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Abs t r ac t .  In survival or reliability studies, the mean residual life or life expectancy 
is an important characteristic of the model. Here, we study the limiting behaviour 
of the mean residual life, and derive an asymptotic expansion which can be used to 
obtain a good approximation for large values of the time variable. The asymptotic 
expansion is valid for a quite general class of failure rate distributions--perhaps the 
largest class that can be expected given that the terms depend only on the failure 
rate and its derivatives. 
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i .  Introduction and Background 

In life test ing situations, the expected addit ional  lifetime given tha t  a component  
has survived until  t ime t is a function of t, called the mean  residual life. More specifically, 
if the random variable X represents the life of a component,  then  the mean residual life 
is given by re(t)  = E ( X  - t I X > t). It is well known tha t  the mean residual life is 
related to the survival (reliability) funct ion/~  by 

(1.1) 
1 f t ~  

r e ( t ) -  F i t )  F (u )du ,  

and to the failure rate (hazard function) r = - F ' / F  by 

(1.2) 

where 

m ( t )  -- exp - r ( x ) d x  du = e R(t) e-R(U)du, 

~0 t (1.3) R(t )  = r ( x ) d x  = - log F( t )  

is the integrated failure rate  (cumulative hazard function). We also have 

(1.4) m'( t )  = r ( t ) m ( t )  - 1, 

(see Calabria and Pulcini (1987), for example.) 
The mean residual life has been employed in life length studies by various authors,  

e.g. Hollander and Proschan (1975), Bryson and Siddiqui (1969), and g u t h  (1977). M u t h  
(1977) observed tha t  the failure rate takes only the instantaneous present into account,  
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whereas the mean residual life takes the complete future into account. Meilijson (1972) 
has studied certain limiting properties of the mean residual life. A smooth estimator of 
the mean residual life is given by Chaubey and Sen (1999). 

In this paper, we undertake a detailed study of the limiting behaviour of the mean 
residual life (Section 2), and derive an asymptotic expansion (Section 3) which can be 
used to obtain good approximations for large values of the time variable. The asymptotic 
expansion is valid for a quite general class of failure rate distributions--perhaps the 
largest class that can be expected given that the terms depend only on the failure rate 
and its derivatives. 

For the family of age smooth distributions, Rojo (1996) has established, for large 
values of the time variable, a relationship between the mean residual life and the failure 
rate in terms of the index p of regular variation. Calabria and Pulcini (1987) noted 
a relationship between the limiting behaviour of the mean residual life and the failure 
rate. This relationship was developed further by Chaubey and Sen (1999) for the class 
of distributions having nondecreasing failure rate. Our approach provides a considerable 
improvement on their approximation, and moreover does not require that  the failure rate 
be nondecreasing. 

2. Limiting Behaviour 

By applying L'HSpital's rule to (1.1), Calabria and Pulcini (1987) derived the rela- 
tionship 

1 
(2.1) lim r e ( t ) =  lim 

t-~o~ t - * ~  r ( t ) '  

provided the latter limit exists and is finite. They then used (1.4) to conclude that 
limt-,c~ m'( t )  = 0, or equivalently, that  

(2.2) lim r ( t ) m ( t )  = 1. 
t----* O o  

Unfortunately, one cannot infer (2.2) f~om (2.1) unless one also assumes that  limt--.~ r(t)  
is finite and strictly positive. For a counterexample, fix positive constants a and b and 
consider the linear mean residual life re(t) = a + bt with corresponding failure rate 
r(t)  = (1 + b)/(a + bt). The class of distributions with linear mean residual life has been 
studied by Hall and Wellner (1981) and Oakes and Dasu (1990). Counterexamples that  
satisfy limt-~o~ r(t)  = c~ also exist, but as these tend to be somewhat more complicated, 
further discussion is deferred to the end of this section. A more detailed study of the 
limiting behaviour of the mean residual life follows. 

THEOREM 1. Let r denote the failure rate, and let m denote the corresponding 
mean residual life. For t > 0 define fl(t) = ess sup{r(x) : x > t} and a(t)  = ess inf{r(x) : 
x > t}. Then 

1 1 
lim < l i m ~ f m ( t )  < l imsupm(t)  < lim - - .  

PROOF. Since ~ (respectively, fl) is clearly nondecreasing (nonincreasing), 

jo ~ ( fx+t  
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implies 

fo fo e-X~(t)dx <_ re(t) < e-Xa(t)dx. [] 

COROLLARY 1. The failure rate r and the mean residual life m have limiting be- 
haviour related by 

1 1 
l i m s u p r ( t )  < l i m i n f m ( t )  < l i m s u p m ( t )  < 

- t--,r162 - t--,~ - lim inf r(t)  
t - - + o O  t---* or 

Note  tha t  Corollary 1 implies (2.1) wi thout  the assumption tha t  limt-,oo 1/r( t )  
exists; for example, if limsuPt_.oo r(t) = 0, then limt--.~ m(t)  = c~. Corollary 1 also 
implies tha t  if l im t - .~  r(t) exists (finite) and is strictly positive, then (2.2) holds. 

The limiting reciprocal relationship (2.2) between the failure rate and the mean  
residual life may  be interpreted as an approximation or asymptot ic  formula m ,,~ s, 
where s = 1/r.  By imposing suitable conditions on s and its derivatives, it is possible to 
refine this approximation by introducing addit ional terms into the asymptot ic  formula. 
We shall carry out  this programme in Section 3. Even in cases where the  reciprocal 
relationship (2.2) fails, one can sometimes obtain reasonably precise information abou t  
the limiting behaviour  of the product  of the failure rate and the mean residual life by 
s tudying the limiting behaviour  of s and its derivatives. By  put t ing  E = [0, c~) in 
Corollary 2 below, it can be seen that  for continuously differentiable s, if limt-.c~ s'(t) = 
0, then (2.2) holds. However, it may happen that  limt--.oo s'(t) does not  exist. It turns  
out  tha t  if ]s~(t) l is not ul t imately "too big too often," one can still say a good deal abou t  
the product  r ( t )m( t )  when t is large: see Theorem 4 and Corollary 2 below. There  are 
also failure rates for which nonzero values of limt--.oo s'(t) are possible. In such cases, 
the reciprocal relationship (2.2) may fail. Nevertheless, we have the following result. 

THEOREM 2. Denote the failure rate and its reciprocal by r and s = 1/r ,  respec- 
tively, and let m denote the corresponding mean residual life. Let  R denote the integrated 
failure rate (1.3). Suppose that 

(2.3) 

and that 
(2.4) 

Then 

lim s(t) e x p ( - R ( t ) )  = 0, 
t ----* (X)  

lim (1 - s'(t)) -1 exists (finite). 
t ----* OO 

lim r ( t )m( t )  = lim (1 - s ' ( t))  -1 . 
t - - -+OO t -"~ (X) 

PROOF. Apply L 'H5pital ' s  rule to 

r ( t )m( t )  = e-R(X)dx/ (s( t )e-R( t ) ) .  [] 

When  applying Theorem 2 in practice, it may  often be  easier to verify conditions 
that  imply the hypothesis  (2.3), as opposed to verifying (2.3) directly. We give an 
example of such a condition below. 
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THEOREM 3. Denote the reciprocal of the failure rate by s, and let R denote the 
integrated failure rate (1.3). Suppose that limt__.ooeSssup{s'(x) : x > t} < 1 and that 
s(t) is finite for all sufficiently large values of t. Then (2.3) holds. 

PROOF. There exist numbers L < 1 and to >_ 0 such that for all t > to, s(t) is 
finite and ess sup{s'(x) : x > t} < L. For t > to, we have 

s ( t )exp( -R( t ) )  = e x p / l o g  s(to) + .~i ~(x) d X -  ~ r (x )dx}  
St (X) .  t 

_< s(t0)exp { (essstuoP s '(x ) - 1 ) ~ t ~ r ( x ) d x - R ( t o ) }  

~_ s(to)exp{(L - 1)(R(t) - R(to)) - R(to)} 
: 8(to)e-LR(to) (~'(t)) 1-L. 

Since limt--.oo F(t)  = 0 and L < 1, (2.3) follows. [] 

A condition that implies the hypothesis limt-_,ooesssup{s'(x) : x > t} < 1 of 
Theorem 3 and is typically even easier to verify is limsupt__,ooS'(t) < 1. Thus, 
Theorems 2 and 3 can be readily applied to a wide variety of situations in which the 
long term behaviour of the rate of change of the reciprocal of the failure rate is known. 
A very simple yet illustrative example is provided by the distribution with fractional 
linear failure rate r(t) = 1/(c + dr). Here s' has constant value d, and thus if d < 1, 
then Theorems 2 and 3 imply that  limt--.oo r(t)m(t) -- 1/(1 - d). Of course, in this 
case it is easy to verify this fact directly, as the mean residual life function is linear: 
re(t) = (c + dt)/(1 - d). However, Theorems 2 and 3 are equally applicable to cases 
in which it may be difficult or impossible to determine the long term behaviour of the 
mean residual life directly. 

The issue of practical usefulness apart, there are compelling theoretical reasons 
which point up the significance of Theorem 2 as well. Recall the observation that (2.2) 
may be interpreted as an approximation or asymptotic formula m ~-, s. Viewing the 
conclusion of Theorem 2 in the same light yields 

s = s(1 + s' ~ 1 - + ( s ' ) 2  + +...), Is'l  < 1,  

which agrees with the first three terms of the asymptotic expansion (3.6). Thus, in 
some sense, Theorem 2 represents a strengthening of Calabria and Pulcini's first order 
result (2.2)--subject to the appropriate conditions--to third order. 

We next address the problem of what happens when s' exists but  limt--,oo Y(t) 
does not. As might be expected, in general some information about  the limiting be- 
haviour of the product r(t)m(t) is lost. Nevertheless, in many cases one can at least 
bound rm in terms of the essential supremum of Y. We'll see as a result that even if 
limsuPt_~oo Is'(t)t > 0, as long as Is'(t)l is not ultimately "too big too often" then (2.2) 
holds. 
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THEOREM 4. Let r denote the failure rate, and let m denote the corresponding 
mean residual life. Let s -- 1/r, and put ;~(t) := esssup{Is'(x)l : x > t}. Suppose that 
r(t) is positive and continuously differentiable for all sufficiently large values of t, and 
that limt--,oo A(t) < 1. Then for all sufficiently large values oft ,  1/ ( l+A(t ) )  _< r( t )m( t ) <_ 
1/(1 - ) ~ ( t ) ) .  

PROOF. By Theorem 3, condition (2.3) holds. Thus, the hypotheses permit us 
to integrate by parts and discard the limit at the upper range of integration in the 
integrated term. We have for all sufficiently large values of t, 

r(t)m(t) = r(t)e R(t) r(x)e-R(~)s(x)dx = 1 + r(t)e n(t) e-n(X)s'(x)dx. 

But 

e-R(x)s'(x)dx <_ esssup Is'(z)l e-R(~)dx. 
x > t  

Thus, for all sufficiently large values of t, 

1 - A(t)r(t)m(t) <_ r(t)m(t) < 1 + )~(t)r(t)m(t). [] 

It follows that the reciprocal relationship (2.2) may hold even if lim suPt__,oo Is'(t)l > 
0, as long as l imn-,~ s'(tn) = 0 for "most" sequences tl < t2 < --- ---* co. Here, "most" 
is in the sense of Lebesgue measure. The following result makes this observation more 
precise. 

COROLLARY 2. Let s denote the reciprocal of the failure rate. Suppose that s(t) 
is finite and continuously differentiable for all sufficiently large values of t. Suppose 
further that there exists a subset E of the interval [0, co) whose complement in [0, co) /s 
of Lebesgue measure zero, and such that for every sequence t l , t 2 , . . ,  of elements of E 
with limn--,~ tn = co we have limn--,oo s'(tn) = O. Then (2.2) holds. 

PROOF. As customary, denote the indicator function of a set A by XA. Suppose 
that E C_ [0, co) satisfies the hypotheses of the corollary. Then the complement of E in 
[0, co) has Lebesgue measure zero, and limz-.or s ' (x)xE(x)  = 0. Therefore, if r > 0 is 
given, there exists a suitably large value of t such that ]J(x)x[t,oo)(x)] < r for all x E E. 
By definition of the essential supremum, this implies (in the notation of Theorem 4) 
that A(t) -- esssup{]s'(x)l : x > t} < e. As A is a nonincreasing function and e > 0 is 
arbitrary, it follows that limt-.oo A(t) = 0. [] 

We conclude this section with an example of a distribution in which limt-.oo r(t) = 
co, but limt-.oo r(t)m(t) # 1. Let a, b, c, d be positive constants satisfying a > b, d > 2b, 
and c 2 > (a + b)d. Consider the mean residual life defined by 

We have 

re(t) - a + bsin(t2), t >_ 0. 
c+  dt 

m'(t) -- 2btc~ (a + bsin(t2))d 
c + dt (c + dt) 2 
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T hus, 

and hence 

whereas 

Since 

lim inf m '  (t) = - 2 b /  d, 
t---*oo 

lira sup m' (t) = 2b/d,  
t----*~:) 

l i m i n f r ( t ) m ( t )  = 1 + l i m i n f  m ' ( t )  = 1 - 2b/d < 1, 
t "'~ O0 t -'--* O0 

l i m s u p r ( t ) m ( t )  = 1 + l i m s u p m ' C t  ) = 1 + 2b/d > 1. 
t---* O0 t " ' *  O0 

(c + dt)2(1 + m ' ( t ) )  = (c + dt)  2 + ( c + dt)2bt  cos(t2) - ( a + bsinCt2))d 

>_ c 2 + 2cdt + d2t 2 - 2bct - 2bdt 2 - ( a + b)d 

= ( d - 2 b ) d t  2 + ( d - b ) 2 c t + c  2 - ( a + b ) d  

is clearly positive for t > 0, it follows that r ( t )  = (1 + m ' C t ) ) / m ( t  ) > 0 for t > 0. 
Furthermore, 

c + (d + 2b cos(t2))t d 
r(t)  = 

a + b sin(t 2) c + dt 

implies limt-,or rCt ) = co. 

3. Asymptotic expansion 

Under certain conditions, the mean residual life has an asymptotic expansion in 
terms of the failure rate and its derivatives. An initial at tempt in this direction was made 
by Chaubey and Sen (1999) for the class of distributions having nondecreasing failure 
rate. However, it is easy to envision situations where, say with regular maintenance, even 
an ultimately nondecreasing failure rate may be an inappropriate model. Therefore, we 
provide an alternative approach that  requires no monotonicity assumptions on the failure 
rate. 

We take Chaubey and Sen's asymptotic formula 

1 ( T"(0 
ra(t)  -- r ( t )  (r(t)) 3 + O \ , t ---* oo, 

(with error term corrected), as a point of departure. Unfortunately, their derivation 
is not rigorous, and as a result, certain growth conditions on r and its derivatives axe 
omitted. Nevertheless, their approach can, in principle, be made to work, and thus one 
can show that  under suitable conditions on the failure rate there is an asymptotic series 
development to arbitrary order that  begins 

m ~ r - l - - r ' r - 3 - - r " r - 4 - t - ( 3 ( r ' ) 2 - - r m ) r - 5  + C l O r ' r " - - r ' " ' ) r - 6 - t - . . .  , t - * c o .  

Here, we have made the abbreviations m = re( t ) ,  r -1 -- 1/r(t), etc. More explicitly, for 
each positive integer n, we have 

n - 1  

(3.1) m ~ E c k r - k - 1  + (additional terms), 
k = O  
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where as t ~ co, the additional terms tend to zero more rapidly than ckr -k -x  for 
1 < k_< n - 1 .  Here, c0 - -  1, Cl = 0, c2 = - r ' ,  c3 = - r " ,  c4 = 3(r') 2 - r ' ' ,  and in 

r It, � 9  general, ck is a polynomial in r', , r (k-l) for k _> 2, the explicit form of which is 
given by 

ik/2J 
(3.2) ck = ck(t) = k! E (-1)P E H _ 1  ( r ( J ) ( t )  ~ 3  

p=0 j>_z aj!  \ ( j  + 1)!]  ' 

where the inner sum is over all nonnegative integers a l ,  a 2 , . . ,  such that ~-~j>z a j  = p 
and ~ j > l ( J  + 1 ) a j  : k.  

Rat-her than at tempt a rigorous proof of (3.1) and (3.2) along these lines, we instead 
develop an alternative, operator-theoretic approach that appears to be simpler, yet more 
powerful. By way of motivation, observe that  since we are interested in the situation 
when (2.2) holds, it makes sense to let s = 1/r and rewrite the differential equation (1.4) 
in the form (1 - sD)m = s, where D denotes the derivative operator. Abbreviating sD 
by O, we might hope to find a meaningful way to define the inverse operator (1 - O) -z 
in such a way that given suitable growth conditions on s and its derivatives, we have a 
legitimate asymptotic expansion 

m : (1 - e ) - l s . - ,  s +  O(s) + O2(s) +O3(s )  + - . - .  

That  this is indeed the case is the main content of Theorem 5, in which an explicit 
formula is also given for Ok(s), the k-th term of the expansion. A significant step in this 
direction is provided by the following result. 

LEMMA 1. Let s denote the reciprocal of the failure rate, and suppose that for some 
nonnegative integer n, s is n+ 1 times continuously differentiable on the positive real line. 
As usual, let R denote the integrated failure rate (1.3), and let D denote the derivative 
operator. For positive integers k, let 0 k := (sD) k and for convenience, let O ~ := s. I f  
in addition, we have lim~--.cr e x p ( - R ( x )  )Ok(s(x) ) = 0 for each k = O, 1 , . . . ,  n, then the 
mean residual life can be expressed in the form 

~ 

(3.3) re(t) = s(t) + E Ok(s(t)) + en(t) r(x)e-n(x)On+Z(s(x))dx, t >_ O. 
k = l  

PROOF. The conditions on s permit us to integrate by parts n +  1 times and discard 
the limits at the upper range of integration. Thus, integrating by parts once, we have 

m(t) = e R(O r(x)e-R(x)s(x)dx = s(t) + e R(t) r(x)e-n(~)O(s(x))dx. 

It is now evident that the claimed formula (3.3) can be proved using mathematical 
induction and repeatedly integrating by parts. 

Alternatively, note that  (1 - s(t)D) exp(R(t)) ft ~ r(x) exp ( -R(x ) )h (x )dx  -- h(t) for 
all locally integrable functions h for which the integral converges, and so we may define 

(1  - o ) - i h ( t )  = e n(t) r ( z ) e -n (~ )h (x )dx  

for all such functions h. If we now take h = s and then h = O"+ls ,  then in light of the 
identity 

(1 --  0 )  - 1  = 1 + O + 0 2 + . . .  + O n + (1 - O ) - 1 0  n + l ,  
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we have 

as claimed. [] 

re(t) = e R(t) r(x)e-R(X)s(x)dx 

= (1 - e ) - l s ( t )  
n 

= s(t) + ~_,  ek(s(t)) + (1 - e)-le"+'(s(t)) 
k=l  

= s(t) + ~ ek(s(t)) + e R(t)  r(x)e-R(x)en+l(s(x))dx, 
k=l  

THEOREM 5. Let s denote the reciprocal of the failure rate. Suppose that for some 
nonnegative integer n, s is n+ 1 times continuously differentiable on the positive real line, 
and that l im t - .~  s(t) e x p ( - R ( t ) )  = 0, where as usual R denotes the integrated failure rate 
(1.3). Let D and 0 be as in Lemma 1. Suppose that for  each k = 0, 1 , . . . , n  we have 
s(t)s(k+l)(t) = o(s(k)(t)) as t ~ oc. T h e n  O k + l ( 8 )  = o ( O k ( s ) )  for  all 0 < k ~ n, and 
we have the asymptotic expansion 

n 

re(t) = s(t) + ~ ek(s(t))  + o(e"(s(t))) ,  t -~ 
k=l  

for the mean residual life. The terms Ok(s) may be expressed in terms of s and its 
derivatives by means of 

k 

(3.4) Ok(s) = S E d ( j l , . . .  , jk)  H s(jp)' 
j l  ,...,jk >0 p--1 

where the sum extends over all nonnegative integers jp (1 ~ p ~ k) and the coe~icients 
d ( j l , . . .  , jk ) are generated by the polynomial equation 

k 

(3.5) E d ( j l , - . . , j k )  H XJP p 
j l  ,. ..,j~ >_O p=l  

m the indeterminates x l , . . . ,  xk. 

k p 

p= l  j = l  

PROOF. The s ta ted formula for Ok(s) is a special case of a more general result. 
See Snyder (1982). We next  show that ,  under  the hypotheses on s, Ok+l(s) = o(Ok(s)) 
for 0 < k < n. Since Ok+l(s)  = sDOk(s) ,  we have 

k 

Ok+l(s) = sDs  E d(jl,...,Jk) H(D~ps) 
j l  , . . . , j k  ~ 0  p =  l 

k 

---- s ' O k ( s ) + s  E d ( J l ' " " j k ) s D H ( D J ' s )  
j l  ,.--,jk >0 p=l  

k k 

= S'ek(S) + S E d ( j l , . . . , j k )  E ( s D J q + l s )  H (DiPs)" 
Jl ,...,J~ >_0 q=l p=l  

P~q 
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Note tha t  the generating function (3.5) implies tha t  j l  + ' " + j k  = k above. In particular,  
since 0 < k < n, each jq < n, and so each sDJq+ls = o(DJqs). Also, s' = o(1 / because 
ss' = sDs = o(s). Therefore, we have 

e k + l ( s ) = o ( e k ( s ) ) + o  s E d ( j l " " ' Jk )  I-I Dips 
q= l  jl,...,jk~O p=l 

= o(ek(s)) + o(kek(s)) 
= o ( e k ( ~ ) ) .  

Next, observe tha t  since limt-~oo sit ) e x p i - R ( t ) )  = 0 and O k+' is) = o(ek(s)) for all k = 
0, 1 , . . . ,  n, we have limt--,oo exp(--Rit))Okis(t)) = 0 for all k = 0, 1 , . . . ,  n. Therefore, in 
light of Lemma 1, it remains only to show tha t  

f oo m(t) - ~ e k ( s ( t ) )  = e n(*) 
k=0 

r(x)e-R(~)en+' (s(x))dx = o ( e n ( s ( t ) ) ) ,  t ---* oo. 

Since e n + l ( s )  = o(en(s)), Lemma 1 gives 

n jto~ re(t) - ~ Ok(s(t)) = e R( t )  r (x)e-R( ' )e  "+' (s(x))dx 
k=0 

= o  m i t ) -  e k ( ~ ( t  . 
k=0 

Therefore, 

(1-~ ( m ( t ) -  ~=oOk(s(t))) 

from which it follows tha t  

= en(s(t)), 

n--1 
re ( t ) -  ~ Ok(s(t)) 

k=0 

=On(s(t))(l+o(1)),  

or equivalently, 

as claimed. [] 

m(t) - ~ Ok(s(t)) 
k=0 

= o ( e n ( ~ ( t ) ) ) ,  

We have O~ = s, O(s) = ss', O2(s) = s(s') 2 + s2s ", O3(s) = s(s ' )  3 + 4s2s's " + 
838 ttf, and O4(s) = s(s') 4 + l l s 2 ( s ' ) 2 s  '' + 483(8") 2 + 7 s 3 s ' s  ''' + s4s '''. Thus, under  the 
conditions of Theorem 5, our asymptot ic  expansion begins 

(3.6) m ~ ~ + ~ '  + ~(~,)2 + ~2~,, + ~(~,)3 + 4~2~,~,, + ~3s"' + . . . ,  t --, oo.  



226 DAVID M. BRADLEY AND RAMESH C. GUPTA 

Acknowledgements 

T h e  a u t h o r s  a r e  g r a t e f u l  to  t h e  a n o n y m o u s  re fe rees  for  a ca re fu l  r e a d i n g  o f  t h e  

o r i g i n a l  m a n u s c r i p t .  T h e i r  s u g g e s t i o n s  c o n t r i b u t e d  to  i m p r o v e m e n t s  in  t h e  e x p o s i t i o n .  

REFERENCES 

Bryson, C. and Siddiqui, M. M. (1969). Some criteria for aging, J. Amer. Statist. Assoc., 64, 1472-1483. 
Calabria, R. and Pulcini, G. (1987). On the asymptotic behaviour of the mean residual life function, 

Reliability Engineering, 19, 165-170. 
Chaubey~ Y. P. and Sen, P. K. (1999). On smooth estimation of mean residual life, J. Statist. Plann. 

Inference, 75, 223-236. 
Hall, W. J. and Wellner, J. A. (1981). Mean residual life, Proceedings of the International Symposium on 

Statistics and Related Topics (eds. M. Cs6rg6, D. A. Dawson, J. N. K. Rao and A. K. M. E. Saleh), 
169-184, North Holland, Amsterdam. 

Hollander, W. and Proschan, F. (1975). Tests for mean residual life, Biometrika, 62, 585-593. 
Meilijson, I. (1972). Limiting properties of the mean residual lifetime function, Ann. Math. Statist., 43 

(1), 354-357. 
Muth, E. J. (1977). Reliability models with positive memory derived from the mean residual life function, 

Theory and Applications of Reliability, (eds. C. P. Tsokos and I. N. Shimi), 401-434, Academic 
Press, San Diego, California. 

Oakes, D. and Dasu, T. (1990). A note on residual life, Biometrika, 77, 409-410. 
Rojo, J. (1996). Relationships between pure tail orderings of lifetime distributions and some concepts 

of residual life, Ann. [nstit. Statist. Math., 48 (2), 247-255. 
Snyder, C. (1982). Kummer congruences for the coefficients of Hurwitz series, Acta Arith., XL, 175-191. 


