
Ann. Inst. Statist. Math. 
Vol. 55, No. 1, 197-216 (2003) 
Q2003 The Institute of Statistical Mathematics 

L1 LINEAR INTERPOLATOR FOR MISSING VALUES IN TIME SERIES* 

ZUDI Lu I AND Y. V. Hul 2 

1 Institute of Systems Science, Academy of Mathematics and System Sciences, 
Chinese Academy of Sciences, Beijing 100080, China 

2Department of Management Sciences, City University of Hong Kong, Academic Building, 
83 Tat Chee Avenue, Kowloon, Hong Kong, China, e-mail: msyervan@cityu.edu.hk 

(Received January 17, 2001; revised January 18, 2002) 

Abstract .  We propose a minimum mean absolute error linear interpolator 
(MMAELI), based on the L1 approach. A linear functional of the observed time 
series due to non-normal innovations is derived. The solution equation for the coef- 
ficients of this linear functional is established in terms of the innovation series. It is 
found that information implied in the innovation series is useful for the interpolation 
of missing values. The MMAELIs of the AR(1) model with innovations following 
mixed normal and t distributions are studied in detail. The MMAELI also approxi- 
mates the minimum mean squared error linear interpolator (MMSELI) well in mean 
squared error but outperforms the MMSELI in mean absolute error. An application 
to a real series is presented. Extensions to the general ARMA model and other time 
series models are discussed. 

Key words and phrases: Autoregressive process, innovation departure, linear inter- 
polation, minimum mean absolute error, missing values. 

l. Introduction 

Numerous efforts have contributed to the interpolation of missing values as well 
as the estimation of model parameters based on maximum likelihood (ML) methods 
and least squares (LS) procedures in time series analysis. Parzen (1984) gives a com- 
prehensive review of the earlier developments. Other research includes Dunsmuir and 
Robinson (1981), G6mez and Maravall (1994), Harvey and Pierce (1984), Jones (1980), 
Kohn and Ansley (1986), Ljung (1982), Pefia and Tiao (1991), Penzer and Shea (1997) 
and Wincek and Reinsel (1986), for the ML methods, and Abraham (1981), Beveridge 
(1992), Damsleth (1980), Ferreiro (1987), Ljung (1989), and Lucefio (1997), for the LS 
procedures. A recent review can be found in Dagum et al. (1998). 

Besides missing observations, the time series data are possibly contaminated by out- 
liers or are heterogenous. In addition, a heavy-tailed phenomenon relative to normality 
often emerges in the observed data set. If the interpolation of missing values and the 
estimation of model parameters are heavily dependent on some atypical observations, 
then the forecasts based on extrapolation from the observed samples would be poor. It 
could be expected that  for incomplete time series observations with non-normal distri- 
bution, the normality-based ML and the LS procedures would retain poor performance 
when atypical points exist. They would induce an inaccurate interpolation of missing 
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values, leading to poor parameter estimates and bad forecasts. In this paper, we restrict 
ourselves to the interpolation of missing values. 

Assume that we observe a discrete-time series {Yt} at times 1 = tl < t2 < . .-  < 
t m =  n, where ti, i = 1 , . . . , m ( <  n) are positive integers. If m < n, then the series 
axe observed irregularly, with missing values, of sample size m. When the series {Yt} 
is stationary and only one missing observation y~ exists, then the optimal least squares 
linear estimate of Yr is given by (see Grenander and Rosenblatt ((1957), p. 83) and 
Whittle (1963)) 

oo 

(1.1) Yr = # -  ~-~Pj{(Y~- j  - # ) +  (Yr+j - # ) } ,  
j = l  

where # is the series mean and p's axe the inverse autocorrelations. When the series is 
Gaussian, (1.1) equals the minimum mean square error (MUSE) interpolator defined by 

(1.2) 9r - axgmin E[(yr - c) 2 l ys, s ~ T], 

where c takes values in the a-field generated by {Ys, s ~ T}. For the non-Gaussian 
case, (1.1) usually does not equal (1.2) and it is often difficult to calculate the MUSE 
interpolator. However, in any case, (1.1) is the minimum mean square error linear 
interpolator (MMSELI) which minimizes 

(1.3) U S E ( c )  = W[(yr - c) 2] = E{E[(y~ - c) 2 l Y~,S ~ T]} 

among the class of linear functions of the observed series, {Ys, s ~ 7}, where c takes 
the form of ~-~#r c~y~ with c~'s being real constants. The procedure is extended to a 
single gap with consecutive missing values by Brubacker and Wilson (1976), and to more 
general irregular spaces by Beveridge (1992). 

Our aim is to explore the (robust) interpolation of missing values in time series when 
the innovations are non-normally distributed. It is well accepted that the L1 rule is a 
good alternative to, and more robust than, the ML and LS rules. In Section 2, we will 
propose a minimum mean absolute error linear interpolator (MMAELI), minimizing the 
mean absolute error (MAE). Section 3 focuses on the AR(1) models with one missing 
observation. Section 4 gives the specific solution equations for the coefficients of the linear 
functional when the innovations follow mixed normals and t distributions respectively. 
An illustrative example is considered in Section 5, where the L2 approach  is shown to 
lead to a 'bad' interpolated value in comparison with the L1 approach. The extension 
to the general AR(p) models is presented in Section 6. Section 7 discusses some further 
problems on multiple missing values and general ARMA model case. Complex proofs 
are relegated to the Appendix. 

2. Mean absolute error and L1 linear interpolator 

Let {Yt} be a stationary discrete-time series, and denote by T the time period at 
which the series is not observed. That  is, the observed series is Yl , . . . ,  yr-1,  Yr+l , - . - ,  Yn 
and is denoted by {Y~+s, s ~ 0}. Assume that 1 < T < n and the series mean # -- 0. 

We interpolate y~ by a functional of the observed series and denote by ~r the 
interpolator of Yr- Although the U S E  rule has been widely used to measure the closeness 
of the interpolation, it is less robust. We suggest using the MAE to measure the closeness 
of the interpolation. 
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If we can find a functional of the observed series, !)r = c(yr s # 0), at which the 
mean absolute error conditional on {Yr s # 0} 

(2.1) MAE (c) = E[ly  - cll  y § s # 0] 

is minimized almost surely (a.s. P)  among all the measurable functions of {y~+~, s # 0}, 
then Yr = c(yr s ~ 0) will be called the minimum mean absolute error (MMAE) 
interpolator or the least absolute deviation interpolator. This interpolator is the condi- 
tional median of y~ given {Y~+8, s # 0}. The calculation of conditional median is usually 
very difficult for series with a general distribution. Here we propose a linear interpolator 
based on the MMAE rule. 

DEFINITION 1. Let {Yt} be a time series with a finite first absolute moment. If 
there is a linear functional of the form 

(2.2) ~)L1 = ~ c~y~-+8 
s#O 

where cs's are real constants such that ~)il minimizes the conditional mean absolute error 
MAEc(c) almost surely among all the linear functionals in (2.2), we call ~)~1 the minimum 
mean absolute error linear interpolator ( MMAELI) or the L1 linear interpolator of Yr. 

Let s = {~-~s#0 Csy~+s : Cs �9 R for s ~ 0} be the linear space of {yr+s, s r 0} 
and a_~- -- a(y~+~, s ~ 0) be the a-field generated by {Y~+s, s # 0}. The MMAELI of 
y~ can be redefined mathematically as the ~)L1 �9 / : - r  such that 

(2.3) MAEc(~ L1) ~_ MAEc(c) a.s. P for any c �9 

Remark 1. Given that the unconditional mean absolute error MAE(c) = E[lyr - 
c[] = E[MAEc(c)] for any c �9 s (2.3) can be rewritten as 

(2.3') MAE(~ i l )  ~_ MAE(c) for any c E s 

This shows that ^L1 y~ is the optimal linear interpolator with respect to the unconditional 
MAE. 

Similar to the properties of L1 estimators vs. L2 estimators in the literature, the 
MMAELI has certain advantages compared with the MMSELI. 

PROPOSITION 2.1. Denote by ~L2 the MMSELI of y~ in (1.3). Then 

(2.4) MAE(~ L1) ~_ MAE(~ L2) ~_ MSE1/2(~ L2) ~_ MSE1/2(~)L1). 

PROOF. It follows from the definitions of 951 and ~L2 and the Schwarz's inequality. 

Remark 2. (2.4) shows that the MAE of the MMAELI is the smallest among the 
MAE's and the SMSE's of both MMAELI and MMSELI where SMSE is the square root 
of the MSE. 



200 

3. 

ZUDI LU AND Y. V. HUI 

Characterization of MMAELI in AR(1) model 

For simplicity, we first consider the AR(1) model 

(3.1) Yt = C Y t - i  + ~t 

with Ir < 1, {e t}  being an i.i.d, innovation process with a finite first absolute moment 
and et is independent of {Ys, s < t}. Assume that there is only one missing value at time 
t = T .  

If E~t  -~ 0 and Ee2t = a 2 < oc, then it is well known that the MMSELI of y~ is 

(3.2) = 1 : r  [y +l + 

The MMSELI and the MMAELI are the same when the series is normally distributed. 
We investigate the computation and properties of the MMAELI under non-normal in- 
novations. 

Let Yob = ( Y l , . . . , Y ~ - I , Y r + I , . . . , Y n )  be the observed sample. The conditional 
density function of y~ (T > 1) given Yob is 

(3.3) P(Yr l Yob) -- P(Yr,  Yob) _ Pe(Yr -- CYT-1)Pe(Yr+I -- CYr) 
p(yob) f pe (u - r 1 )Pe (Yr+ 1 -- CU) d~ 

where p~(.) is the density functions of et- Hence, Yr I Yob depends only on (Y~+I,Yr-1) 
in the observed series. Thus, p(yr  I Yob) = P(Y~ ] Yr+l, Yr-1), and the linear interpolator 
of y~ defined in (2.2) is reduced to the form 

(3.4) ~L1 ---- Cly~+l -{- c2Y~r--1 

with cl and c2 being two real constants. 
Now our task is to determine Cl and c2 in (3.4) according to the MMAE rule of 

(2.3). Let 

(~ [Yr+i ~- Yr--i]- vr = y~ 1 + r (3.5) Ur = Yr+l -- r  

Together with (3.1) and (3.5), it gives 

(3.6) Ur = Cer + er+l ,  

Hence (3.3) can be expressed as 

(3.7) 

1 r 
Vr -- 1 + r 2 er - 1 + r 2~r+l" 

p(V.r I YTTI,YT--1) ~-~ p(V.r I ?~-,y~---1) : p(V.r l Ur)  

1 u 

If the MMAELI, v r^L1, of vr based on (YT+I, Y~--1) is derived, then (3.4) can be 
^L1 That  is, obtained from (3.5) and v~ . 

^L1 r (3.8) ~Li ----_ UT + ~ [Y~--t-1 -~- Y~--I]. 
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ALl From (3.7), v~^m equals the M M A E L I  of vT based on ur .  Hence, v r = Co + dour,  where 
Co and do are real constants  which minimize MAE~(c,d)  = E[Ivr - c -  du.~ll ur]. It 
is clear tha t  co -- 0 since Evr  = Eur  = O. Our next  s tep is to determine do which 
minimizes 

(3.9) M A E ( d )  = E[MAEc(O, d)] = E[lv~ -dur l ] .  

Applying Theorem 2.1 in Pinkus ((1989), p. 14), we deduce tha t  do minimizes (3.9) 
if and only if it satisfies 

(3.10) 

From (3.6), 

[E[sgn(v~- - dow,-)u~-]l <~ E [I{~_do=~=O} lug-I]. 

(3.11) vr - dur - 
a6~- - -  b~'.-r+l 

1 + r  ' 

where a = a(d) = 1 - r + r  and b = b(d) = r + (1 + r 
If r = 0, then a = 1 and b -- d. Hence the independence be tween er and er+l  

together  with (3.9) and (3.11) gives do = 0. Assume that  r # 0. If the dis tr ibut ion of 
r is non-degenerate,  then P(vr - dour = 0) = 0, from (3.11). From (3.10), 

(3.12) E[sgn(vr - dou~)ur] = O. 

Set ao -- a(do) and bo = b(do). (3.6) and (3.11) deduce tha t  the LHS of (3.12) equals 

(3.13) CEeTI{aoe~>boET+l} + Ee~+lI{aoe~>bo~+~} -- CEerI{aoe,<bo~+a} 

-- Eer+lI{ao~<boe~+l }- 

Now if bo = 0, then CEer  s g n ( a o ~ )  = 0 from (3.12) and (3.13). Hence ao -- 0 for r r 0. 
It is impossible tha t  ao = bo -- 0, for 1 + r would be 0 otherwise. Hence bo ~ 0. 
Similarly, ao r 0. Using the i.i.d, proper ty  of ~t with mean 0, it follows from (3.12) and 
(3.13) tha t  

(3.14) CE [etFe (~o~ s g n ( b o ) - E  [etFe \ao(b~ s g n ( a o ) = 0 ,  

where F~(.) is the cumulat ive dis t r ibut ion function of et. 
We have the following result on the MMAELI,  ^L1 y~ , of Yr for the AR(1)  model. 

PROPOSITION 3.1. I f  the i.i.d, innovation process et has a non-degenerate distri- 
bution, F~(.), whose density function, p~(.), exists and has a first absolute moment  with 
mean O, then 

(3.15) 9~ 1 = do[yT+x - r + T ~ r  [y~+l + y~-~] = CaoYr-a + boyr+~ 
1 + r  

Here do = 0 i f  r = O, and do is the solution to (3.14) with ao -= a(do) and bo = b(do) i f  
r162  
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Remark 3. (a) We conjecture that  do is unique under mild conditions. Firstly, 
the minimizer of MSE(d )  = E I v  r - dur[ 2 is unique and equals 0. This suggests that  
the minimizer do of (3.9) might be unique similarly. Secondly, do is unique under mild 
conditions when r = 0. In fact, when r = 0, from (3.12) and (3.13) together with 
ao = 1 and bo = do, (3.12) reduces to A(do) = 0, where A(do) = E[~tF~(do~t)]. If 
the derivative with respect to do and the expectation in A(do) are exchangeable, then 
A'(do) = E[r > 0. Hence do = 0 is the unique solution to A(do) = 0. Thirdly, 
our computational experience in Sections 4 and 5 for non-zero r also indicates that  our 
conjecture might be true. Since the general case r # 0 leads to a complex equation 
(3.14), this conjecture remains open. 

(b) Note that [r < 1 is not required in the derivation. The assumption is that the 
density Po(Y) of Yo exists. Proposition 3.1 applies to the non-stationary (r = +1) series. 
Furthermore, p(vr [ ur) = p~(ur/2 - vr)p~(ur/2 + v~) is a symmetric function of vr 
when r = 1. Hence do = 0 correspondingly. Also ao = 1 + 2do and bo = - 1  + 2d0 when 
r = -1 .  It follows from (3.14) that 

- E  [~tF~ / ' 1 +  2do "~ [~tF~ ~-_1__+_2do 

and do = 0 is the solution. This is the reason why we get back to MMSELI when r = +1. 
Note that Pc(') is not assumed to be symmetric in this remark and Proposition 3.1. 

COROLLARY 3.1. Under the condition of Proposition 3.1, 

(3.16) MAE(~lL1) = 2h (a~oo ) Sgn(bo ) and 

MAE(yL2)  - 1 + r 

where h(a) = E[r I f  et has a finite second order moment, then 

+ r  ) do_2 MSE(~IL2 ) --_ a~ (3.17) MSE(~)L1 ) _- 1 -t- (1 2 2 2 
1 -+ ~5 oe and 1 + r 

PROOF. The result follows from 

a 0 ~ r  --  b o ~ r + l  Yr - ?)L1 = Vr -- dour = 1 + r and Yr - ~)L2 = Vr -- 1 + r 

COROLLARY 3.2. In Proposition 3.1, i f  p~(.) is further assumed to be symmetric 
and do is a real solution of (3.14) for r then -do is the real solution of (3.14) with - r  
replaced by r 

PROOF. This is clear by noting that 

ao -- 1 - r + r -- 1 - ( - r  + r  , -bo  = ( - r  + (1 + r  

and Csgn(bo) = ( - r  as well as Fe( -x )  = 1 - F~(x). 

Therefore, only the calculation of do for r > 0 is required when the innovation 
variable ~, is symmetric. 



L1 L INE AR I N T E R P O L A T O R  IN TIME SERIES 203 

4. Some typical non-normality innovations 

In the case of non-normality, the calculation of the MMAELI depends on the deter- 
mination of do in Proposition 3.1. If do ~ 0, the MMAELI differs from the MMSELI. 
Once the innovation distribution is assumed, do can be determined from (3.14). In this 
section, we derive specific solution equations of do for some non-normal distributions. 

4.1 Mixed normal innovations 
We first consider the AR(1) model with innovations that have a mixed normal 

distribution 

(4.1)  Fe(x):(1-5)d2(X--#l)-l-5o(x--#2) 0"2 

where (1 - 6),1 + 6,2 = 0. If "1  = . 2  ---- 0, then (4.1) is the contaminated normal 
distribution. 

From (3.14), the first step in determining do is to calculate the expectation 

(4.2a) h(c~) = E[~tFe(aet)]. 

For the mixed normal in (4.1), et has second order moment. Then (4.2a) can be calculated 
in the following way with h(0) = S[etFe(0)] -- 0. 

L ~ (4.2b) h(c~) = h'(u)du, and h ' ( u )  = E[e~p~(uet)]. 

_ 1 - 5  ~ _ 5  ~ From (4.1), p~ (x) -- ~ ~( ~ ) + ~,2 cp( ~,2 )' where ~o(x) is the standard normal density 
function. (4.2a) and (4.2b) give 

(4.3a) h'(u) = (1-5~2g(u;pl,al, ,1,0.1) 
\ 0 . 1  ] 

-~ (1 -- ~)~ [g(~t; "1,0.1, "2, 0.2) + g(U; "2, 0"2, "1,0"1)] 
0" 1 0" 2 

+ ~ g(u;.2,  0.2, .2,  0"2), 

where 

(4.3b) g(U; " 1 ,  0"1, " 2 ,  O"2) 

---- (0.12 + .12)0.24U 2 + 20.120.2.1.2U -t- (0"2 -t- .22)0"14 e_(m_~2u)2/2(q12_l_o.2u2) 

Thus it follows from (4.2) that  

(4.4a) h(a)---- ( 1  -- (~2G(OL;.1,0.1,.1,0.1) 
\ 0 . 1 ]  

+ (1 - 5)5 [a(a;  .1,0.1, . 2 ,  0.2) + G(a; .2 ,  0.2,.1,0"1)] 
0" 10"2 
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(~)~ + G(a; #2, a2, #2, a2), 

where 

/o ~ (4.4b) G(a;/tl, al ,  #2, a2) = g(u; ~1, al ,  #2, a2)du. 

Now combining Proposition 3.1 with (3.14) and (4.4), we have the following result. 

THEOREM 4.1. For the AR(1) model with innovations having a mixed normal dis- 
tribution (4.1), the MMAELIo f  yr is given in (3.16) with do satisfying the equation 

(oo) (~o) 
Ch ~o s g n ( b o ) - h  ~oo sgn(ao)=0 ,  

where h(.) is defined m (4.4) and ao and bo are given in Proposition 3.1. 

Note that #1 = #2 = 0 gives 

- ~ - ~  [ ~ ( ~ 1 , ~ ) ~  (4.53.) h ' (u ) : (1 -5"~2g( - f f -~ l , -~ l ) - t  - \  or1 } -----0.1a2 ( a ~ 2 , 1 ) ]  

where u 1 1 t" u2 g(~,  ~) = , m ~  + ~) -~ /~-  We have 

(4.5b) u,  d u -  

It follows from (4.2b) and (4.5) that  

f 
V ~  \ ~ ,1 / a  2 1 [ V + ~-~ 

Hence 

(4.6a) h(a~o ) =aosgn(bo)H(ao, bo) 

1 b2o~ 

v ~  ~f~ 1 
+ b-~ 

(1-~)~ 
O" 10"2 

�9 ~ a 2 1 

�9 (~)~ o~ l 

and (bo) 
h ~o = bo sgn(ao)H(bo, ao), 
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where 

(4.6b) 
1 ~ (1 - 6)20"1 

H(a, b) V/~ / ~ - ~ 7 ~  + (1 - 6)6 
0.~ 0.1 ~ ] 

4a20.~ + b20.~ + 4a20.1 ~ + b20.~ 

620"2 } 
-F a 2 x / - a T - 4 - ~  �9 

Combining Proposition 3.1 with (3.14) and (4.6b) gives the following result. 

THEOREM 4.2. For the AR(1) model with contaminated normal innovations (1.1), 
the MMAELI of yT is given in (3.16) with do satisfying the equation 

CaoH(ao,bo)-boH(bo,ao)=O, 

where ao and bo are specified in Proposition 3.1. 

and 

It follows from Corollary 3.1 that 

MAE(~  L1) = 2aoH (ao, bo), 
2 MAE(~ L2) - [H(1, r + r162 1)], 

1 r + 

MSE(~)L1 ) = 1 + (1 + r 2 
MSE(~22)  - 1 + r 

2 (1 ~)~1 ~+~o~. where 0.~ ---- - 

For contaminated normal innovations, numerical results for different r the ratio of 

0.2 to 0.1, and 6, are tabulated in Table I. Only do corresponding to r > 0 is calculated 
due to symmetry. It can be seen that the difference between MMAELI and MMSELI 

becomes more and more significant with the increase of the ratio of 0.2 to 0.1 and the 

contaminated portion of 6. This difference is larger for [r close to 0.5 than for [r away 
from 0.5. Table 1 also shows that the increase in MSE between L2 and L1 is small 
compared with the decrease in MAE. 

Table 1. Solutions of d for different r with contaminated normal distribution et. 

~ r do r do o" 1 
SMSE(~t ) -SMSE(~ 2) MAE(~2)-MAE(#~ 1 ) 

S M S E ( ~  2) M A E ( ~  1) 

0.1 0.1 --0.0104794 --0.1 0.0104794 0.005601101% 0.2414013% 

0.3 -0.0225983 --0.3 0.0225983 0.03033253% 1.57710% 

0.5 --0.0200576 --0.5 0.0200576 0.03142532% 2.497017% 

0.7 --0.0110414 --0.7 0.0110414 0.01353198% 2.184916% 

0.9 --0.00292215 --0.9 0.00292215 0.001398715% 0.8746421% 

10 0.1 0.1 --0.079585442 --0.1 0.079585442 0.3225375% 4.574259% 

0.5 --0.246506865 --0.5 0.246506865 4.639682% 21.66369% 

0.9 --0.037129038 --0.9 0.037129038 0.2255615% 5.714213% 

I0 0.3 0.I --0.082327435 -0.I 0.082327435 0.3451065% 5.325714% 

0.5 --0.283590239 -0.5 0.283590239 6.097201% 23.07139% 

0.9 --0.05514599 -0.9 0.05514599 0.4969095% 6.788403% 
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4.2 Student's t innovations 
Here we consider the innovation process having a t distribution with k degrees 

of freedom. Note that  neither MMAELI nor MMSELI applies for k = 1. However, 
MMAELI does apply while MMSELI does not for k = 2. 

For k = 2, the cumulative distribution of t2 is [;'2 (x) = fx_o o f2 (u)du = 5 ( 1 + ~ )  . 1  x 
O O  X 2 

We have h2(c~) = E[z~F2(c~et)] = a f o  ~ f 2 ( x ) d x .  

THEOREM 4.3. For the AR(1) model with t2 innovations, the M M A E L I  of y~ is 
given in (3.15) with do satisfying the equation 

(4.7) CaoH(ao, bo) - boH(bo, co) = O, 

where ao and bo are specified in Proposition 3.1, and 

~0 ~176 X 2 
(4.8) H(a, b) = v/2b 2 + a2x2 f2 (x)dx. 

The solution to (4.7) with (4.8) can be obtained numerically. Some results axe 
reported in Table 2, where Q(do) is the value of the LHS of (4.7). do against r is also 
plotted in Fig.  1. 

If k > 3, then ~t has second order moment. We calculate h(~) as in (4.2a,b). 

Table 2. Solutions of d for different r with et '~ t2. 

r do Q(do) r do 
0.1 --0.074725 --7.1252x10 -7  

0.3 --0.1639724 1.22232x 10 - 7  

0.4 --0.17487 3.8705 • -7  

0.5 --0.1645972 --6.48049x10 -7  

0.7 --0.1020768 --2.6553 • 10 - 7  

0.9 --0.0286801 1.00778x10 -7  

--0.I 0.074725 

--0.3 0.1639724 

--0.4 0.17487 

--0.5 0.1645972 

--0.7 0.1020768 

--0.9 0.0286801 

do ~ 

, m  I 
o 

~o .o-/" 
�9 , , ~  ~ 

o "o , o  

J i i i i 
-1.0 -0.5 0.0 0.$ t ~  

# 

Fig. 1. do against  r from Tables 2 and 3. 
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Table 3. Solutions of d for different r with et ~ t3. 

r do r do 
0.1 -0.0453601 
0.3 -0.0965324 
0.4 -0.0996965 
0.5 -0.0905989 
0.7 -0.052839 
0.9 -0.0143892 

-0.1 0.0453601 
-0.3 0.0965324 
-0.4 0.0996965 
-0.5 0.0905989 
-0.7 0.052839 
-0.9 0.0143892 
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THEOREM 4.4. For the AR(1) model with t3 innovations, the M M A E L I  of  y~ is 
given in (3.15) with do satisfying the equation 

(4.9) Cao(laol  + 21bol) - bo(Ibol -t- 21aol) = 0, 

where ao and bo are specified in Proposition 3.1. 

The proof of this theorem is presented in Appendix A. 
Numerical solutions of do axe given in Table 3 and are depicted in Fig. 1. It can be 

seen that  do against r looks like the shape of a sine function, d0's distinct from 0 emerges 
for r ~ 0, =El and are particularly marked especially for Ir near 0.5. This phenomenon 
is also observed in Table 1 for contaminated normal innovations. Intuitively, the AR,(1) 
process is mainly contributed to by the innovation for r ~ 0 and by the lag itself for 
r ~ +1. Therefore, the combined contribution of the innovation and the process lag is 
comparatively less for r ~ 0 and +1 while it is much stronger for r ~ +0.5. This is 
the intuitive reason why the difference between do and 0 is more marked for qt ,,~ 5=0.5. 
Also d0's that  are different from 0 are more marked for the t2 innovation than for the t3 
innovation. 

5. An illustrative example 

We consider the model presented in Wei ((1990), p. 107, Example 6.1) for the daily 
average number of defects per truck found in the final inspection at the end of the 
assembly line of a truck manufacturing plant. For the 45 daily observations, Wei (1990) 
fitted an AR(1) model 

(5.1) (1 - 0 .43B) (Z t  - 1.79) = at. 

Here we examine the L1 linear interpolation of the specified model. 
The residuals, wlres, of the fitted model are shown in Fig. 2. Figure 3 gives the 

q-q plot of the standardized residuals, which indicates that  the residual is not normally 
distributed. In Fig. 4, we depict the kernel densities of wlres using Scott and 1.2 times 
Scott bandwidths (c.f, Venables and Ripley (1994)). It shows that  wlres seems to be 
distributed approximately as a mixed normal. Since the bimodal distribution is con- 
venient for us considering the development in Section 4.1, the distribution of wlres is 
approximated by the mixed normal with 5 = 0.0638615, ~t 1 = -0.0860311, #2 = 1.26112, 
al  = .324218 and a2 -- .16677. The density is shown in Fig. 4. This mixed normal den- 
sity seems to fit the residuals, wlres, rather well. Figure 5 gives the q-q plot of wlres 
with respect to the samples of the fitted mixed normal density. 
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o 

i 
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Fig. 2. T ime  series plot of wlres.  
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Fig. 3. qqnorm of wlres.  

-1.0 ~ 0.0 0.5 1.0 1.$ 2.0 

w i r e s  

Fig. 4. Densities of wlres.  

Based on the formula specified in Theorem 4.1, we calculate the solution for do 
which equals -0.076745.  Set Yt = Zt - 1.79. The MMAELI of the model in (5.1) is 

0.43 [YT+I + y~-l]  (5.2) 2 L1 ~- 1.79 -- 0.076745[y~-+1 -- 0.432y~-_1] q- 1 q-- 0 .432 

= 1.79 + 0.3770892yr_1 + 0.2861549y~-+1, 
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o o ~ ~ 1 7 6 1 7 6 1 7 6  

o 
i 

-1.0 -0.5 

O 

O 

o o o 

f 

0.0 0.5 1.0 

sample.mixnorm 

Fig. 5. qqplot  of wl res  w.r.t ,  mixed normal .  
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Fig. 6. Differences of absolute  in terpola t ion errors  from (5.2) and  (5.3). 

Table 4. Compar i son  between MMSELI  and  M M A E L I  based on DAIE among  45 observat ions.  

M M A E L I  be t t e r  Number  of points  MMSELI  be t t e r  N u m b e r  of points  

D A I E  ~_ 0.03 8 

D A I E  > 0.04 6 

D A I E  ~ 0.05 2 

D A I E  > 0.06 2 

D A I E  > 0.07 2 

D A I E  > 0.072 2 

D A I E  < - 0 . 0 3  7 

D A I E  < - 0 . 0 4  4 

D A I E  < - 0 . 0 5  2 

D A I E  < - 0 . 0 6  1 

D A I E  <_ - 0 . 0 7  1 

D A I E  < - 0 . 0 7 2  0 

while the MMSELI  is 

(s.3) 2 L2 = 1.79 + 0.3628998y~_1 + 0.3628998y~+1. 

We next consider the MMAELI  and the MMSELI  for Z~'s, T = 1 , . . . , 4 5 ,  and  
compare their interpolation residuals. I t  is assumed tha t  Z0 = Z46 = 1.79. Let  DAIET -- 
IZT - zL2 t --IZT -- zL11. We plot the DAIET, T = 1 , . . .  ,45, in Fig. 6. Based on DAIE ,  
MMAELI  beats MMSELI if D A I E  > 0, and MMSELI  is preferred if D A I E  < 0. Table 4 
gives the comparison between MMSELI and MMAELI  for IDAIE I > 0.03. It is noted 
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that the number of observations for which MMAELI is bet ter  is uniformly more than that 
for which MMSELI is better. This indicates that  MMAELI outperforms MMSELI. Since 
at is not Gaussian, the process {Z t}  in (5.1) is not time reversible from Corollary 4.3 of 
Tong ((1990), p. 196). This is why MMAELI is preferred to MMSELI, which completely 
ignores the time irreversibility of the process. 

6. Extension to AR(p) model 

We now extend the results for the AR(1) to the AR(p) model 

(6.1) Yt = r  "t- et = r + " "  -t- dprYt-p + et, 

where 1 - r  = 1 - r  - --- - CpB p is a p-th order polynomial with all roots 
outside the unit circle, {et} is an i.i.d, innovation process with finite first absolute mo- 
ment, and et is independent of {ys, s < t}. Assume that the observed samples axe 
Y l , . . - , Y r - l , Y r + l , . . .  ,Yn with a missing value at t = T, and the series mean # = 0. 
For simplicity, suppose that  p < T < n -  p. Set Y~+p = (Yr+p, . . . ,Y~+l )  ~, Yr-1 = 
(y~- l , . . .  , y~-p) ' ,  and a p  x p matrix 

(6 .2 )  r r ) 
0 ' 

where r = ( q ~ l , - - . ,  q~p-1), 0 - -  ( 0 , . . . ,  0) ~" c R p - l ,  and Ip_ 1 is the identity matrix. 

PROPOSITION 6.1. I f  the i.i.d, innovation process ct has a non-degenerate distri- 
bution Fe(.) and a density funct ion pe(.) with a first  absolute momen t  and zero mean,  
then 

p 

(6.3a) ?)L1 = Dro[y~.+p _ q~p+ly~._l] + E ( _ p i ) [ y T +  i + Yr-,]. 
i=1 

Here r is the matr ix  defined in (6.2) and 

p - i  -r + ~j=l r162 
(6.35) Pi = , i = 1 , . . . , p ,  P 2 

1 -t- E j----1 (~i 

are the inverse autocorrelations. Do = ( d l , . . . ,  dp) ~ is the solution to the equations 

(6.3c) 
P 

(p--j) 
E r E[I(ao~,-~ g=l-~E,+k>0}e'+j] = 0, i = 1 , . . .  ,p 
j=O 

with ak 's given by 

(6.4a) 
(p) 

a o = a o ( D o ) =  l -  1 +  r r di , 
\ i - - 1  / 

(6.4b) a j = a j ( D o ) = r  l + E r  2 , j - - 1 , . . .  ,p, 
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and ~(~) 's are calculated recursively from W i l  

P 
(6.4c) ~(e+l) V "  ~.~(~) ~(e+l) A(~) , 

W l l  : ~ . ~  W~Wil ~ Wil : Wi -1 ,1  
i = 1  

i = 2 , . . . , p  and g = 0 , 1 , . . . , p -  1, 

with r = 1 and A(o) = 0 for i = 2, 3, , p. 11 Wil �9 �9 �9 

The proof of this proposition is given in Appendix B. 

Remark 6.1. If I < T _< p or n --p < T < n, then ~L1 may be calculated by letting 
the unobserved yi's in (6.3a) equal the series mean # = 0. 

Remark 6.2. The series {Yt} is allowed to be non-stationary in Proposition 6.1. 
That  is, the root of 1 - r  = 0 may be on the unit circle as long as the density of the 
initial series Yin = (Yo, Y - l , . . . ,  Y-p+l) exists. 

7. Discussions 

More results On the MMAELI for different time series models are discussed in this 
section. 

7.1 Multiple missing values 
We extend Brubacker and Wilson (1976) and Beveridge (1992)'s idea of interpolating 

multiple missing values based on the MMSELI to the same setting using the MMAELI. 
The basic idea is to apply MMSELI to each missing value and replace the missing values 
on the RHS of (1.1) by their corresponding interpolators. The unobserved out-of-samples 
data is estimated by the series mean. We illustrate the idea using the following example. 

Consider the MMAELI for the AR(1) process. Suppose the observed samples are 
Yl,y4,Ys,Y7 and Ys- Here Y2,Y3 and Y6 are the missing values. Following Beveridge 
(1992), we have 

r CaoYl + bo~ L1 9L1 = d0[gL1 _ r + 1___~_~[9L1 + Yl] = 
1 + r 

r Ca0y L1 + boY4 
9~ 1 = dob4 - r + 1 - ~ z  [ ~  1 + y4] = 

1 + r 

951 = dob7 - r + 1_~r [y 7 + y~] _ r + r  + boy7 

Thus solving these equations leads to 

~L1 = Cao(1 + r + b2y4 ~)L1 = bo(1 + r + (r ~ k  I ---- 

(1 + r  __ Caobo ' (1 -~- (~2)2 __ Caobo ' 

where ao and bo are defined in Proposition 3.1. 

CaoY5 + boy7 
1 +r 
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7.2 ARMA model 
For the invertible ARMA(p,q) model 

(7.1) (1 - r  -- (1 - e(B))~t, 

with all the roots of 1 - 0(B) -- 0 outside the unit circle, it can be expressed as an 
AR(cxD) model 

oo 

(7.2) Yt = r + et = ~ r + et, 
j = l  

where 1 - r  = 1-r _ 1 -- ~-~j~--1 CJ Bj" Intuitively, the MMAELI for (7.2) should 
have a similar form obtained from letting p ~ c~ in Proposition 6.1. 

(3O OO 

(7 .3 )  y AL1 : j + Cj  +j} + Z P {Y -J + 
.~=1 j=l 

where the coefficients, cj's, are determined by the infinite-dimension vector Do, and the 
second summation equals the MMSELI in (1.1) with # -- 0. The interpolation technique 
for AR process can be applied using an AR approximation to the ARMA model. 

7.3 Comparison of MMAELI with MMSELI 
Proposition 2.1 shows that MAE(~ L1) is smaller than MAE(flL2), while 

SMSE(f] L2) < SMSE(flL1). This implies that  MMAELI, ^L1 _ y~ , is better  than MMSELI, 
^L2 y~ , in terms of MAE, but  it is not the case in terms of SMSE. 

(1) For the non-normal case, MMSELI is bet ter  than MMAELI in terms of SMSE. 
However, Table 1 shows that (SMSE(fl L1) -SMSE(~L2)) /SMSE(~ L2) is very small 
compared to the large value of (MAE(fl L2) -MAE(f l  L1))/MAE(fl L1). Therefore, for an 
innovation with contaminated normal, MMAELI is a good approximation to MMSELI in 
terms of SMSE. MMAELI outperforms MMSELI in terms of MAE especially for serious 
contaminations. 

(2) Subsection 4.2 shows that MMAELI exists, but  MMSELI does not, for t2 inno- 
vations. This illustrates that  MMAELI is more applicable than MMSELI. 

(3) (1.1) shows that the weightings of the observations after the missing value and 
before the missing value are symmetric. However, their contributions to the MMAELI 
are asymmetric in general, which capture the feature of asymmetry between Yr+l and 
Y~--1 in the conditional density function of y~- given Yob in (3.4). 

(4) Note that MMAELI does not treat the missing observations as nuisance param- 
eters to be estimated directly. MMAELI has good properties of (3) and (4) of the four 
criteria for the most useful technique suggested by Beveridge (1992). 

Acknowledgements 

We would like to express our deep gratitude to both referees and the editor for 
their invaluable comments and suggestions that greatly improved the presentation of 
this paper. 



L1 LINEAR INTERPOLATOR IN TIME SERIES 213 

Appendix 

A. Proof of Theorem 4.4. 
Note that 

[ ( k ~ l  k - l ) ( k + l  k + l ) ]  
(A.1) h~k(u) = E[e2tfk(uet)] = kWk gk - , -~ -- gk 2 ' 2 ' 

o r ~ 1 2  and gk(i , j)  = f o ( 1  + ~-----~2 )- i  (1 + ~ - J d z  When u 2 where Wk = ~L~-;r(~)j k / �9 r 1, 
gk(i , j)  can be calculated recursively from 

1 [ u 2 g k ( i , j  - 1) - g k ( i  -- 1, j ) ] ,  for i , j  > 1. (A.2) g k ( i , j ) -  u2- 1 

When u 2 = 1, gk(i , j)  reduces to gk(O, i +j ) .  gk(i, 0) and gk(O,j) can be calculated from 

(A.3) gk(i ,O)= 

Thus we have 

and 

2r(i)lu] and gk(O,j) = , for i , j  > 1. 2F(j)  

1 1 
93(1,1) - u2-_l(U293(1,O) - 9 3 ( 0 , 1 ) ) -  

2 lu l+ l '  
1 

g3(2,1) -- u2-- 1(u2g3(2,0) --93(1,1)) = v/~r l u l + 2  
4 (lul+l)2' 

1 [u293(2, 1) 1 ] g3(2,2) -- u 2 -  1 u2- 1(u2g3(1,1)-93(0,2))  = - -  

h~(u) =3W3[g3(2,1) -g3(2,2)]  =3W3 (1~1§ 
It follows from (4.2b) that  

h3(a) = fo~h'3(u)du = 3W3(2 + lall)-~ 
( 1 ~ 1 + )  ' 

x/57r u 2 + 3lul + 1 
4 ([ul + 1) 3 ' 

(ao) 
(A.4) h3 ~o = ao sgn(bo)H3(ao, bo) and h3 -~o = bo sgn(ao)H3(bo, ao), 

where H3(a,b) -- lat+21bl (lal+lbl) 2" 
Theorem 4.4 follows from Proposition 3.1, (3.14) and (A.4). 

B. Proof of proposition 6.1 
For model (6.1), let Yin 

(Yr , Yob, Yin) is 
= (YO, Y-1 , . . . ,Y-p+I) .  The joint density function of 

(B.1) 
n 

.,4=1 
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p where Pin(') is the density function of Yin and ~j = yj - ~-~i=-I r for j = 1, . . .  ,n.  
The conditional density function of yr (T > p) given Yob is 

( B . 2 )  P(y~ l yob) = P(Y~'Y~ 
p ( y o b )  

PE (Y~ P P -- E i = I  •iYT'4-p--i) E ~ = I  r  �9 �9 . p ~  ( y ~ + p  - 

f p ~ ( y ~  p p �9 - - ~-~i=1 r dy~- E ~ = I  r  �9 �9 �9 p~ (~+~ 

Hence, conditional on Yob, Yr depends only on yr,p = (y~-+p,... ,Yr+l ,Yr-1 , . . .  ,Yr-p). 
Thus, p(y~- I Yob) = P(Yr I Y'r,p). The linear interpolator o fyr  defined in (2.1) now reduces 
to 

p p 
( B . 3 )  = + 

i=1  i=1  

with ci's being 2p real constants. 
Define 

^L2 ( 8 . 4 ~ )  Y .  = y ~  - y ~  . 

For AR(p) model, let p~ be the inverse autocorrelation. From Beveridge (1992), 

P 
(8.4b) ~L2 = _ Epi [y~+ ' + y~_,]. 

i = l  

It follows from (B.4) that  

(B.5) V , =  r 1 6 2  1 +  r , 
i = l  

which is similar to v~ in (3.7). Hence (B.4) is desired. We express the AR(p) model as 

(B.6) Yt = CYt-1 + St, 

where Yt = (Yt, . . .  ,Yt-p+l)', St = (et, 0 , . . . ,  0)' are p-dimensional random vectors, and 
is defined in (6.2). From (8.3) and (B.6), consider the transformation 

P 

(B.7) Ur = Yr+p - CP+IY,_I = Cr+p + E ~Sr+p- j .  
j = l  

Since (Vr Ur is independent of Yr from (B.5) and (B.7), we have 

(B.8) p(V~- Iyr,p) =p(Vr  l U~-,Y~-I) =p(V~- I U~). 

Hence the MMAELI, ~L1, of Vr based on y~,~ is of the form 

( 8 . 9 )  T~r?l = D~U.r, 
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where Do is a p-dimensional constant vector which minimizes 

(B.10) M A E ( D )  = E[[V~ - D'U~N. 

It follows from Pinkus ((1989), p. 14) that  Do minimizing (B.10) is equivalent to 

(B.11) IE[sgn(V~ - D'oU~)U~,i]t < E[I(v_D~Lr~=o}IU~,~I], i = 1 , . . .  ,p,  

where U~,i is the i-th element of the random vector U~. 

Denote Do (dl ,  , dp)',  ~o = I (unit matrix of order p) and ~(J) the i-th element = " �9 " Wil 
of the first column of matrix CJ. Then 

P P P P P 
! ! ~ "  

(B.12) DoUr E DoCP$~+v-J E (J) ~ ~(P-J)~ -: = E di~il  ~-A-p-j : E E ttiq)il ~TA-j" 
j=O j=O i=1 j = 0  i = l  

(B.5) and (8.7) together with (B.12) give 

(B.13) ( V~. - D'oU~- = - 1 _ _  
"= j=l  

ao = ao(Do)  = 1 - AoDoCPa, aj  = h i (Do)  = Cj + A o D ~ - J ~ ,  j = 1 , . . .  ,p ,  

where ~0 1 v 2 ( 1 , 0 , . . . , 0 ) '  C R p. = -4- E i - - - -1  (~i a n d  a = 
Note that  ai 's in (6.4) are not all equal to 0. Since the distribution of eT is non- 

degenerate and ~t's are independent,  it follows from (B.13) that  P(V~- - D'oUT = O) = O. 
Thus from (B.11), E[sgn(V~ - D~U~)U~] = 0, and 

(B.14) [( p )p sgn a0r - E a j e ~ + J  E 
.~(p-j) 

E q)il a.rWj 
j=l  j=0 

= O, i = 1 , . . . , p .  

Proposition 6.1 follows from (B.4), (B.9) and (B.14). Here, (B.14) is equivalent to (6.3c). 
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