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Abstract .  Higher-order likelihood methods often give very accurate results. A way 
to evaluate accuracy is the compaidson of the solutions with the exact ones of the 
classical theory, when these exist. To this end, we consider inference for a scalar 
regression parameter in the normal regression setting. In particular, we compare 
confidence intervals computed from the likelihood and its higher-order modifications 
with the ones based on the Student t distribution. It is shown that higher-order 
likelihood methods give accurate approximations to exact results. 
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1. Introduction 

Standard first-order methods for inference on individual components of a multi- 
dimensional parameter can be seriously inaccurate in the presence of nuisance param- 
eters. The generally best first-order method is based on the X 2 approximation to the 
distribution of the usual loglikelihood ratio statistic or on the normal approximation to 
the signed squared root of the loglikelihood ratio, also called the directed likelihood. 
These can be thought of as the corresponding statistics computed from the profile like- 
lihood, acting as though it were the likelihood for a one parameter model. From this 
viewpoint, the main reason for inaccuracy is that  the profile likelihood does not take 
into account the effects of fitting nuisance parameters. In particular, the expected value 
of the profile score is in general of order O(1) (McCullagh and Tibshirani (1990)). 

Higher-order asymptotic results can be used both to construct adjusted profile like- 
lihoods and to improve the accuracy of the asymptotic distribution of likelihood based 
tests. Proposals of the first kind have been made by Barndorff-Nielsen (1983, 1994), 
Cox and Reid (1987), McCullagh and Tibshirani (1990), among others. These adjusted 
profile likelihoods have a score bias of order O(n-1) ,  where n is the sample size. More 
generally, typically adjusted profile likelihoods incorporate a traslation and a curvature 
effect on the profile likelihood. For the example considered in this paper, we just have 
the curvature effect. This may be considerable when there are many nuisance param- 
eters. With the second aim, a statistic for inference on a scalar parameter of interest 
with high accuracy is the modified directed likelihood of Barndorff-Nielsen (1986, 1991). 
In particular, under the null hypothesis, the modified directed likelihood has a standard 
normal distribution to third order. 
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The modified directed likelihood requires the calculation of some sample space 
derivatives, i.e. derivatives with respect to components of the maximum likelihood esti- 
mate. This means that one needs to write the minimal sufficient statistic as a one-to- 
one function of the maximum likelihood estimate and a suitable ancillary statistic, either 
exactly or approximately. Outside full rank exponential models and transformation mod- 
els this may be difficult. Sample space derivatives are required also in the computation 
of the modified profile likelihood (Barndorff-Nielsen (1983)). Recently, approximations 
for the sample space derivatives have been proposed in the literature. Using these ap- 
proximations, one can obtain versions of the modified directed likelihood (and of the 
modified profile likelihood) that  still have good accuracy properties. See w (and w 
of Severini (2000) for a recent review. 

Simulation results (DiCiccio and Martin (1993); DiCiccio and Stern (1994); Sartori 
et al. (1999)) have shown that inference based on the modified profile likelihood and, in 
particular, on the modified directed likelihood is quite accurate, even in the presence of 
many nuisance parameters. 

The approach here is slightly different. We want to investigate how results of higher- 
order likelihood asymptotics yield highly accurate approximation to an exact optimal 
solution, when this exists. In particular, we consider the classical problem of inference 
in the normal linear model and we compare confidence intervals based on Student t 
distribution with those based on likelihood and its modifications. Third-order methods 
in this context have been investigated through simulations in Fraser et al. (1999b). 

Section 2 gives some notation and background on likelihood asymptotics. In partic- 
ular, a two step modified directed likelihood is proposed. Section 3 deals with inference 
on a scalar regression coefficient in a normal linear model, treating the other parameters 
as nuisance parameters. Finally, a brief discussion is given in Section 4. 

2. Notation and preliminaries 

Consider a parametric statistical model with probability density function p(y; 8). 
The parameter 0 has dimension d and is partitioned as (r A) into a scalar parameter of 
interest r and a nuisance parameter A, of dimension d - 1. 

Suppose that  we can write the data  y as a one-to-one function of ({}, a), where ~ is 
the maximum likelihood estimator of e and a is an ancillary statistic, either exactly or 
approximately. The vector of first-order derivatives of the loglikelihood function/(~; 8, a) 
with respect to a subset p of components of 8, such as A or r  will be denoted by 
Ip(e), whereas the vector of sample space derivatives of the likelihood, with respect to 
P consisting of components of ~, will be denoted by/;i(t?). For higher-order derivatives 
we will use symbols such as/p;~(~) and lpv(~). Similarly, jpv(~) will denote blocks of the 
observed information function j (e) .  

The profile loglikelihood /(~r will be denoted b y / p ( r  where 0~ = (r ~r and 
with ~r denoting the constrained maximum likelihood estimator of A for a given value of 
r The signed square root of the likelihood ratio statistic, also known as signed likelihood 
root, is 

r ( r  = sgn(r - r162  - 1p(r 1/2 

and will be called the directed likelihood. 
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2.1 Adjusted profile likelihoods 
The modified profile loglikelihood (Barndorff-Nielsen (1983)) is 

lu (r  = b ( r  + log c (r  

with 

C (~3) : { [j,k,k (0) I IJ),,~ (Og,)[ } 1/2 

II~;x(Or I 

where the data-dependent factor j ~ ( 0 )  is introduced to clarify the relation between 
IM (r and the modified directed likelihood, introduced in the next section. The modified 
profile likelihood has a central role among adjusted profile likelihoods, because of its 
desirable properties. First of all, it approximates a conditional or a marginal likelihood, 
when either exists. Moreover, it is invariant to interest respecting reparameterizations 
and satisfies to second order the first two Bartlett  relations (DiCiccio et al. (1996)). 

If r and ), are orthogonal, that  means ir = 0, the modified profile loglikelihood 
is second order equivalent to the approximate conditional loglikelihood of Cox and Reid 
(1987) 

1 
IAc(r = lp(r  - ~ log Ijxx(0r I. 

The approximate conditional likelihood is simpler to compute than the modified profile 
likelihood but it is not invariant to interest respecting reparameterizations. 

We will use rM(r and rAC(r to denote the directed likelihood computed from the 
approximate conditional likelihood and from the modified profile likelihood, respectively. 

2.2 

with 

Modified directed likelihood 
The modified directed likelihood (Barndorff-Nielsen (1986, 1991)) is 

i ~(r  
r*(~b) = r ( r  + ~ log r(r 

u(r  = l/6(0) -lo(Or162 1/2. 

A different version of u(r  is given by formula (2.7) of Fraser et al. (1999a). However, 
in the normal distribution it coincides with the Barndorff-Nielsen formula. For this 
reason we do not give it in detail here, though it might be of more general application. 

Pierce and Peters (1992) point out that  in exponential families the adjustment  to 
r ( r  giving r* (r can be decomposed as the sum of two terms, and Barndorff-Nielsen and 
Cox ((1994), w 6.6.4) note the general existence of such a decomposition. In particular 
r* (r can be expressed as 

r*(r = r(r + N P  + I N F ,  

where N P  is the nuisance parameters adjustment  

1 
N P  = - r ( r  log C(r  
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and I N F  is the information adjustment 

I N F  - 
1 up(C) r(r log r(r  

with 

(2.1) ^- 1/2 0 
up(C) = jR(C)-  -Z-~. {lp(r - lp(r 

Here, j p  is the profile observed information, and the derivatives with respect to r are 
calculated with Ip(r - lp(r  considered as a function of r r  ~r and a. The empirical 
results in Pierce and Peters (1992) indicate that the N P  adjustment is often considerable, 
and it may yield a more substantial effect than the I N F  adjustment, especially when 
the dimension of the nuisance parameter is large. Moreover, Sartori et al. (1999) show 
that rM(~3) = r(r + N P  + O(n -1) and give simulation results which indicate that, as 
the number of nuisance parameters increases, inference based on rM(r is very close to 
that  based on r*(r 

2.3 Two step modified directed likelihood 
Pierce and Peters (1992) suggest a two step procedure to third-order inference for 

a scalar canonical parameter in full exponential families. In the first step, a.n adjusted 
profile likelihood for the interest parameter is obtained. In the second step, the modified 
directed likelihood for this one parameter pseudo-likelihood is computed. 

More generally, if we work from the modified profile likelihood and calculate the 
INF adjustment, as was done leading to (2.1), we obtain 

(2.2) r*M(r = rM(r + rM(~)------- ~ log rM(~)-------~, 

where 

0 * t M ( r  (2.3) UM(r = jM(r  M {1M(r -- 

and with jM and ~M denoting respectively the observed information and the maximizer 
of lM(•). We can write (2.3) in the following form 

UM(r = jM(~M)-I/2(O~)M/O(3) -1 c9 ^ ~ { t . ( r  - IM(r 

where 

(2.4) ( a r  = jM(~M)-' (a21M(r162162 

is obtained differentiating the likelihood equation for ?~M with respect to r In general, 
it can be analytically cumbersome to compute (2.3) and a different version (simpler to 
compute) would be preferable. An alternative way is the one proposed in DiCiccio et 
al. (2001), which makes use of simulation. Anyway, in the present context (2.4) is equal 
to 1, because ~M 7__ ~, and it is possible to express UM(r as a simple modification of 
~P(r 
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All directed likelihoods are approximate  pivotal  quantit ies,  which allow us to ob- 
ta in  p-values and confidence limits for r  However, while r ( r  rAt(g2) and rM(r  are 
s tandard  normal  only to first-order, r * ( r  and r~4(r  ) are s tandard  normal  with th i rd -  
order  accuracy. Note tha t  r ( r  r M ( r  r* ( r  and r ~ ( r  are invariant under  interest  
respect ing reparameter izat ions ,  while rAC(r  is not.  

3. Inference on a scalar regression parameter 

Consider n r andom variables Y1,--.  , Yn following a linear regression model  Yi = 
tti + ar where #i = f l X n  + . . .  + fpXip (i = 1 , . . .  ,n)  and e l , . . .  ,r are independent  
s tandard  normal  variables. The  v e c t o r s  ( x / i , . . .  , Xip) of covariates values are assumed 
to be known and the vector  f = ( f l , -  �9 �9 , flip) is the vector  of regression parameters  to  be 
est imated.  Using mat r ix  notat ion,  we can write Y = X f  + ae where Y = (Y1, . . .  , yn), 
X = (xid) is an n x p mat r ix  of rank p (n > p), called the regression matr ix,  and 

= 

The  likelihood funct ion for 0 = ( f ,  a 2) is 

n 2 l a - 2 ( Y  X f ) ' ( Y  X f l )  l(O;y) = - 2 1 ~  - - - 

and the max imum likelihood es t imate  is 0 = (/~, 82) with 

= ( X ' X ) - l x ' z  8 2 = ( Y  - Xi~) '(Y - X f l ) / n .  

As is well known, this is a full rank exponent ia l  family, so the m ax im u m  likelihood 
est imate is also sufficient. 

Let  a scalar component  of the  regression parameter  f be the pa ramete r  of inter- 
est. Wi thou t  loss of generality, we can consider r -- fiB, i.e. the  regression coeffi- 
cient of the p- th  exp lana tory  variable. The  nuisance pa ramete r  is ~ = (% a2), where 
7 = ( f l , - . -  , f ip- i ) .  An exact  1 - a confidence interval for r is given by 

where s ~ = n#21(n  - p), r -- /~p, vpp is the ent ry  at  posit ion (p,p) of V = ( X ' X )  -1 
and tn-p,al2 is the upper  quanti le  of level a / 2  of the t dis t r ibut ion wi th  n - p degrees 
of freedom. 

The  profile loglikelihood funct ion for r is 

n log 5~, l p ( r  = I ( r  % ,  --  - 

where 5~ = 52 + (nvvp) -1 (r  - r  ~r __ ~/+ ( X ~ X 1 ) - I X { x p ( ~  _ r  and where we have 
considered the  par t i t ion  X = [X1, Xp] of the  regression matr ix .  In part icular ,  X1 is the  
n x (p - 1) ma t r ix  containing the  values of the first (p - 1) exp lana tory  variables and  Xp 
is the p- th  exp lana tory  variable. We can use the directed likelihood to  const ruct  a 1 - a 
confidence interval for r of the form Ir(r  < za/2, with  

= s g n ( 4  - r  . l o g  ) 

1/2 
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where t (r 1/2 = - r ) and z~/2 is the a /2  upper quantile of the standard normal 
distribution. The interval can be reexpressed in the form 

(3.1) (r - cas vggT~, r + cas vCVTU), 

with ca = nv~-L--p{exp(z2~/2/n) - 1} 1/2. 
The modified profile likelihood for r is 

n - p - l l o g b ~ _ n - p - l i p ~ r  s /M(•) 
2 n 

and, using its directed likelihood, gives a 1 - a confidence interval of the form 

(3.2) (42 - c, ,2s vv/g~pp, r + ca,2S Vv/-~pv), 

with ca,2 = n ~ [ e x p { z 2 ~ / 2 / ( n - p  - 1)} - 1] 1/2. Note that (3.1) and (3.2) are standard 
likelihood drop intervals obtained from 1p(r and /M(r  respectively. 

Consider a Cornish-Fisher expansion for the quantiles of a Student t distribution 
with n - p degrees of freedom 

g(za/2) 
(3.3) tn-p,~/2 = z~/2 + 4(n - p---------) + O { ( n  - p)-2}, 

where g(x) = x + x 3. Expanding Ca and Ca,2 and comparing these expansions with (3.3) 
we have 

2 p +  1 
ca = ta-p,a/2 4(n - p) z . / 2  + O{ (n - p ) -2}  

z~/2 
e a , 2 = t a - p , . / 2 +  4 (n - - p )  + O { ( n - " ) - 2 } "  

Note that  the error in the approximation of the Student quantile is in both cases of order 
O{(n  - p ) - l } .  If the number of nuisance parameter is considerable with respect to the 
degrees of freedom, using the profile likelihood we have an error of order O { p / ( n - p )  }. On 
the other hand, for the modified profile likelihood the error is still of order O { ( n  _ p ) - l } .  

We can also use the modified directed likelihood. The needed quantities axe r( r  

C(r  = {1 + t 2 / ( n  - p ) } ( p + l ) / 2  Up(C) = v / n / ( n  -- p)t. 

A 1 - cr confidence interval based on r* (4) can be written in the asymptotic equivalent 
form (r  - e ; s  ~ V ~  , ~) + c~s ~ / ~ ) ,  where 

= sgn(z l ) p exp z i2 1 +  ) . - 1 

If we expand c~ we have 

* [ l { l + z 2 / 2 } + O { ( n - p ) - 2 } ]  cn = Zal2 l + 4 ( n T _ p )  

= ta-v, .12 + O { ( n  - p)-2} ,  
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i.e. c~ is a highly accurate approximation of t~_p,~l~. 
The two step modified directed likelihood is given by (2.2), with 

= v ' ( n  - p - 1 ) / ( n  - p ) t .  

As for the modified directed likelihood, we can obtain a confidence interval for r using 
r~/(~b). It can be shown that the accuracy in the approximation to the exact interval is 
the same as that of r*(r 

Consider now the regression matrix X = IX1, xp] as block orthogonal, i.e. X~xp ~- O. 
In this case the parameter of interest r is orthogonal to the nuisance parameter (% a 2) 
and we can compute also the approximate conditional likelihood of Cox and Reid. Since 
IAC(~) is dependent on the chosen orthogonal parameterization, we wonder if there is 
an optimal parameterization among those of the form 

(3.4) (r "y, ~J). 

When j = 0 we may think to use the parameterization (r log a), which gives /At(C)  ---- 
Ip(~)). In particular, we choose the value of j which gives an approximate conditional 
likelihood, whose confidence intervals agree to a higher-order with the exact ones. The 
directed likelihood calculated from the approximate conditional likelihood in the param- 
eterization (3.4) is 

rAC(~ ) = (n -- p -- j + 1) log 1 + n ----p ' 

and gives a 1 - a approximate confidence interval for ~b of the form (r  - c~,jsv~/V~, r + 
c~,yS Vv~) , with 

cn,j = nv/-n-2-P- p[exp{z~/2 / (n  - p - j + 1)} - 1] 1/2. 

An expansion for c~,j gives 

[ 1 2 O { ( n  p)-2}] Cn,j = za/u 1 + 4(n - p----~ {2(j - 1) + za/2} + - 

2j - 3 
= + 4 ( n -  + o { ( n  - 

If we choose j = 3/2, we obtain an highly accurate approximation to the exact result. In 
particular, the order of approximation is the same as the one achievable with modified 
directed likelihoods. This suggests a method for choosing among orthogonal parameter- 
izations when an exact solution is not available. In fact, it could be possible to choose 
the orthogonal parameterization such that confidence intervals based on /At(C) agree 
with those based on r* (~) to third order. 

Note that  all likelihoods quantities considered in this section can be written as a 
function of t, n - p and p. This allows a straightforward comparison with exact results. 
Tables 1-3 give coverage probabilities of the exact Student interval transformed in the 
directed likelihood scale and evaluated with the standard normal distribution, for a case 
with n = 10 and various numbers of explanatory variables. 

Both r ( r  and rM (r are not very accurate, but  r ( r  is more affected by high values 

of p. On the contrary, ~(3/2) {~t,~ "AO ~'J, r* (~b) and r~4 (~) give good approximations for the exact 
results, even though, as p increases, r* (r seems to loose its usual "hyper accuracy". An 
explanation of this is given in the next section. 



194 N. SARTORI 

Table 1. Coverage probabilities of the 99% Student ' s  interval, t ransformed in the r scale and 
evaluated with the s tandard  normal distribution; n -- 10 and p -- 2, 3, 4, 5. 

. ( 3 / 2 )  r *  * 
p r r M  "AC r M  

2 99.70 98.69 98.97 99.06 99.00 

3 99.85 98.62 98.97 99.15 99.00 

4 99.94 98.53 98.95 99.27 99.00 

5 99.99 98.39 98.93 99.44 99.00 

Table 2. Coverage probabilit ies of the  95% Student ' s  interval, t ransformed in the r scale and 

evaluated with the s tandard  normal distribution; n ---- 10 and p -- 2, 3, 4, 5. 

p r r M  ~(3/2) r* "AC r*M 

2 97.60 94.11 94.94 95.20 94.99 

3 98.46 93.95 94.92 95.47 94.99 

4 99.15 93.71 94.89 95.89 94.98 

5 99.63 93.36 94.84 96.51 94.98 

Table 3. Coverage probabilit ies of the 90% Student ' s  interval, t ransformed in the r scale and 
evaluated with the s tandard  normal distribution; n -- 10 and p -- 2, 3, 4, 5. 

~(3/2) r* 
p r r M  "A C T*M 

2 94.20 88.72 89.93 90.31 89.98 

3 95.81 88.50 89.91 90.71 89.98 

4 97.29 88.18 89.87 91.36 89.97 

5 98.52 87.69 89.81 92.34 89.97 

4. Discussion 

Higher-order likelihood methods give very accurate approximation for exact optimal 
results in the normal distribution. The best solutions axe obtained with the approximate 
conditional likelihood of Cox and Reid and with the modified directed likelihoods, in pax- 
ticular with the one computed from the modified profile likelihood. However, in the first 
case, the results are strongly dependent on the ad hoc "optimal" parameterization. On 
the contrary, r~/(r  and r* (r are invaxiant under interest respecting reparameteriza- 
tions and they do not need the regression matrix to be block orthogonal. 

We note that rM(r ~.(3/2)[~/,h and r ~ ( r  can be expressed as functions only of t " A C  ~ w /  
and the degrees of freedom n - p, while r ( r  and r* (r depend on t, n - p and also p. 
This means that,  using rM(~b), ~(3/2){q/,~ "AC ~ J  or r ~ ( r  the approximation for the Student 
distribution with n - p  degrees of freedom is "stable", i.e. we have the same approximation 
with (n, p) or with (n + k, p + k), where k is an integer (k _> 1 - p). The same is not 
true for r ( r  and r*(r This explains why in Tables 1-3, as p increases, changes in 
the coverage probabilities axe more evident in the second and in the fifth columns. This 
is even more evident if we compare r* (t) and r*M(t ) in two cases: (a) one with n ---- 4 
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and p = 1 and (b) one with n = 7 and p -- 4. In both cases, we are considering 
approximations for a Student distribution with 3 degree of freedom. The 95% exact 
confidence interval has in both cases a correspondent r ~  (t) confidence interval of level 
94.99%. Coverage probabilities of the corresponding r* (t) confidence intervals are (a) 
95.37% and (b) 97.18%. 

This last consideration might suggest that the two step procedure leading to r~4(r ) 
should be considered better  than the direct calculation of r* (r This is surely true when 
the number of nuisance parameter is not moderate. However, in general r*(r  gives 
very accurate results and, when they are not very accurate, they still are acceptable. 
Moreover, the calculation of UM(~) ) in the present context has been simplified for a 
particular feature of the normal case. In general models, to obtain uu(r is not so 
straightforward and further work in this direction is needed. 
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