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The cumulants of random variables are important in deriving, for
statistics of interest, exact sampling distributions, approximate sampling
distributions (as via Cornish-Fisher expansions) and asymptotic sampling
distributions (such as asymptotic normality). This note presents a means
of caleulating cumulants when two or more stages of sampling may be
recognized.

Given the k-variate random variable (z, ---,z,), let A denote an
event in the associated probability field. The following properties of
first and second order cumulants are well known (see Hansen, Hurwitz
and Madow ([4], pp. 61-66) or Feller ([3], p. 164)).

(1) Ex,=E{E(z;| A)}
A
(2) var xizé'{var (x2;|4)} +var{E (x| A)}
A

(3) cov (s, @;)=E{cov (w:, ;| A)} +eov{E(z:|A), E(z;| A)}
for 4,5=1, ---,k where |A) indicates that calculations are carried out
conditionally on the event A, while the subscript A indicates that calcu-
lations are carried out over the various values of A. Let x(xy, - -, )
denote the joint kth order cumulant of (x, ---,2,) and for integers
Buir oy Be let &s.p (@, oo, @) =x(2)[ By times], - - -, z,[8; times]). In this
note we generalize (1), (2), (3) to
(4) K@y, -y 2) = S £ 4), - i(@.,|4)} -

The summation in (4) extends over all partitions a=(a;, * -+, @),

p=1, -+, k of the integers (1,---,k) and z,=(x,;, -+, 2;) if a;=(J,
-+, 3;). We may prove,

THEOREM. Given the k-variate random wvariable (xy, ---, %) with
E|z,F< oo, 1=1, -+, k, the identity (4) is valid.

PROOF. k(x, -+, %) is the coefficient of ¢, --- ¢, in the Taylor series
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expansion of log E(exp 3 x,f;) about the origin. (This expansion may
be carried out because oif the assumed finiteness of moments.) However
(5) log E(exp > zt;)=log lAE'{E(exp Skl A)}
=log B lexp (5 k@1, -, 0 )L (o] )
Bl - B
where |t|*=¢#+4 .-+ +t; and the summation extends over integers g,
0=8:=k, 1=1, - -+, k, with 0<> 8;<k. We note that the expression on

the right-hand side of (5) is essentially the cumulant generating function
of the random variables &;..; (2;, --+, %,[A). The stated result now
follows on identification of the coefficient of ¢, --- ¢,..

COROLLARY. The kth order cumulant k(x) of a univariate random
variable x, with E|z|*<oco, is given by

_ k! 1 ; ..
(8) T o Fe (@A) (] 4), )
where the summation extends over all partitions (pi, ps, ---) of kb with
Pt Dot -0 =k
This corollary follows from the theorem on taking z,=x, 1=1, ---, k,

and counting the identical terms.
We now turn to several examples of the theorem and corollary.

Example 1. Mixtures. Suppose that the probability measure of

(2, + -+, x;) 18 in fact a mixture, that is its c.d.f. F(x,, ---, z,) is of the
form

(7) o, -+ 2)=Gla, -+, 5 0)dUE)

where, for fixed 0, G(x,, ---, 2; 6) is a c.d.f. and U(#) is a probability
measure in §. The theorem allows us to express the kth order joint
cumulant of (x;, ---,2;) in terms of the cumulants ecalculated from
G(xy, -+, x;; 6) for fixed #. The required expression is given by (4)

taking A to refer to 4.

This result is given for the first and second order cases in Feller
([3], p. 164).

The next example refers to the sum of a random number of random
variables.

Example 2. Cumulants of random sums. Let x,2,--- be a
sequence of independent, identically distributed random variables with
k{x)=k;, j=1, .-+, k existing, and » an integer valued random variable
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distributed independently of the sequence, whose moments exist up to
order k. Let S,=u;+ --- +x,. From (1) and (2) above, letting A refer
to », we see ES,=(Ex)(En) and var S,=(En)var z+var n(Ex):. In
general we have from the corollary, taking A to refer to =,

_ k! 1 -
(8 a5 =31 wlpl oo (o) a(pol)e - - f‘“”“zm {n’fpl’ Mhypyr }
k! 1 .
=M CLETL 0
- ml! - (@D (Del)2 - Kok, Byt (1) 5
the summation extending over all partitions (pp1, pi2, --+) of k with
i+t - =k.

The expression (8) may be used to derive a central limit theorem
for a random number of random variables. Suppose all moments of z
and n exist with k,(x)=0. Suppose the distribution of % depends on a
parameter N with limg(n)=ococ. Consider the standardized variate

N—ocoo

Z,=8,/(var S,)**. We see that EZ,=0, varZ,=1 and £(Z,)=x,(S.)/
(En-varx)*®. By inspection we see that if x.(n)/(E(n))**—0 as N—
for k=8,4, ---, then £,(Z,)—0 as N—oo for k=3,4, .... We see that
Z, is asymptotically standardized normal. Central limit theorems for
random sums are considered in Robbins [5] and Wittenberg [7].

Robbins also considers an alternate form of standardization of S,,
namely Y,=(S,—ES,)/n'?. Here we see from (1) and (2) that EY,=0
and var Y,=varz. From the corollary we have for k>2,

' — k! 1 i
( 9 ) /flc(Yn)—Z #1!#2! . (pll)“l(p2!)“2 T ’fpilfp:’
X e (BT PITRE, =D
the summation extending over all partitions (pi1, pi2, --+) of k with
Pyt Dyt -+ - =k and py, py, -+ - >1.

Example 8. Two-stage sampling. Consider a sampling plan involv-
ing the selection of w first-stage units with or without replacement and
with possibly unequal probabilities, followed by a second stage of sampl-
ing, carried out independently within the selected first-stage units, fol-
lowed by the measurement of the k-variate random variable x(j)=
(25), + <+, 2(9)) in the jth unit. Define indicator variables as follows;
a;=1 if the jth unit is in the sample and a;=0 otherwise. Consider
sample totals. We see that these have the form X;=3ax.(j), i=1,
.-,k where (ay,as, ---) is independent of the (z,(5), - - -, #.(5)), j=1,2,
.-+, which are independent of each other.

Letting A refer to the variate (a,, a,, ---) and X=(X,, ---, X)), we
have from the theorem
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(10) #(X) =3 £ {e(Xo]A), -, £(X, | A},

the summation extending over all partitions a=(a;, «--, ), p=1, .-+, k
of the integers (1, ---, k).

Since the (x(7), ---, z(5)), 7=1,2, --- are independent and a}=a;,
m=1,2, ---
(11) K(XﬁlA)‘—“]/_] a k(@55 J)
where £(x;; 7)=£(®,(7), -+, %:,(9) if §=(5, -+, %;). We have therefore
(12) K(X)=3% E;x e z;fc(xal; T« K&y, JE(ay, o0 ay)

We note that the cumulants of the variate (a,,a,, --+) are needed and
that these depend solely on the form of sampling employed in the selec-
tion of the first-stage units. We see that in order to obtain an unbiased
estimate of x(X), we require unbiased estimates of the products of the
cumulants of the (7). If the first-stage units are infinite in size and
one employs simple random sampling within them, these estimates have
been provided in Dressel [1] and Tukey [6].

After this note had been prepared, the author learned that D. S.
Robson of Cornell University had previously obtained the result con-
tained in the corollary. Ebner [2] employed it in an investigation of
the balanced one-way nested classification and work has continued at
Cornell on its use in sampling from finite populations.
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