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1. Summary and introduction

The purpose of this paper which is a continuation of a preliminary
report [7] of the authors is to find a condition for a rank correlation
statistic based on a random sample from a bivariate distribution to be
monotone with respect to the parameter involved in the underlying dis-
tribution which represents correlation between two variates.

As a tool for this aim a partial ordering w is introduced in the set
11 of all permutations of (1,2, ---,n) for a fixed positive integer n as
follows. For two elements ==(r, ---,7,) and ='=(s;, ---,s,) of II we

write 7—z' iff (if and only if) there exists a positive integer ¢<= such
that r,=s,..<ry1=s; and ry=s, for k+1, 1+1. We define z=x" iff

there exists a chain r=r>r—>---—z,=x. Then, the space I is seen
to be a lattice with respect to this partial ordering, which answers af-
firmatively Savage’s question 6 [5].

Next, concepts of ‘positively regression dependent’ and ‘ positively
quadrant dependent’ introduced respectively by Tukey [6] and Lehmann
[3] are generalized to those of ‘larger regression dependence’ and ‘larger
quadrant dependence’, respectively, which enable us to compare the
degree of correlation between two variates for two bivariate distributions
with common marginal distributions. These notions can be further led
to those of ‘monotone regression dependence’ and ‘ monotone quadrant
dependence’.

Now one of the main results of this paper is Theorem 6.1 which
implies (Corollary 6.1) that if a family of bivariate distributions {F,(x, ¥)}
has monotone regression dependence on z and if a rank statistic is non-
decreasing, then the statistic is stochastically nondecreasing with respect
to . Theorem 6.2 gives some sufficient conditions for a rank statistic
to be nondecreasing. Several examples of nondecreasing rank statistics
including two rank correlations, Kendall’s - and Spearman’s p, and also
of families of distributions with monotone dependence are given.
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In Section 8 the Blomgvist rank statistic @ [1] is shown to be sto-
chastically nondecreasing with respect to a, provided the family {F.(x, )}
has monotone quadrant dependence. In testing the hypothesis of inde-
pendence for the family &, of distributions the Blomgvist test with a
critical region given by Q=c¢ is proved to be of Neyman-Pearson type.

2. A partial ordering in the space of permutations

Let /I be the space consisting of all permutations of (1,2, ---,n)
for a fixed positive integer n. We shall define a partial ordering in
this space as follows.

DeriNITION 2.1. Let z=(r, +--,7,) and #’=(s;, +--,s,) be two ele-

ments of II. We write 7—=' iff there exists a positive integer i<mn
such that

2.1) =811 <Tip1=8; and r.=s, for k+1, ¢+1.

The element = will be sald to be not smaller than =’ in the sense w

(weak sense) and denoted by n-én’ iff there exists a set of elements =,
7, ++, 7, of I for an integer m=0 such that

w w w
(2.2) Ry T —> =+ » > T =70 .

The partial ordering w mentioned briefly by Lehmann [3] will be
illustrated by Figures. 1 and 2 for two simple cases when n=3 and 4,
respectively.

1234
2134 1324 1243
2314 3124 2143 1342 1423

2341 3214 3142 2413 4123 1432

R N
N

213 132 4213 4132
231 312 3421 4231 4312
321 4321
Fig. 1. Partial ordering w Fig. 2. Partial ordering w

when n#=3. when n=d,
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DEFINITION 2.2. Let @B be the set of all pairs (k1) of integers
satisfying 1<k<l<n. For any element z=(r, ---,7,) of II let B(n)
denote the set of all pairs (r;, r,) such that 1<j and r,<r;. Clearly
B(z) is a subset of 4.

ProposiTioN 2.1. Let = and ' be any elements of /1. Then a

necessary and sufficient condition that éx' i1s that
(2.3) B(z)D> B(7') .

ProOOF. The necessity is obvious, since the condition z—>z' implies
(2.3).

Sufficiency. Since B(z)=B(z') is equivalent to z==', suppose that
(2.3) holds with a proper inclusion. Let z=(ry, ---, 7,) and z’=(s,, - - -, S,).
Let 7 be the minimum value of 7 satisfying »,#s;. Define k by 7,=s;.
Then the assumption (2.3) implies that r,<s;, r._(<r: and also that

(i1, 7) € B(x) = B(x) .

Let =, denote the element of I7 obtained by interchanging the two com-
ponents 7,_, and 7, of =. Then it follows that

z—m, and B(x)=B(x)—(rs.., ) DB .

By repeating this argument we can construct a chain =, -:-, 7, such
that

w w

T—>T—>= - -inm and B(ﬂm)zB(ﬂ:/) s
which completes the proof.

PropOSITION 2.2, Let B be a subset of 6. A necessary and suffi-
cient condition that there exists =, € II satisfying B=B(r,) is that both
of the following two conditions are satisfied:

(i) If (r,s) and (s,t) € B, then (r, t) ¢ B,
(i) If (r,t)e B and r<s<t, then (r,s)€ B or (s, t) € B.

Proor. The necessity may be obvious. It is easily seen that suffi-
ciency follows from the following fact: If B satisfies the conditions (i)
and (ii) and is included by B(z) properly, then there exists =’ € Il such
that

(2.4) =7 and B(x)DB.

To prove this, let z=(ry, -+, r,) and let (k,1) be any element of B
which minimizes I—k subject to the condition that (r., )¢ B(z)—B.
Then [=k+1, since the assumption k<7<l leads us to a contradiction
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as is seen below.

Since r,<r, by definition, we shall consider three cases: Case 1
when r,<r;<r,, Case 2 when r,<r,<7, and Case 3 when r, <7, <r,.
In Case 1 it holds that (r, r}), (r;, 7)) € B(x). Since I—k>j—k and [—7j,
we can conclude that (r,r;), (r;, r) € B, and hence (r;, )€ B by the
assumption (i), which is a contradiction. In Case 2 we know (r;, 7)€
B(z) and |—k>1—7, which implies by the definition of (k, ) that (r,, ») ¢
B. Now the assumption (ii) implies that (r;, ;) ¢ B or (7., r) € B. The
latter is incompatible with the definition of (k,I). From the former re-
lation it follows that (r;, r,) € B(z), which contradicts with the assump-
tion k< j. Case 3 can be treated similarly.

Thus we know {=k+1. Define »' by interchanging two components

7, and 7., of z. Then z—z' and
B(z")=B(x)—(ry, Te4s1) DB .

This proves (2.4) and the proof of the proposition is complete.
The following theorem is an answer to an open problem presented
by Savage [5], Question 6.

THEOREM 2.1. The space Il is a lattice by defining the join =\,
of two elements =, and m of Il as the smallest (in the sense of the partial

ordering w) element r satisfying 7c1>=uzri for i=1, 2, while defining the meet
T Ay dually.

PrOOF. Let x;, 1=1,2, be any elements of /7. It is sufficient to
show that both the join and the meet of them are uniquely determined.

We shall show the existence of =, € /I which satisfies that rcoérci for 1=
1,2 and also that

(2.5) w>x, for i=1,2 — .

Let B(x, w;) be the set of all (r, s) ¢ B for which there exists a chain
of integers r=r,<r;<\--<r,=s for some m, where

(7',;, 7'1;+1) € B(ﬂ:l) UB(sz) fOI‘ 'i=0, l, v, m—‘l .
Obviously it holds that
(2.6) B(z, m)DB(z)  for i=1,2.

Now it can be shown that B=B(x,, ;) satisfies the conditions (i)} and
(ii) of Proposition 2.2, and hence there exists =, € I/ which satisfies B(z,)=
B(z,, ). By (2.6) we find that B(r)>DB(x;) for ¢=1, 2, which is equiv-

alent to R‘GIZEZ- for 7=1, 2 because of Proposition 2.1.
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Suppose now that ﬁén‘i for i=1, 2, or equivalently, B(z)>B(x,) for
1=1,2. Then it can be easily shown that B(z)>B(x,, n;)=B(r;), and

w
hence r=x,.

3. Other partial orderings of permutations

Two kinds of partial orderings besides w can be defined in the space
IT as follows, the first of which is the same as that introduced by
Lehmann [3] as ‘better ordered than’ and the second was considered
by Savage [4], [6]. Though they will not be used in the following
sections of this article, they are included here partly because of their
possible applicability and partly because of their close relationship to the
partial ordering w which will play an important role starting with Sec-
tion 4. All propositions in this section will be stated without proof.

DEFINITION 3.1. Let z=(ry, -+, 7,) and z’=(s,, ---, s,) be elements

of II. We write z—=' iff there exist two subsecripts 4, j (i<j) such
that

3.1) r=8=r;—1l=s—1 and r.=s, for k1,7,
while we write z—>r iff there exist two subseripts 4, 7 (i< 7) such that
(3.2) ri=s,<r;=8; and r.=s, for k+#1,7.

The element = will be said to be larger than =’ in the sense %’ (another

w’ s
weak sense) or s (strong sense) and denoted by ===z or ==z according
as there exists a chain r=m,—m,—.--—r,—=' in the sense W' or s.

The following proposition, an immediate consequence of the defini-
tion, gives a justification of the names, ‘weak’ and ‘strong’.

w 1w’ S
PrOPOSITION 3.1. If z=#' or =z==', then ===,

The following proposition exhibits duality of two orderings w and
w' and self-duality of s.

ProprosiTiON 3.2. The space I1 is a group with multiplication
(riy = ) (St w0+, 8)=(1, ooy 7 )
Denoting by =~ ! the inverse element of =, it holds that
ﬂéw'@éx'lgn"l , néﬁ’@rc"l?i_n"“ .

The following two propositions are w’'-analogues of Proposition 2.1
and Theorem 2.1, respectively.
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ProrosiTION 3.3. For any z=(ry, ---,1r,) € Il let B'(x) be the set of
all pairs (4, j) of positive integers such that <7 and »,<r;. Then

27 & B(r)DB().

ProPOSITION 3.4. The space I is a lattice by defining the join and
the meet in the fashion of Theorem 2.1 with the ordering w' replac-
ing w.

As a characterization of the partial ordering s we shall state the
following proposition which is a generalization of Lehmann’s Theorem
5 [3].

ProrositioN 3.5. Let z=(ry, ---,7,) and z’'=(s, -+-,8,). For any
positive integer m<n let r, <.+« <7r,. be the rearrangement of r,,---,
r, in order of magnitude, while s,,<- - <s.. be the rearrangement of

§
S, **, Sx. Then a necessary and sufficient condition that ===’ is that

Pem S Sem for‘any k and m such that 1<kZ=m=<n.

4. A property of wedge sets

As noted before only the partial ordering w will be treated hence-
forth in this paper. For simplicity, therefore, we shall drop the super-

w
script w in the notation 7—z' or z=7'.

DEFINITION 4.1. For any positive integers k& and ! let [y.=v,] de-
note the subset of R* consisting of the point (¥, ---, ¥,) which satisfies
Ys=Y,. A subset [y,=---=y,] can be defined similarly. These sets
may be called wedge sets in R™.

The following proposition will play a key role in the proof of The-
orem 6.1.

ProPOSITION 4.1. For any = eIl it holds that

(4.1) U lyz--zy,l= lyezwl].

(CHNES) " DB

PrROOF. Let ¥°=(¥!, ---,%%) be any member of the left-hand side

of (4.1). By definition there exists z’'=(s,, - - -, 5,) == satisfying 3, =---

=y . Take any (k1) € B(z). Then Proposition 2.1 implies that (k1) ¢

B(r'), and hence %.=%}. Thus the point y° belongs to the right-hand
side of (4.1).

Conversely, let %° be any member of the right-hand side of (4.1), i.e.,

(4.2) (k,D)eB(x) = wiz9:.
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There exists »'=(s, ---, s,) € /I such that 93 =---=%] . Define z"'=({,
-, t)=rVzr', the join of » and =’ in the sense given in Theorem 2.1.
By definition (¢, - -+, t,)=x, so that if we can show that ¥} =---zvi ,

then the point 4° proves to belong to the left-hand side of (4.1) and the
proof is complete. Now we shall show that

(4.3) YLZY,,,

for any 4. If ¢,>t,,, then the inequality »”"==' implies that the two
numbers ¢, and ¢,,, appear in (s, ---,8,) in the same order, which im-
plies (4.3) in turn. On the contrary, if ¢,<t;., then the pair (¢, ;) ¢
B(z"). 1In fact it belongs to B(zx)UB(z"), because otherwise we can con-
struct =* such that z’>#*=x and =’ by interchanging the two compo-
nents ¢; and t,,; in z”’, a contradiction with the definition of #”. In the
case when (¢;, %y, € B(z) the relation (4.3) follows from (4.2). In the
remaining case when (f;, t,,) € B(z') also we obtain (4.3) easily.

5. Monotone regression dependence

DEFINITION 5.1. Assume that each of two bivariate cdf’s F(x, v)
and G(zx,y) has continuous marginal distributions and that both have a
common marginal distribution of . Let F(y|z) and G(y|«x) denote the
conditional cdf’s of y given # based on F and G, respectively, which
are assumed to be continuous in y for any . Let F~'(u|z) and G™'(u | z)
denote the minimum values of u-points of them for 0<u<1. Then the
distribution G(x, %) will be said to have larger regression dependence on
xz than Fl(z,y) iff

(6.1) Flulehz=zF'vlz) = G (u|2)=2G'(v|x)
for any 2'>2 and any u and ».

The assumption of common marginal distribution of z is not essen-
tial, since any bivariate distribution with continuous marginal distribu-
tions can be so transformed by a suitable transformation of x as to
satisfy the assumption.

DEFINITION 5.2, A family of distributions, {F,(x, ¥)|a € 2}, where
Rc R, is said to have monotone regression dependence on x with re-
spect to « iff the distribution F,.(x,y) has larger regression dependence
on x than F,(z,y) for any o' >a.

The following proposition shows that Definition 5.1 provides a gener-
alization of Lehmann’s concept [3] of ‘ positively regression dependent’,
or the family &,.
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PRrOPOSITION 5.1. Let Fi(x) and F,(y) be the marginal distributions
of F(x,y). A necessary and sufficient condition that F{(zx, y) € &, is that
F(x,y) has larger regression dependence on z than the product distribu-
tion F(x)Fy(y).

PROOF. Necessity. Assume F ¢ &F, and we shall show that
(5.2) FruzFyi(v)y = F(ula)zF7'(v]x)
for any #'>2x. Since Fe &, by definition,
Fylz)sFy|x) for any v,
and hence
Fw|a=F(v|x) for any ».
The condition F;i(u)=Fy'(v) is equivalent to #=wv, which implies
FYu|xhzFv|2).

Thus we have proved (5.2). The sufficiency may be proved by inverting
the above argument.

ProPOSITION 5.2. Assume that both of the conditional edf’s Fly|x)
and G(y | x) are continuous and strictly increasing in y for each z. Then
a necessary and sufficient condition that G(z,y) has larger regression
dependence on x than F(x,y) is that

(5.3) Flylz)zGW'|z) = Fly|zh=Gy |2)
for any #'>x and any y and v/'.

Proor. Only sufficiency will be proved, because necessity may be
treated similarly. Assume that G does not have larger regression de-
pendence on x than F and we shall show that we are led to a contra-
diction. By the assumption there exist x, 2’, © and v such that z'>z,
Flu|e)zF Yv|x) and G (u|2)<G'(v|x). Define y=F"'(v|z) and
¥ =G Y(u |z, then it follows that

Fylzsu, Flylo)=v,
(5.4)
G lz)=u, G |x)<v.
By the second and the fourth relations together with the continuity of
F(y|x) there exists a sufficiently small ¢>0 such that
Fly—e|x)>Gy | 2) .

The first and the third relations of (5.4), however, implies that
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Fly—ce|2)<u=G(y'|z'),
which together with the preceding inequality contradicts with (5.3).

Erxample 5.1. Let U and V be any independent real random vari-
ables each having a continuous distribution. Define

(1) X=U, Y, =pU+1—p)"*V for —1<p<1,
or
(ii) X=U, Y.=aU+V for —~co<a<<oo .

Then each of the families of the distributions F,(z,y) for the case (i)
and F,(x,y) for (ii) has monotone regression dependence on x with re-
spect to p and «, respectively. A bivariate normal distribution is a
particular case of (i) when U and V are N(0,1) variates.

Erxample 5.2. Let U and V be any independent real random vari-
ables each having a continuous distribution, U being distributed on the
interval (0, 1), while V on (0, o). Define

X=U, Y.,=(1+aU)V for a>—1.

Then the family of the distributions F,(x,y) of (X,Y,) has monotone
regression dependence on x with respect to a.

6. Monotonicity of rank correlation

Let (X,Y) be a bivariate random variable having a edf F(x, y) with

continuous marginal distributions and let (x, %), ---, (., ¥.) be n in-
dependent observations on (X,Y). Let r, be the rank of z; (from the
largest on) among {x, «--, z,} and s; the rank of ¥y, among {y,, - -, ¥.}-
Define ¢, for k=1,---,n by the two relations, t,=r; and k=s;, or
equivalently by

(6'1) (th ] tn)z('rl’ A ’7'")(31, ct Sn)—1 ’

where the inverse is to be interpreted in the sense stated in Proposition
3.2. It is noted here that (¢, ---,¢,) is a function of the random sam-
ple (x;, %), 1=1, ---, n, or a statistic.

DEFINITION 6.1. A statistic B will be called a rank statistic iff
(6‘2) R(xlv Yiy * o0y Ty yn):(P(”"n Sty ¢y Ty sn):¢)(tlr tt Yy tn)

for some functions ¢ and ¢. It is nondecreasing iff ¢ is nondecreasing,
l.e.,
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(6.3) rzr = Hn)zd).

Any rank statistic is desirable to be nondecreasing in order to serve as
a measure of correlation between X and Y, or a rank correlation.

THEOREM 6.1. If
(1) G(x,y) has larger regression dependence on x than F(z,y), and
(i) R s a mondecreasing rank statistic,
then R is stochastically mot smaller under G than under F, i.e.,

(6.4) P,{Rzc}=P-{R=c} for any real ¢.

Proor. Using the conditional probability given x, we can write

(6.5) Pr{Rzc}=E*[Pr{Rzc|z}],
where x=(x, ---, 2,). Being a rank statistic, E is invariant under any
permutation of (x;, ---, z,), and hence we may suppose that x,>--->z,

in considering the conditional probability given z. For a fixed x such
that z,>--- >z, it holds that

(66) {(yls ) yn) € Rn l R_Z_C} =¢(};§20 [’!/512 M ;ytn] ]

where the right-hand side is the union with respect to «/=(¢, ---,t.)
satisfying ¢(z')=c. Since ¢ is nondecreasing, we find that symbolically
(6.7) Uu=uU UuU.

¢(z)ze  P(x)ze n'2x

From (6.6), (6.7) and Proposition 4.1 it follows that

PoRzclo}=P,l U N [zullzl.
g(x)ze (k,1e B(x) )
If we define 7,=F(y;|x,) or equivalently y,=F"'(»;|z;) for i=1,---,m,
then conditionally for given x the random variables 7, -- -, 7, are distri-
buted independently and identically according to a uniform distribution
over the interval (0,1). Thus we have

Pr{Rze|a}=P U (F ] 2) 2 F a0

¢(x)ze (k,1)e B(x)
Since x,>2, and the edf G has larger regression dependence on x than
F' the right-hand side does not exceed

P"{ U

¢(m)ze (k,1)e B(x)

(677 %) 2G| 21

which is identical with P;{R=c|x}. Consequently, we find that
P;{Rzc|x}z Pr{Rzc|x},
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which implies (6.4) because of (6.5).

COROLLARY 6.1. If a family of distributions {F,(x, y)|a € 2}, where
QCR', has monotone regression dependence on x and +f R is a mon-
decreasing rank statistic, then R 1s stochastically nondecreasing with re-
spect to «, ti.e., Pr,{R=c} 1is a nondecreasing function of a € 2 for any
real c.

THEOREM 6.2. Fach of the following four conditions is sufficient
for a rank statistic R to be nondecreasing :

() R=3} f(r)g(s),
where both f and g are nondecreasing real-valued functions,
(ii) R=3 plri. 5.
where ¢ 1s a real-valued function for which

o(r, s)+o(r, Y= p(r', s)+o(r, ),

whenever ' >r and §'>s,
(iif) R= P2y Slry, r)9(s:, 85)

where both functions f(r,r") and g(r, ') are nondecreasing in r and non-
increasing in ',

(iv) Rziék S(ri, v)a(s:, 81

where both functions f(r, r") and g(r, r') are mondecreasing in r.

It will be noted that Theorem 6.1 combined with the part (i)
which is a special case of each of (ii), (iii) or (iv), contains Lehmann’s
Theorem 4 [3] as a special case and also that a statistic of the form (iii)
was studied by Daniels [2].

ProOF. We shall deal with the cases (i), (iii) and (iv), where R
can be written as 3 o(t:, k), Zlf(tk, t)g(k, 1) and kZl‘, f(ts, t)glk, m), re-
k k+ *i,m
spectively. Denoting these functions by ¢(z), z=(t, - -+, t,), let us show
(6.3). Assume o1’ =(8y, *++,8,). Then by definition there exists a sub-

seript ¢ such that

ti=8i+1<ti+1=Si and tk=sk for kii, ?:‘}"1.
In Case (ii) it holds that
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HD)=3 olt, B)
while
$)= 3 ot k) +eltay, Otelt, i+1).
Taking the difference, we have
(@)= () = (b, 8) F+(besr, i+ 1) = ltier, ) —plts, i4+1)20.
Case (iii). It holds that
Gm)=_ 51 f(t Do)
3 [t 89 D+ f s D904 1,D)
+ 3 Lt 10k 1)+ f (b ) gl i4-1)]
+ (s, 69, D)+ (g 890 +1,7)

while ¢(z') can be obtained by interchanging ¢, and t¢,,, in the above
expression. Therefore, '

HE) =g = 3 [t )= F(t ] 0G+1, D=0, D]
+ 5 [t 8= F (bt o0, ) =g, i+ 1)]
Hf Cisrs 2= f (8 L) Ho(E+1, 9 —9(3%, i +1)]20.
Case (iv). After a straightforward calculation we have

YD) =9 =2 L (ewss 1) = F(t0 1] 32 (9041, m) —g(3, m)]Z0.

Example 6.1. The following five rank statistics are all nondecreas-
ing:

Rl_——i;:l sgn (’ri_'rj) (Si_sj)/n(n_l) ,
which is Kendall’s rank correlation z;
Ri=3 3} sgn(r,—r)(s—s)/n(n’—1),
i%j,k

which is Spearman’s rank correlation p:

R3:l é [sgn <ri—— n+1>+1} [sgn <si—1®+—1>+1} ,
4 i=1 2 2

the number of observations falling in the first quadrant with respect to
the sample median;
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n
N L
Ré">_: Srin77si7z ’
i=

-

where &, (or 7,,) stands for the expected value of the ith order statistic
based on a random sample of size n from some fixed distribution U (or
V). 1If both U and V are N(0,1), we get the normal score correlation
coefficient. Finally,

Rsz—é lr,—s,1? with p=1,
i=1

which becomes equivalent to Spearman’s p when p=2.

7. Monotone quadrani dependence

DEFINITION 7.1. Assume that cdf’s F(x, %) and G(z, y¥) have common
continuous marginal distributions. Then the distribution G is said to
have larger quadrant dependence than F iff

Gz, Y)=F(x, y) for all # and y.

A family of distributions {F,(z,¥)|a € 2}, where QCR', is said to have
monotone quadrant dependence iff the distribution F.. has larger quadrant
dependence than F, for any o« >a.

The assumption of common marginal distributions is again not essen-
tial here as in Definition 5.1. Obviously the above definition. generalizes
Lehmann’s notion [3] of ‘positively quadrant dependent’ or the family
¢F,, which is stated as the following

ProPOSITION 7.1. Let Fi(x) and Fi(y) be the marginal distributions
of F(z,y). A necessary and sufficient condition that "¢ &, is that Fl(z, y)
has larger quadrant dependence than the product distribution Fi(x)Fi(y).

ProposiTION 7.2. If a distribution G(x,y) has larger regression
dependence on « than another distribution F(z,y), then G has larger
quadrant dependence than F.

ProoF. Assume that G has larger regression dependence on x than
F and that G does not have larger quadrant dependence than F. Then
there exists a point (x, %) at which G(x, ¥)<F(x, %). It will be readily
seen that this implies the existence of two values x’ and 2” such that
2" <x<x' and

Glyle)>Fylx) and Gly|2")<Fly|z").

Taking any numbers % and v which satisfy
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Glyle)>u>F(y|«) and Gy|a")<v<Fly|z"),
we find that
Foula)>y,  GHula)=y,
Fl'wiz" =y, G'@|a")>y.
Hence it follows that
Fu|2)>F Y vlz") and G 'u|z)<G'(v]z"),
which contradicts with the assumption or (5.1).

PROPOSITION 7.3. Suppose a distribution G(z, y) has larger quadrant
dependence than Fl(x,y). If two real-valued functions f(x) and g(y) are
concordant, i.e., both are nondecreasing or both are nonincreasing, then

Cove (F(X), 9(Y))=Cov, (f(X), 9(Y)),

provided both covariances exist. In particular,
Cove (X, Y)=Covp{X,Y).

This proposition, a generalization of Lehmann’s Lemma 3 [3], can
be proved similarly by using Hoeffding’s lemma ([3], p. 1139):

Cove (X, )=|"_|"_[Fe, »~F@Fldady
As a consequence we can obtain the following proposition, where the
part (i) is a special case of the part (ii).

ProprosiTION 7.4. Suppose G(x, ¥) has larger quadrant dependence
than F(x, %) and let (X, Y)), ---, (X,, Y,) be a random sample from either
of these distributions.

(i) Let X=71(X,,---,X,) and Y=9(Y,, ---,Y,), where the two
functions f and g are concordant with respect to the ith argument for
each 7 when other arguments are fixed, then it holds that

Cove (X, Y)=Covr (X, YY),

provided both covariances exist.

(i) Let (U,V) be a random variable distributed according to a bi-
variate distribution H(u,v) independently of the sample (X, Y7), 1=1,
cee,m. Let X=7(X,, -+, X,,U) and Y=¢g(Y,, --.,Y,, V), where f and
g are concordant with respect to the ith argument for each 1<n when
others are fixed, then

Cove,x (X, Y)=Covpx(X,Y),
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provided both sides exist.

COROLLARY 7.1. Assume that G(x,y) has larger quadrant depend-
ence than F(x,y). Then each of the following correlation measures:

Kendall’s r=Cov (sgn (X,— X)), sgn(Y,—Y,),

Spearman’s p=Cov (sgn (X,~ X;), sgn (Y, —Y3)),

Blomguist’s g=Cov (sgn (X—median X), sgn (Y—median Y)),
18 mot smaller under G than under F, i.e.,

TeZTr, pe=pr and gg2qr.

8. Monotonicity of the Blomqgvist rank statistic

Let (@, vy), -+, (%, ¥,) be a random sample from a bivariate distri-
bution and (»r,sy), ---, (7,,8,) be the ranks defined in Section 6. Using
the notation #{¢|C(:)] to mean the number of ¢ which satisfies the con-
dition C(7), we define

#[7[r; and s, <(n+1)/2],
£[i]r, and s,>(n+1)/2]

(8.1) @=DMax

It is easy to see that the difference of #[7]r; and s;<(n+1)/2] and #[z|r;
and s,>(n+1)/2] is zero for even n and +1 or zero for odd n. The
Blomqvist rank statistic (n,—ns)/(n,+n.)=@ (say) {1] is equivalent to
@, since

4Q/n—1 for even n,
(8.2) Q=
4Q/(n—1)—1 for odd =,

and hence @ itself may be called the Blomqvist rank statistic.
Easily we have the following

ProposITION 8.1. The Blomgvist statistic @ is nondecreasing.

In fact, Q=[R;], where [ ] denotes Gauss’ symbol and R, is defined
_in Example 6.1. Hence we find by Theorem 6.1 that Q is stochastically
not smaller under G than under F, provided G has larger regression
dependence on x than F. If the assumption of ‘larger regression de-
pendence’ is weakened to ‘larger quadrant dependence’, then we can
state the following

THEOREM 8.1. If a bivariate distribution G(x, y) has larger quadrant
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dependence than F(x,y), then the Blomquist statistic @ 1s stochastically
not smaller under G than under F, 1.e.,

(8.3) P {Q=c) =z Pr{Q=c) for any real ¢.

Proor. First suppose n is even, n=2m. Define two subsets of R",

S= {(ajl’ ] xn) Max v, = m} ,
T={(, -+, ¥ | #[i]s;<m and 1Zi<m]=c}
and let Is(x, ---, %,) and I;(y,, ---,¥,) denote the indicator functions of

them. Then it will be readily verified that

PoQza=(p) |

—c0

ot So_om IS(xlr Y xn)
X I, -+ vo) 1T dF (s, )

A similar expression holds also for P,{@=c}. Now both functions Is(x,
---,x,) and I (y, ---, 9, are nondecreasing in each of their first m argu-
ments and nonincreasing in each of the last m ones. Therefore, (8.3)
follows from Proposition 7.4 (i).

Suppose now 7 is odd, n=2m—1. By virtue of the definition of @
it does not depend on the values taken by y; as long as r,=m. De-
fining

S= {(ml, e, Max r=m—1, rmzm} ,
1£iEm=-1
%[i]s,<m and 1<i<m])_ )
T:{ y T Ya Mas . . =cr,
\(yl y)‘ a‘{{#[z]spm and m<z§n]f CJ
we find that
PF{Q;C} - <’)’)’L7il>m Si:o_ ‘ .go—ow IS(:UI’ Tty xn)
XIT(yly ttty yn) ;I;l—l dF(xir 1/:)
and also that each of the two functions Is(%, ---,,) and Ip.(y, * -, ¥.)

is nondecreasing in each of the first m —1 arguments and nonincreasing
in each of the last m—1 ones as before, whereas I, is independent of
Y¥.. Hence (8.3) holds by Proposition 7.4 (ii).

CoroLLARY 8.1. If a family of distributions {F,(x,y)|ac 2},
Qc R, has monotone quadrant dependence, then the Blomquist statistic
1s stochastically nondecreasing with respect to a.
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THEOREM 8.2. In testing the hypothesis of independence,
H,: Flz, ))=F\(x)F{y)  for all  and vy,

for the family &, of distributions with continuous marginal distributions
the Blomgvist test with a critical region Q=c¢ is of Neyman-Pearson
type, i.e., Ppr{Q=c}/Pr {Q=c} is mondecreasing in ¢, and a fortiori
unbiased.

PrOOF. Suppose # is even, n=2m. It will be easily seen that

Pror@=ci=(") /().

PoiQ=c}=() (") " {7 Lty om0
X I, Wi -+, %) 1T dF (., 9)
where

S= {(% e, )

Max m:m} s
i=1,re0,m

Tc:{(yb Tty yn)

Max sizm} .
=1

00,6,
MAC+HL, ee,m

Thus we have only to show that

O I T D NP R A NR PN CHPAL ) A

—00

_Z_SOO ot S - IS(xI: ] xn)ITc_l(ylr STy yn)dF(xcy yc)dF(xm-(»c’ ym+c) .

Since F'e &, and the functions Iy and I, are concordant at either the
c¢th or the (m-¢)th argument, the first member of the inequality (8.4)
is not smaller than

(8_5) Si"m .. Sojm Is(xl, ey, xn)ITc(ylr tt Yy yn)dFl(xc)dFZ(yt)
X dFl(xm+c)dF2(ym+c)

by virtue of Proposition 7.4 (i). On the other hand, Is and Ir._., are
discordant at each of these arguments, and hence the second member of
(8.4) is not larger than the integral which is obtained by replacing T,
in (8.5) by T._,. These two integrals, however, take the same value,
since the function Ir,_, can be obtained by only interchanging two argu-
ments y, and ¥y,,. in the function Ir,. This proves (8.4).
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The case when 7 is odd may be treated similarly.
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