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Abstract. In this paper, we investigate the exact distribution of the waiting time
for the r-th f-overlapping occurrence of success-runs of a specified length in a se-
quence of two state Markov dependent trials. The probability generating functions
are derived explicitly, and as asymptotic results, relationships of a negative binomial
distribution of order k£ and an extended Poisson distribution of order k are discussed.
We provide further insights into the run-related problems from the viewpoint of the
¢-overlapping enumeration scheme. We also study the exact distribution of the num-
ber of £-overlapping occurrences of success-runs in a fixed number of trials and derive
the probability generating functions. The present work extends several properties of
distributions of order k and leads us a new type of geneses of the discrete distribu-
tions.
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1. Introduction

Exact distributions on runs in independent trials go back as far as De Moivre’s era
(see Feller (1968)). For the last 20 years, exact distribution theory for so called discrete
distributions of order k (see Philippou et al. (1983)) has been extensively developed
by many authors in various situations and many works have appeared on the discrete
distributions of order k (see Aki and Hirano (1988), Hirano et al. (1991) , Han and Aki
(1998) and Uchida (1998)).

The relations between distributions of order k& have been investigated by many
authors. Hirano and Aki (1987) discussed relationships among the extended negative
binomial, the extended Poisson and the extended logarithmic series distributions of order
k. Philippou (1988) examined the interrelationships of multiparameter distributions of
order k. Koutras (1997) considered negative binomial distributions of order k and showed
that the limiting behavior is closely related to the class of distributions of the sum of
Poisson number of iid random variables.

Furthermore, relations among distributions of different orders have been studied.
Aki and Hirano (1994) investigated some properties of the geometric distributions of dif-
ferent orders. Several extensions and variations of their model were subsequently studied
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by Aki and Hirano (1995). Aki and Hirano (2000) pointed out that how to enumerate
success-runs is also very important in order to obtain the corresponding distributional
results in the case of the binomial distribution of order k. They proposed an enumeration
scheme called ¢-overlapping way of counting. In the case of £ = k — 1, it corresponds
to usual overlapping counting scheme (see Ling (1988)). For example, the sequence
SF(SSS)F(SS{S)S[S} SS}F(SSS) contains 5 (1-overlapping) success-runs of length 3.
The {-overlapping enumeration scheme derives the some interesting properties from the
distribution of order k. We believe that this enumeration scheme plays an important
role in the discrete distribution theory in future.

Recently, Han and Aki (2000) introduced the ¢-overlapping counting method when
¢ is a negative integer, and considered the distribution of the number of ¢-overlapping
occurrences of success-runs of length k in a sequence of a fixed number of trials by a
method based on the probability generating functions. When £ is a negative integer, it
is intuitively recognized that the two runs of length k are || apart from each other. For
example, the sequence SF(SSS)FS(SSS)SSSF(SSS) contains 3 ((—2)-overlapping)
success- runs of length 3. Remark that when ¢ < 0 there is a slight difference between
our definition of £-overlapping counting method in this paper and Han and Aki’s (2000)
definition.

Our aim of this paper is to provide the perspectives on the run-related problems from
the viewpoint of the f-overlapping enumeration scheme. We emphasize the importance
of this enumeration scheme. The present paper is organized as follows. In Section 2,
we study the waiting time distribution for the r-th f-overlapping occurrence of success-
run of length & in a sequence of {0, 1}-valued Markov dependent trials, and derive the
probability generating functions. We show that the corresponding variable is expressed
as a sum of r independent variables. For this distribution, Koutras (1997) used the
name Markov Negative Binomial distribution of order k. In Section 3, we investigate the
limiting behavior of the distributions treated in Section 2 as r — oo, and show that the
limiting behavior is closely related to an extended Poisson distribution of order k (see
Aki (1985)). In Section 4, we consider the distributions of the number of ¢-overlapping
occurrences of success-runs of length & in a sequence of a fixed number of trials, and derive
the probability generating functions. The ¢-overlapping enumeration scheme leads us a
new type of geneses of the distributions of order k.

The main tool for deriving the results in this paper is the Markov chain imbedding
method introduced by Fu (1986) firstly, which has a great potential for extending to other
problems (see Fu and Hu (1987), Chao and Fu (1989), chao (1991), Fu and Koutras
(1994), Koutras (1996a), Koutras and Alexandrou (1997), Koutras et al. (1995) and
Chadjiconstantinidis et al. (2000)).

2. The waiting time for the r-th occurrence

Let X, X1, X2, ... be a time homogeneous {0, 1}-valued Markov chain with transi-
tion probabilities,

(2.1) pij =P(Xi=j| Xio1 =1),

fort > 1, 4,7 = 0,1 and initial probabilities P(Xy = 0) = py, P(Xo = 1) = p;.
According to Koutras and Alexandou (1995), a non-negative integer random variable
V., is called Markov chain imbeddable variable of binomial type, if
(1) there exists a Markov chain {Y;,¢ > 0} defined on a state space Q,
(2) there exists a partition {C,, : v > 0} on the state space,
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(3) for every v, P(V,, =v) = P(Y, € C,),

) PY,€Cy|Yim1€Cy)=0forallw #v,v+1and t > 1.

Assume first that the sets C,, of the partition {C,,v > 0} have the same cardinality
s = |C,| for every v, more specifically C, = {cy0,¢0,15.--;Cv,s—1}

For the Markov chain {Y;,t > 0}, we introduce the s x s transition probability
matrices

At(v) (P(},t = Cy,5 l Yi-1 =c¢y z))sxs,
Bt(v) = ( (l/t = Cy41,j | Yio1 = cv,z))sxs,

the probability vectors of the t-step Y; of the Markov chain
F:0) = (P(Y: = o), PYe =co1),...,P(Yr = cyo-1)), ¢20,
and the initial probabilities
o = (P(Yo = ¢4,0), P(Yo = ¢v,1), ..., P(Yo = Cu,5-1))-

Let now T, r > 1 be the waiting time for the r-th f-overlapping occurrence of success-
run of length k. Then the probability generating function and the double generating
function of T, are denoted by H,.(z) and H(z,w), respectively;

H.(2) = E[2""] = ZPr[TT = n|2",
n=0

H(z,w) = ZH (2)w" = Z Z Pr[T;, = n|z"w

r=0n=0

For the homogeneous case (i.e. A¢(v) = A, By(v) = B for all t > 1 and v > 0), the
double generating function is

H(z,w) = szﬁz (sz (ryw )

n=0 r=0

= wzwoz:ﬂ,- [I—2z(A+wB)] ‘e
i=1
where, Bi = eB1, 1 < i < s. We denote the i-th unit vector of R®* by e; =
(0,.. ..,0).

The waatmg time for the r-th f-overlapping occurrence of success-run of length k
are denoted by T(+) and T with the superscript pointing out the enumeration scheme
employed; (+) indicates the case 0 < £ < k — 1 and (—) the case £ < 0. In this paper,
each one of the two enumeration schemes (£ < 0, 0 < £ < k — 1) is treated separately.

2.1 Case0<£<k-1

We consider the partition C, = {cy,0,Cv,1,- -+, Cok—1,Co,b—ks---yCp -1}, 0 =0,1,.. .,
[2=£], where,
. , n-—£
Coi={(v,8)}, £€—-k<i<k-1, v=0,1,..., reik s=|Cy| =2k —¢.
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To introduce a proper Markov chain {Y; : ¢t > 0}, we define Y; € ¢,; (or equivalently
m

Y; = (v,1)) as follows. For any sequence of outcomes of length ¢, say SF'S---FSS---8,
let m be the number of trailing successes, and let v be the number of ¢-overlapping
occurrences of success-runs of length k. We define Y; = (v,m) if m < k-1 and
Yi={(v,l—k+y)if m>k, where m —k =y (mod k — £).

We have
A+wB =
(70) (al) (’2) (’k_2) (:k_l) (,e—k) (,f-—k-i-l) (:_2) (1_1)
( Poo  Poi 0o - 0 0 0 0 - 0 0 \
peo 0 pnn - 0 0 0 0 .. 0 0
pio O 0 P11 0 0 0 0 0
pio 0 0 0 P 0 0 0 0
P1o 0 0 0 0 wp11 0 0 0
P10 0 0 0 0 0 P11 0 0
Po 0 0 0 0 0 0 cee P11 0
Pio 0 0 0 0 0 0 oo 0 P11
\pm 0 0 0 0 wWP11 0 .- 1] 0

The manipulation of partitioned matrix enables us to calculate the inverse matrix
[I — 2(A+ wB)|™! easily (see, for example, Zhang (1999)). We should make use of the
following symmetric partition.

K L
M N

?

I-2(A+wB) = ( )
(2k—)x (2k—£)

where K and N are k- and (k—¥£)-square matrices, respectively. Then, the inverse matrix
is given by

Kl'y+Xz7'y -Xz7!
-Z-y z-!

?

[I-2(A+wB)]™' = ( )
(2k—-€) x (2k—8)

where X = K~!L,Y =MK ' and Z = N - MK~'L. Since m = (po,p1,0,...,0) and

,Bi=6iBll= P11, if iz'kori:2k—£,
0, otherwise,

by algebraic manipulations, we get

wP(z)(p112)*!

(2.2) HP) (z,w) = - ,
[1 — w(p112)*~4|Q(2) — wporp10p™; L2¥ 1 Ry _p_1 (P11 2)

where,

(2.3) P(z) = p; + (popo1 — P1P00)?,
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k
(2.4) Q(z) = 1 — pooz — po1p102° Z(Pllz)z_z’
i=2
1+Z+z2+...+23’ r=0,1,2,...
(2.5) R.(z) = .
0, otherwise.

Expanding (2.2) in a Taylor series around w = 0 and considering the coefficient of w",

we obtain the probability generating function of Tr(+).

PROPOSITION 1. The probability generating function of T,§+) is
r—1

*1P(2) porpophy ‘2 Re—_e-1(p112)
26) HM(z) = (p112) z)k—t 4 PorP10P1y -1{M
( ) r ( ) Q(Z) (pll ) Q(Z)
r>1.
The probability generating function of the random variable T = T; for the first
occurrence of success-run of length k is given by
_ P(2)(puz)*!

@2.7) H(z) = BH(H(z,w)] =TS

Let T* be the waiting time for the first occurrence of success-run of length % in a
sequence of Markov dependent trials with transition probabilities (2.1) and initial con-
ditions P(Xo = 0) = 1, P(Xo = 1) = 0. Its probability generating function is derived
from (2.7) (setting po = 1,p; = 0) as

(2.8) H*(2) = (P01z)cgz(7;1)z)k___l .

We show that T,§+) (r > 2) can be decomposed as a sum of r independent waiting time
random variables.

THEOREM 2.1. Forr > 2,let T, 1 < j <7~ 1 be independent duplicates of T*
(with probability generating function (12 8)) which are also independent of T (with prob-
ability generating function (2.7)). Let W;, 1 <j<r—1 be gl 2,...,k— €+ 1}-valued
1id multi-state variables which take “1” with probability pu and “ i with probability
popi72 (6=2,3,...,k—€+1),

(k- ¢, if W;=1,

1+717, if W;=2,
Wr=4S . . .

i+ T}, if Wy=1i+1,

L k—€+TF, if Wy=k-£+1,

then T, WY,...,W}_, are independent and

T+ 4 T+ZW*.
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PROOF. From the equation (2.6), the probability generating function of T takes
the form

(2.9) HP(2) = H(2) [(p112)* ™" + (p102) H* (2) Rk—e-1(P112)]
Due to the definitions, the probability generating function of W} is

G*(2) = (p112)* "t + (p102) H" (2) Ri—e-1(p112),
which implies the independency of W}, 1 < j < r—1and T. Accordingly, the probability
generating function of 7'+ 377, ! W coincides with H$+)(z). a

r—1

Remark 1. The results of this subsection for overlapping success-runs (i.e. £ =
k — 1) reduce to the ones derived by Koutras (1997).

2.2 Cuasef <0

We treat the case of £ < 0. Suppose that the success-run of length k is observed.
Then we should restart the counting the success-run after |¢ trials pass (restarting
state). That is, if we have currently the success-run of length k, we must wait counting
the success-run from the next trial until || trials pass (waiting state). For example,
consider the sequence SF(SSS)FS(SSS)SSSF(SSS). Whenk =3,¢= -2 and r = 3,

we have Ts(_) = 17. We consider the partition

— 1 0 1 0 1 1
Cy = {Cv,Oacv,l, <o 9Cuk—15Cy 5 Cy p4+15Cp 410+ - 1€y, —15Cy —1> cv,O}’
n+ |¢
v=0,1,...,[k+|£| ,  Wwhere,

i={(v1)}, 0<i<k-1, v:o,l,,_.,["ﬂfl]

k+1e]°

O i ={L+i55)}, 1<i<lf-1, j=0,1,v=0,1,...,[

n+ |£|
k+ ¢

n+|€|]
k+ €

c},’e = (v,4;1), c,l,’o =(v,0;1), v=0,1,..., [
s=|Cy| =k +2)¢|.

o Restarting state: (v,m), v =0, 1,...,[%], m=0,...,k~1. Y; = (v,m) means
that there exist v (¢-overlapping) success-runs of length k, and m trailing S after waiting
state.

o Waiting state: (v,€ +i;5), v = 0,1,.. [gj;lgl] i=0,...,/¢,j=01 Y =
(v, £+ i;7) means that there exist v (€-overlapp1ng) success-runs of length k, the i trials
pass after the occurrence of success-run of length &, and “5” (S or F') has just occurred at
t-th trial. Remark that the state (v, ¢;0) does not make any sense, and (v, 0;0) = (v,0)

Since 7o = (po,P1,0,.-.,0) and
,3———631,: pll’ if z=k7
’ : 0, otherwise,
after some calculations, we obtain
wH(z)

(2.10) HO)(z,w) =

L= w(pie 2 H* (2) + gl 2MH ™ (2))
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where pgf‘) ( = 0,1) denotes the |¢|-step transition probability from state 1 to state j,

€|
Vi ¢ Poo Po1
(2.11) @%, Py = (0,1) ( ) ;
P1o P11

(Convention: pg?)) =0, pﬁ) =1), and

(Po1P1022 + P112 — P11P002%) (P11 z)k-1
Q(z)

Expanding (2.10) in a Taylor series around w = 0 and considering the coefficient of

H**(Z) —

w", we obtain the probability generating function of Tr(_).
PROPOSITION 2. The probability generating function of Tr(_) is

(212)  HO(2) = HRPE A H (2) + p{V M H (), r>1

In the case of £ = 0, Antzoulakos (1999) has also given the probability generating
function (2.12) with a slight differences due to the different set-up used there. Let T**
be the random variable with the probability generating function

(2.13) G**(2) = pig 2H" (2) + p{{V 21 H** (2).

We show that T~ (r > 2) can be decomposed as a sum of r independent waiting time
random variables. '

THEOREM 2.2. Forr > 2, let T;*, 1 <i < r —1 be independent duplicates of T**
(with probability generating function (2.13)). Let T be as in Theorem 2.1. Then, T,
", ..., T, are independent and

r—1

(2.14) TO L3 T

=1

ProOOF. The equation (2.12) implies the representation (2.14). The proof is com-
pleted. O

Remark 2. Theorems 2.1 and 2.2 can be used for obtaining some simple approxi-
mations to negative binomial distriutions of order k as r — oo. This is accomplished by

employing the central limit theorem on the differences Tr(+) - T, TT(_) — T, which can
be approximated by proper Normal distribution. Note that

E[T'Y) —T| = (r = )EW;] = (r — 1)G*(1),

—(r-1) (- ?lffe)(P}co_;L Po1)
PioPo1P11
E[T{) = T] = (r— DET}"] = (r - )G™ (1),

b
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k-1
¢)) P1o + Po1r — Po1P ¢
S ST
P1oPo1P11

(p1o + po1)(1 — p¥y)
’ k—1 + lel )
PioPo1P11

where, “” means the differentiation. Similarly, by making use of the derivatives of the
probability generating functions up to the second order, the variances can be obtained.
However, we omit them, since the expressions are rather cumbersome. Note also that
the numerical evaluation of the distribution of T is acquired by the expansion of (2.7),
which nowadays can be easily achieved by computer algebra systems.

3. The asymptotic behavior

In this section, the limiting behavior of the distributions treated in Section 2 as
r — oo are considered. We shall discuss the relationships between binomial distributions
of order k and extended Poisson distributions of order k£ more generally.

Following Aki (1985) (see also Aki et al. (1984)), the probability generating function
of extended Poisson distributions of order & with parameters Ay, Ag, ..., Ag is,

k k
z/’(z;/\h/\Zr'- '7’\k) = €Xp {_Z’\i + Z/\izi} ’
=1 i=1

the probability function is,

E i A
g(n;A1>A2a"'7)‘k): Z eXp{—ZA,,}——J:——Z—

x .
Y1+2y2++kyi=n || T
31 Case0<t<k~-1

THEOREM 3.1. If lim,_,orpoo = A > 0 and lim, oo 7p1g = p > 0, then the
asymptotic distribution of T,§+) —rk + £(r — 1) + 1 is a mizture of an extended Poisson
distribution of order k with parameters

] <1<
o v {0 visise
g, if +1<i<k,

and a shifted duplicate of it, the mizing parameters being p; and pg.

Proor. Evidently,

lim P(z) = p1 + poz, lim Q(2) =1,
r—00 r—00
k—t—1
i

lim Ry_¢_1(p112) = 2t
r—00 ‘

and therefore,
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k-1
H(z) _ lim I)HTI:)(Z) =p1+poz, lim H*(z) = 2%,

r—o0 zk'l =00

k
. prozH*(2)Rg_¢—1(p112) _ ;
oo (p112)*—* s Z =

i=€+1

By virtue of (2.9), the probability generating function of the shifted random variable
T{Y) — 7k 4+ £(r — 1) + 1 can be expressed as

_ H(z PV 2H*(2)Ri_¢— 2)]" !
L Thtr 1)+1H,(,+)(z) = zk(_l) .(pn)(k O(r-1) . [1 + P1o ((pl)lz,;kfll(pu )] ,

and taking the limit as r — oo, we get

k
lim 2DV (2) = (pr + poz) exp{”ﬂ (k=+p 3 }
700
i=841

= (pl +p02’)’l,b(2;0,...,O,IL,---,H)-

This completes the proof. O

Theorem 3.1 states that the random variable T\ — rk + £(r — 1) + 1 converges
in law to a mixture of an extended Poisson distribution of order k with the parameters
given by (3.1).

lim P(TY —rk 4+ 4(r —1)+1=mn)
r—00

= (pl +p0z)g(n;0a'"aoaﬂ7--'1u),
=p19(n;0,...,0, 1, ..., ) + pog(n — 1;0,...,0,u,...,1).

3.2 Casef£<0

THEOREM 3.2. If lim,_,ooTpoo = A > 0 and lim, oo 7™p10 = p > 0, then the
asymptotic distribution of T —rk — [€|(r — 1) + 1 is a mizture of an extended Poisson
distribution of order k with parameters

(3.2) Ai=p, 1<i<k,
and a shifted duplicate of it, the mizing parameters being p; and pg.

PrOOF. By virtue of (2.12), the probability generating function of the shifted

random variable T\~ — rk — [€|(r — 1) + 1 can be expressed as

(3.3) Z—'“k—lel(r—l)ﬁ-lH’g—)(z)

_ 2H() N O A ) SO
‘H**(z)'(pgfn) < Pz )'(H P10 Fre () '
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We investigate the limiting expression of (3.3) as r — oo. First, we consider the case of
£ = 0. Then, the equation (3.3) reduces

TR ) () = zH (z) '(H**(z)>r,

H**(2) 2k
Evidently
k
lim r(1 — Q(z)) = exp {)\z + ,uZz’} )
T—=00
i=2
therefore,
T
z
(14 22292 _ pose) (1= o))
. Jy A r 1
Jim ) = 0
k .
= exp {—pk +u2z’} .
i=1
From H P
lim 2HE) _ (2) = p1 + Poz,

= lim
r—oo H**(z) = r—c0 po1p10z + P11 — P11Poo?
we have the limiting expression

k
s —rk+1 g7 (— _ _ i
lim 2O () = (P1+POZ)GXP{ k3 }
1=

= (pl +Poz)¢(z§#a Ky 1“’)

Next, we consider the case of |¢] > 1. It is easy to check that lim,_, rpg(fl) = u by

induction with respect to |¢| (¢} > 1), and lim, o, H*(2)/H**(z) = 1. Then
(1€ g+ 1
lim (1 + W) = et
T—00 pll H**(z)

Therefore we have the limiting expression for [¢] > 1

k
lim 2~ mREC=DH g () () = (py + poz) exp {—uk + Z z‘} ,
r—00 i1

= (p1 +po2)¥(z; b, - - -, ).
The proof is completed. O

Theorem 3.2 states that the random variable T, ™) — rk — [¢|(r — 1) + 1 converges
in law to a mixture of an extended Poisson distribution of order k& with the parameters
given by (3.2).

lim P(T{7) —rk— {¢|(r—1)+1=mn)
r—00
= (p1 + poz)g(m; p, 1, - . -, 1),
=p1g(n; s phy -, 1) + pog(n — Ly g, p, -, ).
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Notice that the p.g.f. (2.12) for £ is different from the respective p.g.f. obtained by
Koutras (1997) and the asymptotic result in Theorem 3.2 for £ = 0 also differs from
the respective one established by Koutras (1997). However, the p.g.f. (2.12) for £ = 0
corresponds to the expressions (9.41) and (9.42) in Balakrishnan and Koutras (2002).

Remark 3. Inthe case of £ =0, £ =k — 1, Koutras (1997) investigated the asymp-
totic behavior of the negative binomial distribution of order k. In the special case of
iid Bernoulli trials, many authors studied the asymptotic behavior. For example, the
case of £ = 0 was treated by Philippou et al. (1983) (see Koutras (1996b)), and the
case of £ = k — 1 was tackled by Hirano et al. (1991). Theorems 3.1 and 3.2 show the
relationships between the negative binomial distributions of order k and the extended
Poisson distributions of order & more generally. Thus, ¢-overlapping enumeration scheme
provides further insight into the relationships among the distributions of order k.

4. The number of occurrences of success-runs

In this section, we consider the distribution of the number of Z-overlapping occur-
rences of success-runs of length k in the first n trials (n a fixed integer). Though the
problem can be treated in Markov dependent sequence as Section 2, we deal with iid
case only for lack of space in this section. Assume that pe1 = p11 = p, Poo = P10 = ¢,
p1=0and pp = 1.

Let X,  be the number of ¢-overlapping occurrences of success-runs of length & in
X1,X2,...,X,. The probability generating function and the double generating function
of X, 1 are denoted by ¢,(z) and ®(z,w), respectively;

Pn(2) = E[zX*] = ZPI”[Xn,k =z[2%, n>0,
=0

O(2,w) = Zqﬁn(z)w" = Z Z:Pr[XnJC = z]2"w".

n=0zxz=0

For the homogeneous case (i.e. A;{(v) = A, By(v) = B for all t > 1 and v > 0), the
double generating function is

o0 [0, @}
(4.1) ®(z,w) = mo (Z > fn(x)zzw") 1,
n=0z=0
= mwo[l —w(A+2zB)]"'1,
where, we denote 1 = (1,1,...,1) by the row vector of R® with all its entries being 1.

Each one of the two enumeration schemes (£ < 0,0 < £ < k—1) is treated separately.
We use the superscript pointing out the enumeration scheme employed in a similar
fashion as before.

41 Case0<£¢£<k-1
By setting po1 = p11 = p, Poo = p1o = ¢ in matrices A, B in Subsection 2.1, from
the equation (4.1) with mo = (1,0,...,0), we have

mwoll —w(A+2B)|™! = (e, (pw)a, .. ., (pw)* o, 2(pw)*B, . .. ,z(pw)zk‘e‘lﬂ) ,
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where,
1 — z(pw)*—*

T S, (w1 — 2(pw)* + zqu(pw)—t S ()t
1

= k : ey 1
1—quw i (pw) = — z(pw) = + 2qu(pw)*~* 32, (pw)i~?
Therefore, the double generating function is

(4.2) M) (z,w)

_ Ri—g—1(pw) + (1 — 2)(pw)*~*Re_1 (pw)
1 — quR_¢—2(pw) — (pw)k=4=1(2zpw + qw) — (1 — z)quw(pw)*~¢Ry_1(pw)

Expanding (4.2) in a Taylor series around w = 0 and considering the coefficient of w™,

we obtain the probability generating function of X T(;';c), ¢$L+)(z) say.

PROPOSITION 3. The probability generating function of X,(l+k) is written explicitly

as:
k—£-1 ni+---+ng
ny+ng+---+ng q
¢£1,+)(z) = E E [ p” (1—))

m=0 n;+4+2n3+---+kng=n—-m N1, N2, .. Mk

Nk—e
X (1 + Bz) (1 — z)™e-ertotm
q

k-1 nit--+ng
ny+ne+ -+ ng q
s > [ ] (2)

m=k—£ ni+2ny+--+knx=n—m N1, M2y -0 -5 Tk

Nk—¢
X (1 + Bz) (1 _ z)ﬂk—e+1+'"+nk+l'
q

Remark 4. In the case of £ = k — 1, the probability generating function was ob-
tained by Hirano et al. (1991).

42 Casef <0

In the case of iid Bernoulli trials, with a slight modification of the partition in
Subsection 2.2, we can treat the problem easier. To begin with, the case of ¢ < 0 is
examined.. we consider the partition C, = {cy,0,¢0,15---,Cuk=1,C08y---,Cp—1}, U =

¢
0,1,...,{%}7}], where,

£
tos = {wi)}, £<i<hk-1, v=o,1,..‘,[;’j|'€|'],s=|cv|=k+|e|-
¢ Restarting state: (v,m),v=0,1,...,[%,|z'], m=0,...,k—1. Y; = (v,m) means

that there exist v success-runs of length k by /-overlapping counting, and m trailing S
after waiting state.

o Waiting state: (v,£+1i), v =0,1,..., Z—i—ll%], i=0,..,/¢-1. Y, = (v,£+1)
means that there exist v runs of success-run of length k by ¢-overlapping counting, and
the ¢ trials pass after the occurrence of success-run of length k.
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From the equation (4.1) with wg = (1,0,...,0), we have
moll — w(A+2B)]7' = (7, (pw)7, . .., (pw)* 1y, 8, w8, ..., wl¥=16),
where,

1 B 2(pw)*

= , 6= . .
1—qu¥F (pw)i=! — zwltl (pw)* 1 - qu¥r (pw)i-1 — 2wt (pw)*

Therefore, the double generating function is

8

_ Re—a1(pw) + 2(pw)* Ry -1 (w)
1 - quRg_y(pw) — 2wl (pw)k’

For ¢ = 0, recall that R_,(w) = 0 from (2.5), the equation (4.3) reduces to

(4.3) () (2, w)

Ry—1(pw)

(44) 20 w) = 1 — quRy_1(pw) — z(pw)*’

Clearly, the equation (4.4) corresponds to the double generating function in the case of
non-overlapping enumeration scheme (see Koutras and Alexandrou (1995)). Therefore,
the equation (4.3) holds for £ < 0.

For ¢ < 0, expanding (4.3) in a Taylor series around w = 0 and considering the
coeflicient of w™, we can obtain the probability generating function, &,(2) say,

k-1

(45) &n(2) = > >

m=0 ni+2no+-+kng+(k+|€))ng e =n—m

o (A)TTIE (2 \
p e
D p

k+1€|-1
d ny+ng+ -+ 0+ N
> 2

m=k ni+2na+--+kng+k+|€)ni g =n—m 1,72, s Ty et 2)

A 2 ny+--+ng _Z— Tk +|e|
X zp » T .

Similarly, for £ = 0, we can obtain the probability generating function, ¢,(2) say,

ny+ng+ -+ N+ Ny g
L TR RPN (9 (7NN Y]]

k—1

(4.6) on(z) = Z Z

m=0 ny+2no+---+kng=n—-m

ni+---+ng nk
xp" (2) (1 + Bz) .
p q

Combining the equations (4.5) and (4.6), we can obtain the probability generating func-
tion of X 7(;13’ gf)(z) say.

ny +ng + -+ ng
n1,N2,...,Ng

PROPOSITION 4. For £ < 0, the probability generating function of Xft_k) is written
as:

$57(2) = 8(O)pn(2) + (1 - 6(£))n(2),
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where
1, i £=0,

6(¢) = .
0, otherwise,

and where £,(2), wn(2) are as in (4.5), (4.6) respectively.

Propositions 3 and 4 may be rather complex in that inner sum is subject to the
condition. However, we think that they are very helpful for explaining the combinatorial
meanings. Han and Aki (2000) studied the distributions of the number of ¢-overlapping
occurrences of success-runs of length £ in the first n trials (n a fixed integer). They used
a different technique: the method of conditional generating functions.
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