of = and =' in the sense given in Theorem 2.1. 
By definition ( t , , . - . , t~)>-z ,  so tha t  if we can show tha t  y ~ : > . - . > y ~ ,  
then the point y0 proves to belong to the left-hand side of (4.1) and the 
proof is complete. Now we shall show tha t  

(4.3) yO ~y~§ 

for any i. I f  t~>t~+~, then the inequality ~'>==' implies tha t  the  two 
numbers  t~ and t~+~ appear in (s~, . . . ,  s,) in the same order, which ira- 
plies (4.3) in turn.  On the contrary,  if t~<t~+~, then the pair (t~, t~+~) 
B(,x"). In fact  it belongs to B(z)U B(,v'), because otherwise we can con- 
s t ruct  ~* such tha t  ~'>~*_>_z and ~' by  interchanging the two compo- 
nents t~ and t~+~ in =',  a contradiction with the definition of ~". In the 
case when (t.~, t~+~)~ B(~) the relation (4.3) follows from (4.2). In the 
remaining case when (t~, t~+~)~ B(~') also we obtain (4.3) easily. 

5. Monotone regression dependence 

DEFINITION 5.1. Assume tha t  each of two bivariate cdf 's  F(x, y) 
and G(x, y) has continuous marginal distributions and tha t  both have a 
common marginal distribution of x. Let  F(ylx) and G(ylx) denote the 
conditional cdf 's  of y given x based on F and G, respectively, which 
are assumed to be continuous in y for any x. Let  F-~(ul x) and G-~(u I x) 
denote the minimum values of u-points of them for 0 < u < l .  Then the 
distribution G(x, y) will be said to have larger regression dependence on 
x than F(x, y) iff 

(5.1) F-1(ulx')>F-l(vl x) ~. G-l(ul x')>G-~(vl x) 

for any x'>x and any u and v. 

The assumption of common marginal distribution of x is not essen- 
tial, since any bivariate distribution with continuous marginal distribu- 
tions can be so t ransformed by  a suitable t ransformation of x as to 
satisfy the assumption. 

DEFINITION 5.2. A family of distributions, {F,,(x, y) l a ~ P-}, where 
P . c R  ', is said to have monotone regression dependence on x with re- 
spect to a iff the distribution Fo,(x, y) has larger regression dependence 
on x than Fo(x,.y) for any a r>a .  

The following proposition shows tha t  Definition 5.1 provides a gener- 
alization of Lehmann's  concept [3] of 'posi t ively regression dependent ' ,  
or the family ~2. 
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PROPOSITION 5.1. Let F~(x) and F2(y) be the marginal distributions 
of F(x, y). A necessary and sufficient condition that  F(x, y)~ ~2 is that  
F(x, y) has larger regression dependence on x than the product distribu- 
tion F1 (x) F2 (y), 

P R O O F .  Necessity. Assume F E ~2 and we shall show that 

(5.2) 

for any x '>  x. 

and hence 

Fi-l(u)>Fi-~(v) ,~. F-~(urx')>F-1(v]x) 

Since F~  :~2 by definition, 

F(y l x') ~ F(y l x) for any y ,  

F-~(vl x')>=F-~(v]x) for any v. 

The condition F;l(u)>=F;~(v) is equivalent to u>__v, which implies 

F-~(u l x')>=F-l(v [ x') . 

Thus we have proved (5.2). The sufficiency may be proved by inverting 
the above argument. 

PROPOSITION 5.2. Assume that  both of the conditional cdf's F(y]x) 
and G(yIx)are continuous and strictly increasing in y for each x. Then 
a necessary and sufficient condition that  G(x, y) has larger regression 
dependence on x than F(x, y) is that  

(5.3) F(y]x)>=G(y'fx) ~ F(y]x')>-_G(y']x') 

for any xP>x and any y and yP. 

PROOF. 0nly sufficiency will be proved, because necessity may be 
treated similarly. Assume that  G does not have larger regression de- 
pendence on x than F and we shall show that  we are led to a contra- 
diction. By the assumption there exist x, x p, u and v such that x'>x, 
F-l(ulx ')>F-l(vlx)  and G-1(u]x')<G-t(v]x). Define y=F-~(vlx) and 
y'=G-i(ulx'), then it follows that  

F(yl x')<=u, F(y lx)=v,  
(5.4) 

G(y'lx') =u ,  G(y'lx) <v.  

By the second and the fourth relations together with the continuity of 
F(y] x) there exists a sufficiently small ~>0 such that  

F(y--~ Ix )>G(y ' lx ) .  

The first and the third relations of (5.4), however, implies that  
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F(y-~ I x')<u--G(y']x'), 

which together  with the preceding inequality contradicts with (5.3). 

Example 5.1. Let  U and V be any independent real random vari- 
ables each having a continuous distribution. Define 

( i )  X=U, Y.o=pU+(1-/)'2V for--l<p<l, 

o r  

(ii) X=U, Y.=o:U+V for - o o < c ~ < o o  . 

Then each of the families of the distributions F.,,(x, y) for the case (i) 
and Fo(x, y) for (ii) has monotone regression dependence on x with re- 
spect to p and a, respectively. A bivariate normal distribution is a 
part icular  case of (i) when U and V are N(0, 1) variates. 

Example 5.2. Let  U and V be any independent real random vari- 
ables each having a continuous distribution, U being distributed on the 
interval  (0, 1), while V on (0, c~). Define 

X=U, Y~=(I+aU)V for a>--l. 

Then the family of the distributions F~(x, y) of (X, Y~) has monotone 
regression dependence on x with respect to a. 

6. Monotonicity of rank correlation 

Let (X, Y) be a bivariate random variable having a cdf F(x, y) with 
continuous marginal distributions and let (x ,  y~), . . . ,  (x~,y~) be n in- 
dependent  observations on (X, Y). Let  r~ be the rank of x~ (from the 
largest  on )among  { x , . . - ,  x~} and sj the rank of Yi among { y , . . . , y ~ } .  
Define t~ for k = l , - - . , n  by the two relations, t~=r j  and k=sj, or 
equivalently by 

(6.1) ( t ,  . . . ,  t ~ ) =  (r l ,  - . . ,  r ~ ) ( s ,  . . . ,  s~) -~ , 

where  the inverse is to be interpreted in the sense stated in Proposition 
3.2. I t  is noted here tha t  ( t , . . . ,  t~) is a function of the random sam- 
ple (xi, y~), i = 1 ,  - . . ,  n, or a statistic. 

DEFINITION 6.1. A statistic R will be called a rank statistic iff 

(6.2) R(x l ,  yi, . . . ,  x~, y~)=~(rl, sl, . . . ,  r , ,  s~)=i,(t~, . . . ,  t~) 

for some functions ~ and ~,. I t  is nondecreasing iff ~, is nondecreasing, 
i.e., 



498 TAKEMI  YANAGIMOTO AND MASASHI OKAMOTO 

(6.3) rr>= rr' > r162  

Any rank statistic is desirable to be nondecreasing in order to serve as 
a measure  of correlation between X and Y, or a rank correlation. 

THEOREM 6.1. I f  
(i)  G(x, y) has larger regression dependence on x than F(x, y), and 
(ii) R is a nondecreasing rank statistic, 
then R is stochastically not smaller under G than under F, i.e., 

(6.4) Pa{R~c}>=P~{R>=c} for any real e. 

PROOF. Using the conditional probabili ty given x, we can wri te  

(6.5) PF{R~c} = Ex[PF{R>=c I x}] , 

where  x = ( x l , . . . ,  xn). Being a rank statistic, R is invariant under any 
permutat ion of (x~,- . . ,  x~), and hence we may suppose that  x l > ' - .  >x~ 
in considering the conditional probabili ty given x. For a fixed x such 
tha t  x l > ' - - > x ~  it holds tha t  

(6.6) { (y l , . . - , y~ )6R~]R~o}=  U [yq~. . .~y, , , ] ,  
~C~,)>c 

where  the r ight-hand side is the union with respect  to ,-c'----(t,..., t~) 
sat isfying r  Since r is nondecreasing, we find tha t  symbolically 

(6.7) U = U U .  

From (6.6), (6.7) and Proposition 4.1 it follows tha t  

r (,~,l) c B ( ~ )  

If  we define ~=F(y~lx~) or equivalently y~=F-~(~ [x~) for i = 1 ,  . . . ,  n, 
then conditionally for given x the random variables V~, . - . ,  ~]~ are distri- 
bu ted  independently and identically according to a uniform distribution 
over the interval (0, 1). Thus we have 

PF{R>'c[x}=P" t U N [F-~(~Ix~)~F-~(~[xJ]}.  
~ ( ~ ) > c  (~ , l )  ~ B(.~) 

Since x~>x~ and the cdf G has larger regression dependence on x than 
F the r ight-hand side does not exceed 

~(,~)~c 

which is identical with P o { R ~ c l x } .  Consequently, we find tha t  

P~[R~c  I x} >= P r [ R ~ c  l x} , 
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which implies (6.4) because of (6.5). 

COROLLARY 6.1. I f  a f a m i l y  of distributions [Fo(x, y) l a ~ ~2}, where 
P. c R  ~, has monotone regression dependence on x and i f  R is a non- 
decreasing ranlc statistic, then R is stochastically nondecreasing wi th  re- 
spect to ~, i.e., PFo{R~c} is a nondecreasing func t ion  of ~ ~ [2 for  any  
real c. 

THEOREM 6.2. Each of the following f our  conditions is sufficient 
f o r  a ranlr statistic R to be nondecreasing : 

n 

( i ) R =  ~, f ( r J g ( s J ,  

where both f and g are nondecreasing real-valued f~enctions, 

n 

(ii) R =  ~ ~(r~, s J ,  
i = l  

where ~ is a real-valued func t ion  for  which 

~(r, s)+~(r',  s')>~(r', s)+~(r, s') , 

whenever r r > r  and spas, 

(iii) R =  ~. f(r~, r~)g(s~, s~) , 
i ~ j = l  

where both funct ions  f ( r ,  r') and g(r, r') are nondecreasing in  r and non- 
increasing in  r ~, 

(iv) R =  ~ f ( r .  rj)g(si, s~) , 
i c j , l ~  

where both funct ions  f ( r ,  r') and g(r, r') are nondecreasing in  r.  

I t  will be noted tha t  Theorem 6.1 combined with the par t  (i) 
which is a special case of each of (ii), (iii) or (iv), contains Lehmann 's  
Theorem 4 [3] as a special case and also tha t  a statistic of the form (iii) 
was studied by Daniels [2]. 

PROOF. We shall deal with the cases (ii), (iii) and (iv), where  R 
can be wr i t ten  as ~ ~(t~, k), ~E f( tk,  tz)g(k, l) and :~ f(t~, t~)g(k, m), re- 

k k ~ l  k ~ l , m  

spectively. Denoting these functions by r n=(t~, . . . ,  t~), let us show 

(6.3). Assume z-~z~'=(s~, . . . ,  s~). Then by definition there exists a sub- 
script i such tha t  

t~=s~+~<t~+~=s~ and t~--s~ for k:~i, i + 1 .  

In Case ( i i ) i t  holds tha t  
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while 

n 

r = E e(t~, ~), 
k = l  

r  ~ ~(t~, ]c)+?(t~§ i)+~(t~, i + i ) .  

Taking the difference, we have 

r r = ~(t~, i) + ~(t~+,, i + 1) - ~(t,+,, i) - ~(t~, i + 1) >~ O. 

Case (iii). It holds that 

r ~, f(t~,tz)g(k, 1) 
k,g~ei,i+l 

§ Z [f(t~, t~)g(i, 1)§ tz)g(i§ 
lg:i , i+l 

+ ~, [f(t~, tJg(l~, i)§ t~+~)g(k, i+1)] 
kr  

§ f(t~, t~+~)g(i, i+ 1) § f(t~+~, tJg(i§ 1, i), 

while r can be obtained by interchanging t~ and t~+, in 
expression. Therefore, 

the above 

r162 Z [f(t~+~, tz)--f(t~, t~)] [g(i+l,  l)--g(i, l)] 
l r  

+ E [f(t~, tJ--f(tk, t~+~)] [g(k, i)--g(k, i+1)] 
k ~ i , i + l  

+ [f(t~+~, t J-- f(t~, t~+,)] [g(i-b 1, i)-- g(i, i + 1)] ~ O. 

Case (iv). After a straightforward calculation we have 

n 

r162 [f(t~+l, tJ--f(t~, tJ] ~, [g(i+l,  m)--g(i, m)]~O. 
I=1 m=l 

Example 6.1. The following five rank statistics are all nondecreas- 
ing : 

RI= ~ sgn(r~--rj)(s~-sj)/n(n--1),  
i : ~ j = l  

which is Kendall's rank correlation ~; 

R2=3 ~, sgn(r~-rj)(s~-sk)/n(n~--1), 
i ~ j , ~  

which is Spearman's rank correlation p: 

R3=-~l " Isgn(r~--n+l  2 n + l  /+11 '  

the number of observations falling in the first quadrant with respect to 
the sample median; 
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n 

t = l  

where ~ (or ~]~,,) stands for the expected value of the ith order statistic 
based on a random sample of size n from some fixed distribution U (or 
V). If both U and V are N(0, 1), we get the normal score correlation 
coefficient. Finally, 

R s = - ~  I r , - s , ]  V w i t h  p ~ l ,  
i = i  

which becomes equivalent to Spearman's p when p=2.  

7. Monotone quadrant dependence 

DEFINITION 7.1. Assume that  cdf's F(x, y) and G(x, y) have common 
continuous marginal distributions. Then the distribution G is said to 
have larger quadrant dependence than F iff 

G(x, y)>__F(x, y) for all x and y. 

A family of distributions {F~(x, y) la ~ .(2}, where f2cR',  is said to have 
monotone quadrant dependence iff the distribution F~, has larger quadrant 
dependence than F~ for any aP>a. 

The assumption of common marginal distributions is again not essen- 
tial here as in Definition 5.1. Obviously the above definitio~ generalizes 
Lehmann's notion [3] of 'positively quadrant dependent '  or the family 
~ ,  which is stated as the following 

PROPOSITION 7.1. Let Fl(x) and F~(y) be the marginal distributions 
of F(x, y). A necessary and sufficient condition that  F e ~1 is that  F(x, y) 
has larger quadrant dependence than the product distribution F~(x)F2(y). 

PROPOSITION 7.2. If a distribution G(x, y) has larger regression 
dependence on x than another distribution F(x, y), then G has larger 
quadrant dependence than F. 

PROOF. Assume that  G has larger regression dependence on x than 
F and that  G does not have larger quadrant dependence than F. Then 
there exists a point (x, y) at which G(x, y)<F(x, y). It  will be readily 
seen that  this implies the existence of two values x' and x" such that 
x" < x < x p and 

G(y ] x') > F(y I x') and G(y ] x") < F(y I x") . 

Taking any numbers u and v which satisfy 
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G(y [ x') > u > F(y J x') and 

we find that  

F-~(u]x')>y , 

F-~(vl x " )~y  , 

Hence it follows that  

F-l(ul  x')>F-~(v[ x") and 

G(y [ x")< v< F(y J x") , 

6-*(,t~ I x')=<y, 

G-*(v[ x " ) > y  . 

G-~(u l x') < G-~(v l x") , 

which contradicts with the assumption or (5.1). 

PROPOSITION 7.3. Suppose a distribution G(x, y) has larger quadrant  
dependence than F(x, y). If two real-valued functions f (x)  and g(y) are 
concordant, i.e., both are nondecreasing or both are nonincreasing, then 

Cova ( f(X),  g( Y))>= CovF ( f (X) ,  g( Y)) , 

provided both covariances exist. In particula r, 

Cova (X, Y)>__ CovF(X, Y) .  

This proposition, a generalization of Lehmann's  Lemma 3 [3], can 
be proved similarly by using Hoeffding's lemma ([3], p. 1139): 

CovF (X, Y)=  f:~ f-~ [F(x, y)--F~(x)F2(y)]dxdy. 

As a consequence we can obtain the following proposition, where the 
par t  (i) is a special case of the par t  (ii). 

PROPOSITION 7.4. Suppose G(x, y) has larger quadrant  dependence 
than F(x, y) and let (2(1, Y1), . . - ,  (X=, Y=) be a random sample from either 
of these distributions. 

(i) Let X = f ( X , , . . . , X , )  and Y = g ( Y , , . . . , Y = ) ,  where the two 
functions f and g are concordant with respect to the i th argument  for 
each i when other arguments are fixed, then it holds that  

Cova (X, Y)>--__CovF (X, Y) ,  

provided both covariances exist. 
(ii) Let (U, V) be a random variable distributed according to a bi- 

variate distribution H(u,v) independently of the sample (X~, Y~), i = 1 ,  
�9 . . ,  n. Let X = f ( X ,  . . . ,  X~, U) and Y = g ( Y ,  . . . ,  Y~, V), where f and 
g are concordant with respect to the i th  argument  for each i<=n when 
others are fixed, then 

Covo,~ (X, Y )  > CovF,~ (X, Y), 
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provided both sides exist. 

COROLLARY 7.1. Assume that G(x, y) has larger quadrant depend- 
ence than F(x, y). 

KendaU ' s 

Spearman ' s 

Blomqvist' s 

is not smaller under G than under F, i.e., 

r ~ r ~  , pa:> pF and 

Then each of the following correlation measures: 

r = Coy (sgn (321- X2), sgn ( Y I -  Y2)), 

p=Cov (sgn (X~-X2), sgn (Y1-Ya)), 

q= Cov (sgn ( X - m e d i a n  X), sgn ( Y - m e d i a n  Y)) ,  

qa >----qF �9 

8. Monotonicity of the Blomqvist rank statistic 

Let (xl, y l ) , - . . ,  (x~, y~) be a random sample from a bivariate distri- 
bution and ( r ,  sl), . . . ,  (r., s~) be the ranks defined in Section 6. Using 
the notation ~[i[C(i)] to mean the number  of i which satisfies the con- 
dition C(i), we define 

{ ~[iEr~ands~<(n+l)/2], } 
(8.1) Q=Max  

~[ilr~ and s~>(n+l)/2] 

I t  is easy to see tha t  the difference of ~ [i I r~ and s~< (n + 1)/2] and ~ [i I r~ 
and s~>(n+l)/2] is zero for even n and •  or zero for odd n. The 
Blomqvist rank statistic (nl-n~)/(n~+n2)=Q' (say) [1] is equivalent to 
Q, since 

(8.2) 
Q, = { 4Q/n-1 

4Q/(n-1)-1 

for even n, 

for odd n, 

and hence Q itself may be called the Blomqvist rank statistic. 
Easily we have the following 

PROPOSITION 8.1. The Blomqvist statistic Q is nondecreasing. 

In fact,  Q=[R~], where [ ] denotes Gauss' symbol and R~ is defined 
in Example 6.1. Hence we find by Theorem 6.1 tha t  Q is stochastically 
not  smaller under G than under F,  provided G has larger regression 
dependence on x than F.  If the assumption o f ' l a r g e r  regression de- 
pendence '  is weakened to ' larger quadrant  dependence ', then we can 
state the  following 

THEOREM 8.1. I f  a bivariate distribution G(x, y) has larger quadrant 
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dependence than F(x, y), then the Blomqvist statistic Q is stochastically 
not smaller under G than under F, i.e., 

(8.3) Po{Q>=c}>=P~[Q~c} for any real c. 

PROOF. First  suppose n is even, n=2m.  Define two subsets of R ~, 

S =  [(xl, " " ,  x,,) ~=,=~Max r , = m }  , 

T=[ (y , ,  - . . ,  y,~)J~[i]s,~m and l<_i<_m]>=e} 

and let I~.(x,, . . . ,  x.) and I~ . (y , . . . ,  y,) denote the indicator functions of 
them. Then it will be readily verified tha t  

• h(Y,, "" ", Y~) fT dF(x,, y,). 

A similar expression holds also for P~{Q>=c}. Now both functions Is(X~, 
�9 - -, x~) and Ir(y ,  �9 �9 ", Yn) are nondecreasing in each of their  first m argu- 
ments  and nonincreasing in each of the last m ones. Therefore,  (8.3) 
follows from Proposition 7.4 (i). 

Suppose now n is odd, n = 2 m - 1 .  By virtue of the definition of Q 
it does not depend on the values taken by y~ as long as r~=m. De- 
fining 

T ~  

we find tha t  

S =  [(xl, �9 �9 �9 

( y i ,  �9 �9 �9 

,x~) Max r ~ = m - l , r ~ = m  t ,  
I l_~{~m--i 

,Yn) Maxl  $[i]s~<m and l<=i<m]} } 
(~[ i l s ,>m and m<i<=n]I ~ c  ' 

z IT(y ,  . . . ,  yn) dE(x,, y,) 
' = 1  

and also tha t  each of the two functions I s ( x , . . . ,  xn) and I r ( y , , "  ", Yn) 
is nondecreasing in each of the first m - 1  arguments  and nonincreasing 
in each of the last m - 1  ones as before, whereas Ir  is independent of 
y~. Hence (8.3) holds by Proposition 7.4 (ii). 

COROLLARY 8.1. I f  a family  of distributions {F.(x, y) ]a ~ P.}, 
[2oR ~, has monotone quadrant dependence, then the Blomqvist statistic 
is stochastically nondecreasing with respect to a. 



MONOTONICITY OF RANK CORRELATION BASED ON PARTIAL ORDERINGS 505 

THEOREM 8.2. In  testing the hypothesis of independence, 

Ho:F(x,  y )=Fdx)Fdy )  for  all x and y ,  

for  the f a m i l y  ~ of distributions with continuous marginal distributions 
the Blomqvist test with a critical region Q>=c is of Neyman-Pearson 
type, i.e., PF[Q=c}/PF~r2{Q=c} is nondecreasing in  c, and a f o r t i o r i  
unbiased. 

PROOF.  

where 

Suppose n is even, n = 2 m .  It  will be easily seen that  

m 2 n 

n 

• . . . ,  IT dF(x , 

~ = 1 ,  �9 . . ,  ~Tt 

   l iMaxc 
7/~.-kC q- 1, . -  . , ~  

Thus we have only to show that  

(8.4) L L 
L 

Is(x~, . . . ,  x~)Irc(y~, . . . ,  y~)dF(xc, y~)dF(x~+~, y,~+~) 

5(x l ,  . . . ,  x~)[r~_~(y~, " " ,  y,~)dF(xr y~)dF(x~+r y~+r . 

Since F ~ ~ t  and the functions Is and Ire are concordant at either the 
cth or the (m+c)th  argument, the first member of the inequality (8.4) 
is not smaller than 

(8.5) f~_~ . . . f~ Is(X,  . . ., x~)Iro(y~, . . ., y~)dFdx~)dFdyr 

• 

by virtue of Proposition 7.4 (i). On the other hand, Is and L'o_I are 
discordant at each of these arguments, and hence the second member of 
(8.4) is not larger than the integral which is obtained by replacing Tc 
in (8.5) by Tc_l. These two integrals, however, take the same value, 
since the function /rc_l can be obtained by only interchanging two argu- 
ments yc and y,,~+~ in the function ITs. This proves (8.4). 
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The  ease w h e n  n is odd m a y  be t r e a t e d  similarly.  
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