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A b s t r a c t .  In this paper, we investigate the exact distribution of the waiting time 
for the r-th t-overlapping occurrence of success-runs of a specified length in a se- 
quence of two state Markov dependent trials. The probability generating functions 
are derived explicitly, and as asymptotic results, relationships of a negative binomial 
distribution of order k and an extended Poisson distribution of order k are discussed. 
We provide further insights into the run-related problems from the viewpoint of the 
t-overlapping enumeration scheme. We also study the exact distribution of the num- 
ber of t-overlapping occurrences of success-runs in a fixed number of trials and derive 
the probability generating functions. The present work extends several properties of 
distributions of order k and leads us a new type of geneses of the discrete distribu- 
tions. 
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1. Introduction 

Exac t  dis tr ibut ions on runs in independent  trials go back as far as De Moivre 's  era 
(see Feller (1968)). For the  last 20 years, exact  d is t r ibut ion theory  for so called discrete 
dis tr ibut ions of order k (see Phi l ippou et al. (1983)) has been extensively developed 
by many  authors  in various si tuat ions and man y  works have appeared  on the discrete 
distr ibutions of order k (see Aki and Hirano (1988), Hirano et al. (1991) , H a n  and Aki 
(1998) and Uchida (1998)). 

The  relations between distr ibut ions of order  k have been investigated by  many  
authors.  Hirano and Aki (1987) discussed relationships among the ex tended  negative 
binomial,  the  extended Poisson and the ex tended  logari thmic series dis t r ibut ions of order  
k. Phi l ippou (1988) examined the interrelat ionships of mul t iparamete r  dis tr ibut ions of 
order  k. Kout ras  (1997) considered negative binomial  dis tr ibut ions of order  k and showed 
tha t  the limiting behavior  is closely related to  the class of  dis t r ibut ions of the  sum of 
Poisson number  of iid r andom variables. 

Fur thermore ,  relations among distr ibut ions of different orders have been  studied.  
Aki and Hirano (1994) investigated some proper t ies  of the geometr ic  dis tr ibut ions of dif- 
ferent orders. Several extensions and variat ions of their  model  were subsequent ly  s tudied 
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by Aki and Hirano (1995). Aki and Hirano (2000) pointed out that how to enumerate 
success-runs is also very important in order to obtain the corresponding distributional 
results in the case of the binomial distribution of order k. They proposed an enumeration 
scheme called t-overlapping way of counting. In the case of g = k - 1, it corresponds 
to usual overlapping counting scheme (see Ling (1988)). For example, the sequence 
S F ( S S S ) F ( S S  {S)S[S} SS]F(SSS)  contains 5 (1-overlapping) success-runs of length 3. 
The g-overlapping enumeration scheme derives the some interesting properties from the 
distribution of order k. We believe that this enumeration scheme plays an important 
role in the discrete distribution theory in future. 

Recently, Han and Aki (2000) introduced the g-overlapping counting method when 
e is a negative integer, and considered the distribution of the number of t-overlapping 
occurrences of success-runs of length k in a sequence of a fixed number of trials by a 
method based on the probability generating functions. When g is a negative integer, it 
is intuitively recognized that the two runs of length k are 121 apart from each other. For 
example, the sequence S F ( S S S ) F S ( S S S ) S S S F ( S S S )  contains 3 ((-2)-overlapping) 
success- runs of length 3. Remark that when e < 0 there is a slight difference between 
our definition of e-overlapping counting method in this paper and Han and Aki's (2000) 
definition. 

Our aim of this paper is to provide the perspectives on the run-related problems from 
the viewpoint of the t-overlapping enumeration scheme. We emphasize the importance 
of this enumeration scheme. The present paper is organized as follows. In Section 2, 
we study the waiting time distribution for the r-th g-overlapping occurrence of success- 
run of length k in a sequence of {0, 1}-valued Markov dependent trials, and derive the 
probability generating functions. We show that the corresponding variable is expressed 
as a sum of r independent variables. For this distribution, Koutras (1997) used the 
name Markov Negative Binomial distribution of order k. In Section 3, we investigate the 
limiting behavior of the distributions treated in Section 2 as r --~ cx), and show that the 
limiting behavior is closely related to an extended Poisson distribution of order k (see 
Aki (1985)). In Section 4, we consider the distributions of the number of e-overlapping 
occurrences of success-runs of length k in a sequence of a fixed number of trials, and derive 
the probability generating functions. The e-overlapping enumeration scheme leads us a 
new type of geneses of the distributions of order k. 

The main tool for deriving the results in this paper is the Markov chain imbedding 
method introduced by Fu (1986) firstly, which has a great potential for extending to other 
problems (see Fu and Hu (1987), Chao and Fu (1989), chao (1991), Fu and Koutras 
(1994), Koutras (1996a), Soutras  and Alexandrou (1997), Uoutras et al. (1995) and 
Chadjiconstantinidis et al. (2000)). 

2. The waiting time for the r-th occurrence 

Let X0, X1, ) (2 , . . .  be a time homogeneous {0, 1}-valued Markov chain with transi- 
tion probabilities, 
(2.1) Pij = P ( X t  = j I x,_l = i), 

for t > 1, i, j -- o, 1 and initial probabilities P(Xo = O) = Po, P(Xo = 1) = Pl. 
According to Koutras and Alexandou (1995), a non-negative integer random variable 

Vn is called Markov chain imbeddable variable of binomial type, if 
(1) there exists a Markov chain {Yt, t ~ 0} defined on a state space ~, 
(2) there exists a partition {Cv : v >_ 0} on the state space, 
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(3) for every v, P (Vn  = v) = P(Yn  C Cv), 
(4) P ( Y t  C C w  I Y t - 1  C C v )  = 0 for  a l l  w r v, v -~ 1 and t > 1. 
Assume first that  the sets Cv of the partition {Cv, v > 0} have the same cardinality 

s = [C~[ for every v, more specifically Cv --- {cv,o, cv ,x , . . . ,  Cv,s-i}. 
For the Markov chain {Yt,t > 0}, we introduce the s x s transition probability 

matrices 

At(v )  = (P(Y t  = c,,,j ] Y  t-1 --" Cv,i))s• 

B t (v )  = (P(Y t  = cv+l,j [ Y t - 1  = Cv,i))s• 

the probability vectors of the t-step Yt of the Markov chain 

I t ( v )  = (P(Y t  = C,,o), P(Y t  = c , : ) , .  . . , P (Y t  = Or,s-i)) ,  t > O, 

and the initial probabilities 

7to = ( P(Yo = cv,o ), P(Yo = Cv,i ) ,  . . . , P(Yo = cv,s-1) ). 

Let now Tr, r > 1 be the waiting time for the r-th g-overlapping occurrence of success- 
run of length k. Then the probability generating function and the double generating 
function of Tr are denoted by Hr(z) and H ( z ,  w) ,  respectively; 

oo 

Hr(z)  ---- E[z T'] = Z Pr[Tr ---- n]z n, 
n-=O 

O0 o o  o o  

H ( z ,  w)  = Z H " ( z ) w r  = Z Y~ Pr[Tr = n]z"w".  
r = 0  r~--0 n----0 

For the homogeneous case (i.e. At(v )  --= A, B t (v )  = B for all t > 1 and v > 0), the 
double generating function is 

H ( z , w )  = w z  

" ~  n - ~ O  r ~ O  

8 

i=1 

where, ~i = ei BI~, 1 <_ i <_ s. We denote the i-th unit vector of R 8 by ei = 
( 0 , . . . , 1 , . . . , 0 ) .  

The waiting time for the r-th g-overlapping occurrence of success-run of length k 
are denoted by T (+) and T ( - )  with the superscript pointing out the enumeration scheme 
employed; (+) indicates the case 0 < g < k - 1 and ( - )  the case g _< 0. In this paper, 
each one of the two enumeration schemes (g < 0, 0 < g _< k - 1) is treated separately. 

2.1 Case O < g <_ k - 1  
We consider the partition Cv -= {cv,0, cv,1, . . . ,  cv,k-x, c~,e-k, . . . ,  cv,-1 }, v = 0, 1 , . . . ,  

n - - e  [ ~:-~ ], where, 

c~,i {(v, i)},  g k < i < k  1, v 0 , 1 , . . ,  n - g  . . . . .  [~L--~_ ~], s = i C , , i = 2 k - g .  



156 KIYOSHI INOUE AND SIGEO AKI 

To introduce a proper Markov chain {Yt : t _> 0}, we define Yt E Cv,i (or equivalently 
m 

Yt = (v, i)) as follows. For any sequence of outcomes of length t, say S F S . . .  F S S . . .  S ,  

let m be the number of trailing successes, and let v be the number  of t-overlapping 
occurrences of success-runs of length k. We define Yt = (v ,m)  if m < k - 1 and 
Yt = (v, g - k + y) if m > k, where m - k = y (mod k - t) .  

We have 

A + w B =  

(,0) (,1) 

poo pol 
PlO 0 

: : 

plo 0 
plo 0 
plo 0 
plo 0 

: : 

P l O  0 

Plo 0 
Plo 0 

(,2) . - - ( , k - 2 )  ( , k - l )  ( , g - k )  ( , g - k + l ) - - - ( , - 2 )  ( , -1 )  
0 . . .  0 0 0 0 - - .  0 0 

pn  "'" 0 0 0 0 . . .  0 0 
: " . .  : : : : " . .  : : 

0 .-- p n  0 0 0 . - -  0 0 

0 �9 �9 �9 0 p l x  0 0 - �9 �9 0 0 

0 ..  �9 0 0 w p n  0 . .  �9 0 0 
0 . . .  0 0 0 p l l  . . .  0 0 

: " . .  : : : : " . .  : : 

0 �9 �9 �9 0 0 0 0 �9 �9 �9 p l l  0 
0 . . .  0 0 0 0 . . .  0 P n  
0 . . .  0 0 w p n  0 �9 . .  0 0 

The manipulat ion of part i t ioned matr ix  enables us to calculate the inverse matr ix  
[I - z ( A  + w B ) ]  -1  easily (see, for example, Zhang (1999)). We should make use of the 
following symmetr ic  parti t ion.  

M (2k-t) x (2k-t) 

where K and N are k- and (k -g ) - square  matrices, respectively. Then,  the inverse matr ix  
is given by 

[ i _  z ( A  + w B ) ] - l  = ( K - I + X Z - 1 Y - X Z - 1 )  
_ Z - 1 y  Z - 1  

( 2 k - - t )  x ( 2 k - - ~ )  

where X = K - 1 L ,  Y = M K  - 1  and Z = N -  M K - 1 L .  Since Zro = ( p o , P l , 0 , . . .  ,0) and 

e iB1  I = ~ p 1 1 ,  if i = k o r i = 2 k - g ,  

( 0, otherwise, 

by algebraic manipulations,  we get 

(2.2) 

where, 

H ( + ) ( z , w )  = 
wP(z) (p l l z?  -1 

[1 - w ( P l l  Z ) k - t ] Q ( z )  - WpOlPlOPklll  Zk +l R k _ t _ l  ( P n  Z) ' 

(2.3) P ( z ) = P l + ( P o P o l - p l P O O ) Z ,  
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k 

(2.4) Q ( z )  = 1 - pooz - pOlplO z2 E ( p l l Z )  i -2 ,  
i=2 

l + z + z 2 + . . . + z  x X = 0 , 1 , 2 , . . .  
(2.5) Rx(z )=  O, otherwise. 

Expanding (2.2) in a Taylor series around w -- 0 and considering the coefficient of w r, 

we obta in  the  probabi l i ty  generating function of T (+). 

PROPOSITION 1. The probability generating function of T (+) is 

k 1 " lr--1 
(2.6) H(+) ( z )  = ( P l l Z ) k - l p ( z )  (P l lZ ) k - e  + POlPlOPll  Z e + I R k - e - I ( P l l Z )  I 

Q(z) ~ J 

r>_l. 

The probabi l i ty  generating function of the random variable T = T1 for the first 
occurrence of success-run of length k is given by 

(2.7) H ( z ) =  [1H(+)(z,w)] = P(z)(pnz)k-1 
Q(z) 

Let T* be the waiting t ime for the first occurrence of success-run of length k in a 
sequence of Markov dependent  trials with transi t ion probabili t ies (2.1) and initial con- 
ditions P(Xo = O) = 1, P(Xo = 1) = 0. Its probabi l i ty  generating function is derived 
from (2.7) (sett ing po = 1,pl = 0) as 

(2.8) H*(z) = (P~ 
Q(z) 

We show tha t  T (+) (r _> 2) can be  decomposed as a sum of r independent  waiting t ime 
random variables. 

THEOREM 2.1. For r >_ 2, let T)*, 1 _< j < r - 1 be independent duplicates ofT* 
(with probability generating function (2.8)) which are also independent o f T  (with prob- 
ability generating function (2.7)). Let Wj, 1 <_ j < r - 1 be {1, 2, . . . ,  k - s + 1}-valued 
lid multi-state variables which take "1" with probability pkl{t and "i" with probability 
plop~y 2 (i = 2 , 3 , . . . , k -  e +  1), 

k - e, 

I + T ~ ,  

W ; =  i + T ; ,  

k-e+T;, 
then T, W { , . . . ,  W~*_ 1 are independent and 

r--1 
T(+) d T + E W  ; .  

j=l  

if W j =  l, 
i fwj=2,  

if w j = i + l ,  

if W j = k - g + l ,  
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PROOF. From the equat ion (2.6), the probabi l i ty  generating function of T~ (+) takes 
the form 
(2.9) H(+)(z) = H(z)  [(pllz) k - t  + (PloZ)H*(z)Rk_t_1(PllZ)] "-1 

Due to the definitions, the probabi l i ty  generating function of W ;  is 

G *  (Z)  = ( P l l  Z)  k - t  -}- ( P l o Z ) H  * ( Z ) n k _ t _  1 (PllZ),  

which implies the  independency of W~, 1 _< j < r -  1 and T. Accordingly, the  probabi l i ty  
r--1 generating function of T + )-~j=l W ]  coincides with H (+) (z). [] 

Remark 1. The  results of this subsect ion for overlapping success-runs (i.e. g --- 
k - 1) reduce to the ones derived by Koutras  (1997). 

2.2 Case g <_ O 
We treat  the case of g _< 0. Suppose that  the  success-run of length k is observed. 

Then  we should restart  the coun t ing  the success-run after Igl trials pass (restart ing 
state) .  Tha t  is, if we have currently the success-run of length k, we must  wait  counting 
the success-run from the next trim until tgl trials pass (waiting state) .  For example,  
consider the  sequence S F ( S S S ) F S ( S S S ) S S S F ( S S S ) .  When  k = 3, g = - 2  and r = 3, 

we have T3 (-)  = 17. We consider the  par t i t ion 

C v  {Cv,0, Cv,1, 1 1 1 1 . . . , C v , k - 1 ,  Cv,~, cO,~+l ~ C 0 = Cv,_  1 ~ Cv,o}, Cv,~+l~ ' ' ' ,  v,--l~ 

[ n + l e l ]  
v = 0 , 1 , . . . ,  kk--+-NJ ' where, 

c~,i = {(v , i )} ,  0 < i < k -  1, [~+lgl 1 
v = 0 , 1 , . . . ,  k k + l e l J  ' 

~,~+~:{(v,g+i; j)}, l < i < l t l - 1 ,  j=o,1,  v=O,1,..., /k+lgl. I, 

1 =(v,g;1), 1 =(.v,o;1), v=O,1,.. [ "+ lg l l  
cv,~ Cv,o ' Lk+ lelJ' 

= IC~l  = k + 21el. 

. .  r ~ + l ~ l l  . . .  �9 Res tar t ing  state: ( v , m ) , v = O ,  1, . ,tk+lelJ, m = 0 ,  , k - 1 .  Y t = ( v , m )  means 
that  there exist v (g-overlapping) success-runs of length k, and m trailing S after wait ing 
state.  

�9 Wait ing state: ( v , e + i ; j ) ,  v : 0,1, r ~ + l t l l  " ' ' 'Lk+lt lJ ,  i : 0 , . . . , l e  h j : 0,1. Y, = 
(v, [ + i; j )  means that  there exist v (g-overlapping) success-runs of length k, the  i trials 
pass after the occurrence of success-run of length k, and "j" (S or F )  has jus t  occurred at  
t - th trial. Remark  tha t  the  s ta te  (v, g; 0) does not  make any sense, and (v, 0; 0) = (v, 0) 

Since rr0 = (P0,Pl, 0 , . . . ,  0) and 

fli = eiB1 ~ : ~ Pll ,  if i : k, 
( O, otherwise, 

after some calculations, we obtain  

(2.10) H(_)(z ,w)  = wH(z)  
1 - w ( p ~  I)zlel H*(z) + p~ll~l)zltl H*'(z ) ) '  
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---- 0, 1) denotes the Igt-step transit ion probability from state  1 to s ta te  j ,  

( )' (p~i),p~el)) = (0,1) Poo POl , 

\ plo pl l  

~(0) = 1), and (Convention: p~O) = 0, ~'11 

H** (z) = ( P ~ 1 7 6  -f- P l l  Z -- P l l P O O Z 2 ) ( P l l  Z) k - 1  

Q(z) 

Expanding (2.10) in a Taylor series around w = 0 and considering the coefficient of 

w r, we obtain the probabili ty generating function of Tr (-) . 

PROPOSITION 2. The probability generating funct ion of  T ( - )  is 

(2.12) H ( - ) ( z )  = H(z)[p~Dzl~lH*(z)  + p~l)zl~lu**(z)]  r - l ,  r > 1. 

In the case of g = 0, Antzoulakos (1999) has also given the probabili ty generating 
function (2.12) with a slight differences due to the different set-up used there. Let T** 
be the random variable with the probabili ty generating function 

(2.13) G** (z) = p~i)zleIH. (z) + p~i/i)zieiH**(z). 

We show tha t  T ( - )  (r _> 2) can be decomposed as a sum of r independent  waiting t ime 
random variables. 

THEOREM 2.2. For r >_ 2, let Tj**, I < i < r - 1 be independent duplicates of  T** 
(with probability generating funct ion  (2.13)). Let T be as in Theorem 2.1. Then, T,  
TI**,... ,Tr* 1 are independent and 

r--1 
(2.14) T(_ ) d T + ~ T;*. 

j = l  

PROOF. The equation (2.12) implies the representation (2.14). The proof is com- 
pleted. [] 

Remark  2. Theorems 2.1 and 2.2 can be used for obtaining some simple approxi- 
mations to negative binomial distriutions of order k as r ~ co. This is accomplished by 

employing the central limit theorem on the differences T (+) - T, T ( - )  - T, which can 
be approximated by proper Normal distribution. Note tha t  

E[T  (+) - T] -- (r - 1)E[W;] = (r - 1)G*(1), 

= (r  - 1) (1 - pl X )(pl0 + p01)  
p]oPolp~{1 

E[T  ( - )  - T] = (r - 1)E[T}*] = (r - 1)G**(1), 
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= ( r -  1) [p~l) . 
Pl0 -4- P01 -- P01Plkl 1 + p~g[) 

PiOPolPkll 1 

(Pi0 + P 0 i ) (1  -- plkl) ] 

PlOPOlpkll 1 + [g]J ' 

where, "." means the differentiation. Similarly, by making use of the derivatives of the 
probability generating functions up to the second order, the variances can be obtained. 
However, we omit them, since the expressions are rather cumbersome. Note also that  
the numerical evaluation of the distribution of T is acquired by the expansion of (2.7), 
which nowadays can be easily achieved by computer  algebra systems. 

3. The asymptotic behavior 

In this section, the limiting behavior of the distributions treated in Section 2 as 
r --~ c~ are considered. We shall discuss the relationships between binomial distributions 
of order k and extended Poisson distributions of order k more generally. 

Following Aki (1985) (see also Aki et al. (1984)), the probability generating function 
of extended Poisson distributions of order k with parameters A1, A2, . . . ,  Ak is, 

,g ' (z ;A1,A2, . . . ,Ak)=exp - A i+  Aiz i , 
i=1 i=1 

the probability function is, 

g ( n ;  ,~l,  /~2, . . . , A k )  : 

k } k yr 
E e x p - - E , ~ i  n J = l  ~i  

y ,+2~+. . .+k~=,  i=1 [I~=1 yJ! 

3.1 Case O < g <_ k - 1  

THEOREM 3.1. I f  lim~-.oo rpoo = A > 0 and lim~__.~ rpl 0 : tt > 0, then the 

asymptotic distribution of T (+) - rk  + g(r - 1) + 1 is a mixture of an extended Poisson 
distribution of order k with parameters 

A~= fO,  i f  1 < i < s  (3.1) 
#, i f  s  

and a shifted duplicate of it, the mixing parameters being Pl and Po. 

PROOF. Evidently, 

lim P ( z )  = Pl + poz, lim Q(z) = 1, 
r---~oo r ---~(~) 

k - e - 1  

rlimccRk-t-1(PllZ) = E z ' ,  
i=0 

and therefore, 
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H(z)  Pk l l lP(z  ) 
l i m  z k _ l  - -  limoo Q(z)  - pl + poz, 

rP lOZU.(z )Rk_e_ l (P l lZ  ) k 
l i m  ( p l l z ) k - t  = # E zi" 

i = ~ + 1  

lim H*(z)  = z k, 
r ~ o o  

By vir tue of (2.9), the probabil i ty  generating function of the shifted random variable 

T (+) - rk  + g(r - 1) + 1 can be expressed as 

Z_rk+~(r_l)+lH(+)(Z ) = H(z )  [ z k _ l  " ( P l l )  ( k - ~ ) ( r - 1 )  �9 1 

and taking the limit as r --~ co, we get 

PloZH* ( z )Rk-e -1  (Pll Z) ] r-1 
A- (PllZ)k_ l ] , 

rlimcr z - r k + t ( r - 1 ) + l H ( + ) ( z )  = (Pl -~- poz )exp  - # ( k  - g ) +  # E zi ' 
i = s  1 

= + poz) (z; o , . . . ,  o , , , . . . , , ) .  

This completes the  proof. [] 

Theorem 3.1 s tates  tha t  the random variable T (+) - rk  + g(r - 1) + 1 converges 
in law to a mixture  of an extended Poisson dis t r ibut ion of order k with the parameters  
given by (3.1). 

lim P ( T  (+) - rk  + g.(r - 1) + 1 = n) 
~"--) (X) 

= (Pl + poz)g(n; 0 , . . . ,  0, # , . . . ,  #),  

= p l g ( n ; O , . . . , O , # , . . . , # )  + p o g ( n -  1 ; 0 , . . . , 0 , # , . . . , # ) .  

3.2 Case g < O 

THEOREM 3.2. I f  limr--.c~rp00 = X > 0 and limr-.o~ rpto = # > O, then the 
asymptotic distribution of T ( - )  - r k -  Igl(r - 1) + 1 is a mixture of  an extended Poisson 
distribution of order k with parameters 

(3.2) Ai = #, 1 < i < k, 

and a shifted duplicate of  it, the mixing parameters being Pl and Po. 

PROOF. By virtue of (2.12), the probabi l i ty  generating function of the  shifted 

random variable T ( - )  - rk  - Igl(r - 1) + 1 can be expressed as 

(3.3) Z - r k - [ ~ [ ( r - 1 ) T 1 H ( - ) ( z )  

r--1 

: z,(z  (1+ 
H**(z) \ z k p~l[I)g**(z ) 
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We investigate the limiting expression of (3.3) as r --* co. First ,  we consider the case of 
= 0. Then,  the equation (3.3) reduces 

Evidently 

therefore, 

From 

Z _ r k + l H ( r _ ) ( Z )  = z S ( z )  , ( H * _ ~ k Z ) ) r  
H * * ( z )  

lim r ( 1 - Q ( z ) ) = e x p  A z + #  z i , 
7 " - - + 0 0  

i = 2  ) 

( )r 1 + pmPloZ PooZ 

lim [ z - k H * * ( z ) ]  r = lim Pll 
~ - ~  ~ Q~(z) 

= exp - # k + p  z i . 

i=1 

[(1 - -P lo) r ]  k 

lim z H ( z )  _ lim P ( z )  = Pl + poz ,  
, ' ~  H**( z )  " - ' ~  POlPlOZ + P l l  - -  PllPOOZ 

we have the limiting expression 

{ lim z - r k + l H ( - ) ( z )  = (Pl + p o z ) e x p  - # k  + # z i , 

--= ( P l  -t- pOZ)r  ]~, ]~, . . . , ]~). 

Next, we consider the case of Igl > 1. I t  is easy to check tha t  l imr- ,m rp{l~ I) 
induction with  respect to If[ ([gt >- 1), and limr--,m H * ( z ) / H * * ( z )  = 1. Then  

( P ~ l e ~  r - '  
l i m  l + p { ~ l ) g * * ( z )  = e  ~'. 

Therefore we have the limiting expression for [gl -> 1 

~im z-~k-I~l(~-l)+lHr ; (Vl + poz)exp - . k  + .  ~ z' , 
i = 1  

= ( P l  -t- poZ)~ (Z ; /~ ,  , , . . . ,  # ) .  

The proof is completed. [] 

= # by 

Theorem 3.2 states tha t  the random variable T ( - )  - r k  - [gl(r - 1) + 1 converges 
in law to a mixture  of an extended Poisson distr ibution of order k wi th  the parameters  
given by (3.2). 

lim P ( T  ( - )  - r k  - Igl(r - 1) + 1 -- n) 
r ----+oo 

= (Pl + poz )g (n;  #,  # , . . . ,  # ) ,  

= p l g ( n ; # , # , . . . , # )  + P o d ( n -  1 ; # , # , . . . , # ) .  
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Notice tha t  the p.g.f. (2.12) for s is different from the respective p.g.L obtained by 
Koutras  (1997) and the asymptot ic  result in Theorem 3.2 for g -- 0 also differs from 
the respective one established by Koutras  (1997). However, the p.g.f. (2.12) for g = 0 
corresponds to the expressions (9.41) and (9.42) in Balakrishnan and Koutras  (2002). 

Remark 3. In the case o f t  = 0, g = k - 1, Koutras  (1997) investigated the asymp- 
totic behavior of the negative binomial distr ibution of order k. In the special case of 
iid Bernoulli trials, many  authors  studied the asymptot ic  behavior. For example, the 
case of g -- 0 was t reated by Phil ippou et al. (1983) (see Koutras  (1996b)), and the 
case of g = k - 1 was tackled by Hirano et al. (1991). Theorems 3.1 and 3.2 show the 
relationships between the negative binomial distributions of order k and the extended 
Poisson distributions of order k more generally. Thus, t-overlapping enumerat ion scheme 
provides further insight into the relationships among the distr ibutions of order k. 

4. The number of occurrences of success-runs 

In this section, we consider the distr ibution of the number  of t-overlapping occur- 
rences of success-runs of length k in the first n trials (n a fixed integer). Though the 
problem can be t reated in Markov dependent  sequence as Section 2, we deal wi th  iid 
case only for lack of space in this section. Assume tha t  Pol = Pll  = P, P00 = Plo = q, 
Pl = 0 and P0 =- 1. 

Let Xn,k be the number of g-overlapping occurrences of success-runs of length k in 
X1, X 2 , . . . ,  Xn.  The probabili ty generating function and the double  generating function 
of X,~,k are denoted by Cn(z) and O(z, w), respectively; 

o o  

On(Z) = E[z xn'k] ---- E P r [ X n , k  -- xlz  x, n >_ O, 
x = 0  

oK) 0<3 o o  

n = 0  n = 0  x = 0  

For the homogeneous case (i.e. At(v) = A, Bt(v) = B for all t > 1 and v > 0), the 
double generating function is 

(4.1) O(z,w) =Tr0 f~ (x ) z~w ~ 1', 

= 7ro[I - w (A + z B ) ] - l l  ', 

where, we denote 1 = (1, 1 , . . . ,  1) by the row vector of R 8 wi th  all its entries being 1. 
Each one of the two enumerat ion schemes (g _< 0, 0 < g _ k -  1) is t reated separately. 

We use the superscript pointing out  the enumerat ion scheme employed in a similar 
fashion as before. 

4.1 Case O < g <_ k - 1  
By sett ing P01 = Pl l  -- P, Poo = Plo = q in matrices A, B in Subsection 2.1, from 

the equation (4.1) with ~ro = (1, 0 , . . . ,  0), we have 

lr0[I - w(A + zB)] -1 = (a,  ( p w ) a , . . . ,  (pw)k- la ,  z ( p w ) k ~ , . . . ,  z(pw)2k-~- l f l ) ,  
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where, 
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1 - z(pw) k-e 

1 qw~-~.ki=l(PW) i-1 ZCpw)k-e + zqw(pw)k-eV'e  " "i 1' 
- -  - -  L i =  1 [ p'll) ) -- 

= 

k 1 -- qw E i : I  (pq/))i-1 -- z(pw) k-e -~- zqw(pw) k-!  E ~ = I  (pw) i -1  

Therefore,  the  double generat ing funct ion is 

( 4 . 2 )  

R k - l - 1  (pw) q- (1 -- Z ) ( p w ) k - ~ R e -  1 (pw) 

1 - qwRk-e-2(pw)  - ( p w ) k - e - l ( z p w  + qw) -- (1 -- z)qw(pw)k-eRe_l(p'w)" 

Expanding  (4.2) in a Taylor  series a round w = 0 and considering the coefficient of w n, 

we obta in  the  probabi l i ty  generat ing funct ion of X (+) r  say. n~k ' 

as: 
PROPOSITION 3. The probability generating function of X (+) is written explicitly n,k 

: 
k-e-1 [ ] (q )n l - I - . . . - t -n~  

E nx§247 po 
m=0 nl+2n2q-...+kn~=n-m L nl 'n2'"  'nk 

x 1 + q Z )  ( 1 -  z) nk-'+l+'''+na' 

k--1 [ 
+ ~ ~ n l + n 2 + . . . + n k  

m=k-e nl+2nz+...+knk=n--m n l , n 2 , . . . , n k  

x 1 + q Z )  ( 1 -  z) n~- '+l+' ' '+~k+l.  

Remark 4. In the case of g : k - 1, the probabi l i ty  generat ing funct ion was ob- 
ta ined by Hirano et al. (1991). 

4.2 Case g <_ O 
In the case of iid Bernoulli  trials, wi th  a slight modification of the par t i t ion  in 

Subsection 2.2, we can t rea t  the problem easier. To begin with, the  case of g < 0 is 
exa mine d ,  we consider the  par t i t ion  Cv = {Cv,0, Cv ,1 , . . . , cv ,k - l ,Cv ,e , . . . , cv , -1} ,  v = 
0, 1, [ n+-A~l where, " ' ' '  t kq-[~[ J' 

[n + lell c,,,={(v,i)}, g < i < k - 1 ,  v=O, 1,...,Lk+lelj, s=lCvl=k+lel. 

.. [n+lell �9 Res tar t ing  state: (v, m) ,  v = 0, 1 , . ,  tk+tel J, m : 0 , . .  , k - 1. Yt = (v, m) means 
tha t  there  exist v success-runs of length k by / -o v e r l ap p in g  counting, and m trailing S 
after  waiting state.  

�9 Wait ing state:  (v,g + i), v = 0, 1,. [n+lell �9 i = o , . . , I g l -  1. Yt = ( v , g +  i) 
means tha t  there  exist v runs of success-run of length k by / -ove r l app ing  counting, and 
the i trials pass af ter  the occurrence of success-run of length k. 
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From the equation (4.1) with ~ro = (1, 0 , . . . ,  0), we have 

7r0[I  -- w ( A  -k z B ) ]  -1  = ('7, (PW)~/, . . .  , ( p w ) k - i ~ ,  5, w S , . . . ,  w[e[ -15) ,  

where, 

= 1 6 = z ( P w ) k  
x"~k ,, x i 1 7 1 -- q w  E k _ l ( P W )  i - 1  -- ZW 'e' ( p w )  k '  1 -- q w  2-.~i=1 ~,pw) -- -- ZW '~' (pW)  k 

Therefore, the double generating function is 

(4.3) ~(-) (z, w) = Rk-I(pW) q- z(pw)kRitl_l (w) 
i - qwRk-1 (pw) -- zwlel (pw) k" 

For g = 0, recall that  R_l(W) -~ 0 from (2.5), the equation (4.3) reduces to 

R k - 1  (PW) 
(4.4) (I)(-)(z, w) = 1 - qwRk-l(pw) - z(pw) k" 

Clearly, the equation (4.4) corresponds to the double generating function in the case of 
non-overlapping enumeration scheme (see Koutras and Alexandrou (1995)). Therefore, 
the equation (4.3) holds for g _< 0. 

For e < 0, expanding (4.3) in a Taylor series around w = 0 and considering the 
coefficient of w n, we can obtain the probability generating function, ~n(z) say, 

k - 1  

( 4 . 5 )  = 

m=O nl-i-2n2q-.'.q-knk-b(k-k[~[)nk+]e]=n--m 

• 

k+lel-1 

m=k nl+2n2+...+knt~+(k+l~el)nk+lel=n-m 

I n 1  -~- n2 -+- �9 �9 �9 - -k  n k  + nk+]tl [ 
"1 

J n l , / t 2 , . . .  , n k ,  nk+l~ [ 

nl + n2 -t- " -  + nk + nk+l~ I / 
1 

J n l ,  n 2 ~ . . .  ~ n k ,  nk+[e[ 

Similarly, for g = 0, we can obtain the probability generating function, ~ ( z )  say, 

k, [ ] 
(4.6) ~n(Z) = E E nl + n2 + . . .  + nk 

m----0 nl+2n2q-. . .+knk=n--m / t l ' n 2 ' ' ' * ' T t k  

XpTt(q)ni-~'"-[-nk ( l + p  , n k  q Z )  

Combining the equations (4.5) and (4.6), we can obtain the probability generating func- 
tion o f Y( - )  r  say. 

as: 

PROPOSITION 4. For g <_ O, the probability generating function of X ( . ;  is written 

r  ---- 5(s H- (1 - 5(~))~n(z), 
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where  

1, i/ e = o ,  
5(~) = O, o therwise ,  

and where  ~n(Z),  ~n (Z )  are as in  (4.5) ,  (4.6) respect ive ly .  

P r o p o s i t i o n s  3 a n d  4 m a y  b e  r a t h e r  c o m p l e x  in  t h a t  i n n e r  s u m  is s u b j e c t  t o  t h e  

c o n d i t i o n .  However ,  we t h i n k  t h a t  t h e y  a r e  v e r y  he lp fu l  for  e x p l a i n i n g  t h e  c o m b i n a t o r i a l  

m e a n i n g s .  Har t  a n d  A k i  (2000) s t u d i e d  t h e  d i s t r i b u t i o n s  of  t h e  n u m b e r  o f  g - o v e r l a p p i n g  

o c c u r r e n c e s  of  succe s s - runs  of  l e n g t h  k in  t h e  f i rs t  n t r i a l s  ( n  a f ixed  i n t ege r ) .  T h e y  u sed  

a d i f fe ren t  t e chn ique :  t h e  m e t h o d  o f  c o n d i t i o n a l  g e n e r a t i n g  func t ions .  
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