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Abst rac t .  In this paper a class of goodness-of-fit tests for the Rayleigh distribu- 
tion is proposed. The tests are based on a weighted integral involving the empirical 
Laplace transform. The consistency of the tests as well as their asymptotic distribu- 
tion under the null hypothesis are investigated. As the decay of the weight function 
tends to infinity the test statistics approach limit values. In a particular case the re- 
sulting limit statistic is related to the first nonzero component of Neyman's smooth 
test for this distribution. The new tests are compared with other omnibus tests for 
the Rayleigh distribution. 
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i .  Introduction 

Next to the exponential law, the Rayleigh distribution is the most widely known spe- 
cial case of the Weibull distribution. It arises from the Weibull density when the shape 
parameter is set equal to two. Also, the square root of a chi-squared X 2 random variable 
with v = 2, that  is of an exponential random variable, follows the Rayleigh distribu- 
tion. The Rayleigh distribution was originally derived in connection with a problem in 
acoustics, and has been used in modelling certain features of electronic waves and as the 
distance distribution between individuals in a spatial Poisson process. Most frequently 
however it appears as a suitable model in life testing and reliability theory. For more 
details on the Rayleigh distribution the reader is referred to Johnson et al. (1994). The 
appropriateness of the Rayleigh distribution as a model for non-negative measurements 
can be assessed by testing goodness of fit of the squared data to the exponential distri- 
bution. Hence, by applying this transformation to the data, all exponentiality tests can 
be utilized for the purpose of testing the goodness-of-fit to the Rayleigh distribution. 
Apart from such tests one can find in the literature a few additional procedures, often 
restricted though to a subset of alternatives to the Rayleigh model. See for example, 
Castillo and Puig (1997) and Auinger (1990). 

To fix notation, the Rayleigh distribution with density (2x/02) exp( -x2 /62) ,  x > 0, 
will be denoted by Ral(O). Suppose X1 , . . .  ,Xn,  are independent copies of a nonneg- 
ative random variable X with unknown distribution. On the basis of X 1 , . . . ,  Xn, the 
hypothesis to be tested is 

Ho : The law of X is Ral(O) for some 0 > 0. 
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Our tool for testing H0 will be the empirical Laplace transform (ELT), 

n 

l ,(t) = 1 E exp(- tXj) .  
j=l 

The ELT has been employed in estimation problems by, among others, Feigin et al. 
(1983), Gawronski and Stadtmiiller (1985), Laurence and Morgan (1987), CsSrg5 and 
Teugels (1990) and Yao and Morgan (1999). Baringhaus and Henze (1991) apparently 
initiated the ELT-approach in the context of goodness-of-fit testing, which was followed 
up by Baringhaus and Henze (1992), nenze (1993) and Henze and Meintanis (2002a). 
These authors utilize the ELT of properly scaled data for testing exponentiality. 

In this paper we study a family of omnibus tests for H0 that are based on the ELT 

Ln(t) = _1 ~2-~ exp(_tyj) ,  
n 

j = l  

of the scaled data Yj = X j / ~ , ,  j = 1 , . . . ,  n, where 8n denotes a consistent estimator of 
the scale parameter 8. To this end, note that the Laplace transform of Ral(1) is 

v~ L(t)= l--~--texp(~) [1-~(2)], 
where (I)(.) denotes the error function. Then the Laplace transform of Ral(8) is l(t) = 
L(St). Our approach is motivated by the observation that l(t) is the unique solution 
of the differential equation ty'(t) - [1 + (82t2/2)]y(t) + 1 = 0, subject to the condition 
limt-.oo y(t) = 0. Consequently, the random function t l ' ( t ) -[ l+(82t2/2)] ln( t )+l ,  t > O, 
should be close to the zero function under H0, provided that we employ a reasonable 
estimator ~}n of 8. 

In the spirit of Baringhaus and Henze (1991) we propose the statistic 

(1.1) Tn,a = n D2(t) exp(-at)dt ,  

for testing the null hypothesis H0, where Dn(t) = tL~(t) - [1 + (t2/2)]L~(t) + 1 and 
a > 0 is a constant. Rejection of H0 is for large values of T~,~. A closed-form expression 
for Tn,~, obtained by straightforward manipulations of integrals, is 

(1.2) Tn,a = n + l  ,~-~, [ _  1 + 
a n ( Y j + Y k + a )  

j , k = l  

Yj+Yk 2DYk +2 
(~ + Yk + a)2 + (Y~ + Yk + a) 3 

3(Yj + Yk) 6 ] 
+ ( y j + y k + a ) 4  + ( y j + y k + a ) S  J 

2 E  1 Yj + 1 
- + (yj + a)2 (Y, ~7 a)3 

j = l  

This expression shows that Tn,a, like each of the statistics dealt with in this paper, 
depends on X1 , . . . ,  Xn solely via Y1,--., Yn and thus has the desirable feature of being 
invariant with respect to scale changes. Consequently, the null distribution of Tn,a does 
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not depend on the parameter 0 of the Rayleigh distribution. The 'free' parameter a 
figuring in (1.2) offers great flexibility with regard to the power of a test based on Tn,a. 
From Tauberian theorems on Laplace transforms (see Baringhaus and Henze (1991), 
p. 552), it may be anticipated that choosing a small value of a, which means letting 
the weight function decay slowly, will give high power against alternative distributions 
having a point mass or infinite density at zero. On the other hand, a large value of 
a means putting most of the mass of the weight function near zero, which should give 
high power against alternatives that greatly differ in tail behavior with respect to the 
Rayleigh distribution. 

The paper is organized as follows. Section 2 deals with the weak convergence of 
Tn,a under H0, and the consistency of the test based on Tn,a. The theoretical properties 
of Tn,a are derived for two choices on the estimator of the scale parameter, namely 
the maximum likelihood estimator and the moment estimator. In both cases we show 
that,  under general conditions, the class of test statistics (T,~,a)a>o is 'closed at the 
boundary a -- oc' by establishing a 'limit statistic'. The limit statistic corresponding 
to the moment estimator for 0 is related to Neyman's smooth test for the Rayleigh 
distribution (see Section 6.3 of Rayner and Best (1989) for an account on smooth tests 
of fit). In Section 3 we present the results of a Monte Carlo study on the power of the 
new tests in comparison with several goodness-of-fit tests for the Rayleigh distribution. 
The final section illustrates the applicability of the proposed procedures on real data  
sets. 

2. Theoretical results 

In what follows, _~z) denotes weak convergence of random variables or stochastic 
processes, --~e is convergence in probability, op(1) stands for convergence in probability 
to 0, and i.i.d, means 'independent and identically distributed'. Finally, recall the nota- 
tion Yj = Xj/On from Section 1. The reasoning below follows similar lines as the proof 
of Theorem 2.1 in Henze and Meintanis (2002a). The starting point for asymptotics is 
the representation 

/o= Tn,a = Z~(t) exp(-a t )d t ,  

where 

(2.1) Zn(t) = - ~  1 + tYj + exp(- tYj)  - 1 , 0 < t < c~. 
j=l 

The process Zn is a random element of the set C[0, oc) of continuous functions on 
[0, oc), equipped with the metric p(g, h) = Ek~__l 2 -k  mini1, Pk(g, h)], where Pk(g, h) = 
max0<t<k Ig(t) - h(t)I. 

THEOREM 2.1. Let XI,..., Xn be a sequence of i.i.d, random variables with distri- 
bution Ral(O), and assume that 0 is estimated either by the method of maximum likelihood 
( U i )  or by the method of moments ( i O ) .  Then Zn ._~v Z in C[0, c~), where Z is a 
zero mean Gaussian process in C[0, c~) with eovariance kernel K(s ,  t). 

(a) I f  0 is estimated by the method of ML, the covariance kernel is given by 

s2t 2 
( 2 . 2 )  = + t )  - 0). 
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(b) If O is estimated by the method of MO, the covariance kernel is given by 

1] (2.3) K ( s ,  t) = ---4--L(s + t) + 2s2L(s )  { tL ( t )  - L ' ( t ) }  - 

+ 2t2L(t) [-~{sL(s) - L'(s)} - 1 ]  

+ ( ~ f f ~ )  s2t2L(s)L(t) (s,t > O). 

PROOF. (a) Without  loss of generality assume that  0 = 1 and let 0,~ = 
n n-1 ~-~j=l X2 be the ML estimator of 0. Fix an integer k, since weak convergence 

in (C[0, c~), p) is weak convergence on each interval [0, k], k E IN. For 0 _< t < c~, let 

(2.4) [( 1 ~ 1 + tXj + e x p ( - t X j )  - 1 + A(t)Un(t), Z~(t) = - -~  j = l  

where U~(t) = Tt -1 /2  E ~ = I ( X  2 - 1) and A(t) = E[(2X + t)Xexp(-tX)] = 2L(t). We 
first prove 
(2.5) max IZn(t) - Z*(t)l = op(1) 

0 < t < k  

and thus p(Z~, Z*) = op(1). To this end, a Taylor expansion of h(u) = exp( - tu ) ,  u > 0, 
around u = Xj gives 

( 1 + tYj + e -tYj = 1 + tXj + e -tXj - Aj(2Xj  + t )~e -tx~ + ~n,j(t), 

where Aj = Yj - Xj  and maxo<t<k In- 1/2 ~-~j~l ~n,j (t) l = op (1). Consequently, 

(2 .6 )  m a x  I g n ( t )  - 2 ~ ( t ) ]  = o p ( 1 ) ,  
O<t<k 

where 

Zn(t) = ~ 1  j=l ~ [{ (1 + tXj + ~ ) e  - tX~- 1 } -  Aj (2Xj  +t)~exp(- tXj )]  

The mean value theorem for h(u) = V~, u > 0, yields 0 n - 1  = (20*)- l (n  -1 2 i L l  X y - 1 ) ,  

where 0* lies between 0n and 1. Now use the compactness of [0, k], the consistency of 
~n, the continuity of n -1 n 2 ~-~j=i ( Xj + t)Xj exp (- tXj)  and the law of large numbers to 
obtain 

n 

max (OnO*) -l  l E ( 2 X j  + t ) X j e x p ( - t X j ) -  A(t) -- op(1), 
0 < t < k  j = l  

which in turn  implies P(Zn, Z~) = op(1). In view of (2.6), (2.5) follows. It thus remains 
to prove Z n _~z) Z in C[0, oo). Since the finite-dimensional distributions of Z* converge 
to centered multivariate normal distributions with a covaxiance structure given by the 
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kernel K(.,  .) in (2.2), the proof is finished if we can show tightness of the sequence Z~(-). 
To this end, let g(x, t) = [1 + tx + (t2/2)]e - tx  - 1 + (t/2)2A(t)(x 2 - 1). Then 

max Jg(X, s) - g(X,  t)] <_ Is - t ] M ,  
0_<t,s<_k 

where for A = k + k2/2, M = (k + A)X 2 + (A - k + 2)IXI + (k + ~) is a (positive) random 
variable satisfying E ( M  2) < co. Hence Z~(.) is tight and the proof is completed. 

(b) Let t~n = (2/vf~)n -1 ~-]~jn__ 1 X j  be the MO estimator of 0. The proof fol- 
lows along similar lines, with Z~ produced by replacing (t/2) 2 by t 2 and Un(t) by 
n-1/2 ~ = 1  [(XJ/x/-~) - 1/2], in the second term of the right hand side of (2.4). The value 
of M in the tightness bound is replaced by k X  2 + [2 - k +  {1 + (2/vr~)}A]IXI + (k+A).  [] 

The next result can be readily obtained by adapting the reasoning in the proof of 
Theorem 2.2 of Henze and Wagner (1997). 

COROLLARY 2A. Under the conditions of Theorem 2.1, we have 

T,~,o = Z~(t )  exp ( -a t )d t  z ,  Ta = Z 2 (t) exp ( -a t )d t .  

Remark 2.1. The distribution of Ta is that of ~-]~>1 uJ(a) N2, where N1, N2, . . .  are 
independent unit normal random variables and (vj(a)~>l are the nonzero eigenvalues 
of the integral operator O defined by 

Og(s) = K(s ,  t)g(t) exp(-at)dt .  

There is little hope to solve the equation Og(s ) --- vg(s ) and thus to determine vj(a) 
explicitly. However, we can obtain the expectation of Ta, via the relation 

E[Ta] = K(t ,  t) exp(-at)dt .  

Let us denote by T L (resp. T M) the asymptotic test statistic Ta corresponding to Z with 
covariance kernel given by (2.2) (resp. (2.3)). Then by straightforward manipulations of 
integrals we have: 

BIT L] = -4~-Y'~[25{2/:5(2a) - v/-~A6(2a)} - Z:5(a)] 

and 

E[T M] = ( ~  - 18) 1~ + a4~12 a 34V-~Lh(a)-~-24[f-2(2a)WVf~3(2a)  ] 

- 24x/~[Aa(2a) - 2Ah(2a)] + 25(4 - r)A6(2a), 

where 

s = fv(a, t)dt and ..<a) - 
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with f ~ ( a , t )  = t~ et2-at[1 - O(t)], 

Let us now denote by T L a  (resp. TMa) the test statistic Tn,a when 0 is estimated 
by the method of M L  (resp. method of M O ) .  The next result studies the asymptotic 
behavior of the (suitably rescaled) test statistics TLa and TM~. The asymptotic test 
statistic corresponding to TnM, a is related to the first nonzero component of Neyman's 
smooth test. For further examples on the connection between weighted integral test 
statistics and components of smooth tests of fit, see Baringhaus et al. (2000). 

n THEOREM 2.2. A s s u m e  that  n is f ixed, and  let f'n = n -1 ~j=l YJ and  f'n k -- 
n k n - 1  E j = I  Y j  ' k ~ 2. Then  we have, 

and 

(a) T L := lim a Z T  L = 20n(21)3- 3l~n) 2, 

(b) T M := lim a b T M  a = 6n(1~2- 1) 5. 
a - - *  O O  

PROOF. (a) Observe that Tn,a = f ~  g ( t ) e x p ( - a t ) d t ,  where g(t)  = Z2n(t). A 
Taylor expansion gives 

n 

zn(t)  - t~ 1 ~ ( 5 2  _ 1) + - - -  

2 ~/-n j = l  

n 

t 3 1 E ( 2 y  9 _  3Yj) + O(t4) ,  
6 v~ j=  1 

as t - , 0  +. 

Since the M L  estimator is employed in Yj, we have }-'~=1 (yj2 _ 1) = 0. Hence 

t6 n 
g(t) ~ ~ 2Y~ 3 - 3 , as t -~ 0+. 

L~--I 

Application of Proposition 1.1 of Baringhans et al. (2000), yields the first asymptotic 
result. 

(b) The Taylor expansion now gives 

t4 n 
g ( t ) ~ ~  - 1  , as t - , 0  +. 

Application of the same proposition as in part (a) yields the second asymptotic result. D 

R e m a r k  2.2. Note that as n -* oc, T L measures the deviation of 2E[(X/0) 3] from 
3E[(X/O)]  whereas T M measures the deviation of E [ ( X / O )  2] from unity, both being 
zero under the null hypothesis. Moreover, T M enjoys an interesting relation with the 
first nonzero component of Neyman's smooth test for Ho: The first three orthogonal 
polynomials for the Rayleigh density are ho(x; 0) = 1, hi (x; 0) = cl [(x/0) - x/-~/2], and 

h2(x;  O) -- c2 4 - 7r 0 + 2-(4 --- ~r) ' 
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where c 1 ---- 2 / V / ( 4  - -  71") and c2 = 2V/(4 - r0/(16 - 57r). As it was pointed out by a ref- 
eree, these polynomials are a special case of the so-called speed polynomials that  emerge 
in the solution of the Boltzmann and the Fokker-Planck equation (see Clarke and Shizgal 
(1993)). The k-th component of Neyman's smooth test ~2,~k = n -1/2 Y~=I hk(Xj ,  On) 
vanishes for k = 1, when 0 is estimated by the method of MO. The corresponding 
asymptotic test statistic can be written as T M = (6/c2)s Hence T M, apart from a 
constant factor, coincides with the square of the first nonzero component of Neyman's 
smooth test based on the polynomials that are orthogonal with respect to Ral(O). 

We now consider the asymptotic behavior of Tn,a in a more general, nonparametric, 
setting. Our result is a weak limit law for Tn,a under fixed alternatives to H0. 

T H E O R E M  2 .3 .  

X is not degenerate at zero. 
(a) If  E ( X  2) < 0% we have 

(2.7) n - i T  L 
gt ,a  

Assume that the distribution of the nonnegative random variable 

exp(-a t )d t ,  

whereas if  E ( X  2) = oc, we have 

(2.8) n - i T  L P 6a -5. 
n , a  

(b) I f  E ( X )  < oo, we have 

/7[ ( (2.9) n - ' T  M P t v  ( 
""~ ' \ 2 E ( X ) ]  - 1 +  

whereas if  E ( X )  = oc, we have 

(2.10) n - i T  M P n , a  ) 6a-5- 

L ~ 2 ~ ) )  + l j  exp(-at )d t ,  

PROOF. (a) Starting with (1.1) and using D2n(t) < [3 + (t2/2)] 2, dominated con- 
vergence and Fubini's theorem yield the convergence of E ( n - I T L a )  to the right-hand 
side of (2.7) or (2.8) respectively, according to whether E ( X  2) < oo or = cx). Also 
Var(n- lTLa)  --+ O. Notice that t}n ~ oo almost surely if E ( X  2) = cxz. 

(b) It follows the same reasoning as the proof of part (a). [] 

Since the right-hand sides of (2.8) and (2.10) are always positive, and the right- 
hand sides of (2.7) and (2.9) are positive if X does not follow the Rayleigh distribution, 
it follows from Corollary 2.1 and Theorem 2.3 that a level a-test  that rejects H0 for 
large values of TLa or TMa, is consistent against each fixed alternative distribution not 
degenerate at zero. 
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Table 1. Percentage points based on 50 000 Monte Carlo samples of size n = 20 (first line) 
and n = 50 (second line), for a E {0.5, 1.0, 2.0, 5.0, 10.0) and significance level (~. 

a = 0.5 1.0 2.0 5.0 10.0 

(~---- 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 

T L a  4.33 3.03 0.37 0.27 0.021 0.015 0.213 0.153 0.395 0.285 

4.66 3.34 0.38 0.28 0.021 0.015 0.223 0.163 0.425 0.305 

TnM, a 3.35 2.31 0.22 0.16 0.822 0.592 0.354 0.264 0.225 0.165 

3.63 2.58 0.23 0.17 0.842 0.602 0.374 0.264 0.225 0.165 

B H  L 0.58 0.41 0.30 0.22 0.13 0.097 0.030 0.022 0.712 0.512 

0.56 0.41 0.31 0.22 0.14 0.099 0.033 0.023 0.822 0.582 

B H  M 0.37 0.27 0.18 0.13 0.070 0.051 0.022 0.016 0.014 0.982 

0.37 0.27 0.18 0.13 0.072 0.052 0.022 0.016 0.014 0.010 

H E  L 0.18 0.13 0.059 0.043 0.014 0.992 0.112 0.793 0.102 0.713 

0.19 0.14 0.060 0.043 0.014 0.010 0.122 0.853 0.123 0.834 

H E  M 0.088 0.064 0.022 0.016 0.372 0.272 0.323 0.243 0.103 0.724 

0.088 0.064 0.022 0.016 0.392 0.282 0.323 0.243 0.123 0.804 

H M  i 16.0 13.4 2.30 1.82 0.27 0.21 0.702 0.512 0.173 0.103 

16.2 13.4 2.28 1.81 0.27 0,21 0.812 0.592 0.243 0.163 

H M  M 15.5 13.0 2.04 1.62 0.20 0.16 0.512 0.352 0.433 0.313 

15.6 13.0 2.04 1.62 0.21 0.16 0.522 0.382 0.433 0.313 

H M  L 1.62 1.20 0.49 0.36 0.11 0.086 0.011 0.742 0.152 0.843 

1.58 1.19 0.49 0.36 0.13 0.093 0.014 0.010 0.222 0.142 

H M  M 1.23 0.92 0.32 0.24 0.072 0.050 0.992 0.632 0.272 0.192 

1.23 0.93 0.33 0.25 0.076 0.056 0.982 0.682 0.272 0.202 

O.a b denotes the number 0.a • 10 -b.  

3. Simulations 

This section presents the results of a Monte Carlo study conducted to assess the 
power of the new tests. We compare the new tests with alternative procedures which 
were initially developed in order to test goodness-of-fit to the exponential distribution. 
However, tests of fit for the Rayleigh distribution result if we apply these procedures 
to the squared data yj2, instead of Yj, j = 1 ,2 , . . .  ,n. All calculations were done at 
the Department of Engineering Sciences, University of Patras, using double precision 
arithmetic in FORTRAN and routines from the IMSL library, whenever available. The 
proposed procedures are compared with the following tests for several values of the weight 
parameter a: 

i) The tests of Baringhaus and Henze (1991), 

~0 ~ B H  = n [(1 + t )r  + ~ ( t ) ]  u exp( -a t )d t ,  
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Table 2. Percentage of rejection for 10 000 Monte Carlo samples of size n = 20 at significance 
level a -- 0.05. 
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TLa BH L HE L HM L HM L T L BH L HE L HM L HM L 
, r t , a  

aItern, a = 1.0 a = 2.0 

W(1.0) 97 93 93 86 83 96 92 91 85 83 

W(2.0) 5 5 5 5 5 5 5 5 5 5 

W(3.0) 40 52 53 45 41 47 51 50 47 27 

G(1.5) 76 71 71 56 57 75 69 68 59 61 

G(2.0) 43 43 43 30 36 44 43 43 36 41 

IG(0.5) 98 98 98 96 96 98 98 98 95 96 

IG(1.5) 48 63 64 51 61 57 65 65 60 65 

LN(0.8) 66 75 75 62 70 71 75 75 70 74 

LN(1.5) * * * 99 99 * * * 99 99 

GO(0.5) 84 70 69 55 47 80 65 63 52 49 

GO(1.5) 57 32 30 24 15 46 25 24 18 15 

PW(1.0) 43 14 12 23 9 30 8 7 13 6 

PW(2.0) 99 91 90 86 64 98 84 82 75 54 

LF(2.0) 70 52 51 38 33 63 47 46 35 36 

LF(4.0) 57 38 36 26 23 49 34 32 24 26 

EP(1.0) 70 47 46 36 26 61 40 40 30 27 

EP(2.0) 16 28 29 26 35 22 30 29 35 24 

PE(3.0) 88 72 71 55 50 83 67 66 53 53 

PE(4.0) 60 43 43 29 29 54 40 40 30 34 

, denotes power 100%. 

and Henze (1993) 

H E  = n Cn( t )  1 + t e x p ( - a t ) d t ,  

where  Cn( t )  deno te s  the  E L T  of y j 2  We d e n o t e  by  B H  L (resp. B H  M) a n d  by  H E  L 

(resp. H E  M) t he  tes t s  in  which  the  d a t a  Yj are c o m p u t e d  by  e m p l o y i n g  the  ML e s t i m a t o r  

(resp. MO e s t i m a t o r )  for 0. C o m p u t a t i o n a l l y  s imple  forms for the  tes t s  s t a t i s t i c s  c a n  be  

found  in  Henze  (1993). 

ii) The tests of Henze and Meintanis  (2002b), 

H M  = n [ S n ( t )  - tC,~(t)]2w(t)dt, 

where  Cn(t)  = n -1  ~j~--1 c~ S~(t)  --- n -1  ~jn__l s in( ty j2) ,  a n d  w(t)  is a weight  

func t ion .  W h e n  w(t)  = e x p ( - a t ) ,  H M ~  (resp. H M1  M) deno te s  the  tes t  c o r r e s p o n d i n g  

to  the  ML e s t i m a t o r  (resp. the  M O  e s t i m a t o r )  for 0. For  w(t)  = e x p ( - a t ~ ) ,  t he  r e s u l t i n g  

tes ts  are d e n o t e d  by  H M ~  a n d  H M  M.  C o m p u t a t i o n a l l y  s imple  forms for t he  t e s t  

s t a t i s t i cs  c an  be  found  in  Henze  a n d  M e i n t a n i s  (2002b). 

E m p i r i c a l  c r i t ica l  va lues  for these  tes t  s t a t i s t i c s  were c o m p u t e d  based  on  50 000 

M o n t e  Car lo  r ep l i ca t ions  a n d  are g iven  in  T a b l e  1 for s ignif icance level a = 0.05 a n d  

c~ = 0.10. 
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Table 3. Percentage of rejection for 10 000 Monte Carlo samples of size n = 20 at significance 
level (~ = 0.05. 

TL, a B H  L H E  L H M  L H M  L TL, a B H  L H E  L H M  L H M  L 

altern, a --- 5.0 a --- 10.0 

W(1.0) 95 90 90 83 81 93 88 82 79 78 

w(2.0) 5 5 5 5 5 5 5 5 5 5 
W(3.0) 52 46 46 22 0 51 41 41 0 0 

G(1.5) 74 67 67 62 61 72 66 69 59 58 

G(2.0) 45 43 44 42 43 45 43 57 41 41 

IG(0.5) 98 98 97 96 95 98 97 94 04 94 

IG(1.5) 63 66 67 67 67 65 67 74 65 64 

LN(0.8) 75 76 76 74 74 76 75 79 72 72 

LN(1.5) . . 99 99 99 * 99 97 98 98 

GO(0.5) 74 59 59 49 47 69 56 58 44 43 

GO(1.5) 34 20 20 14 14 29 18 32 12 12 

PW(1.0)  13 5 5 4 1 9 3 5 1 0 

PW(2.0)  93 73 72 51 41 88 65 43 37 34 

LF(2.0)  56 43 43 36 36 52 41 51 34 33 

LF(4.0)  41 30 31 26 26 38 29 44 25 24 

EP(1 .0)  51 34 34 26 25 45 31 42 23 22 

EP(2 .0)  28 29 29 19 0 28 25 25 0 0 

PE(3 .0)  77 62 62 54 52 72 59 63 50 49 

PE(4 .0)  48 38 39 35 35 45 37 52 33 33 

* denotes power 100%. 

At the suggestion of a referee, we have also included in the comparisons the 
Kolmogorov-Smirnov (KS) exponentiality test performed on the squared data, imple- 
mented via Algorithm 2 of Edgeman and Scott (1987). 

For the nominal level 5%, Tables 2-6 show power estimates of the tests under 
discussion. The entries are the percentages of 10 000 Monte Carlo samples that resulted 
in rejection of H0, rounded to the nearest integer. 

The following alternative distributions are considered, all concentrated on the pos- 
itive half-line: 

�9 the Weibull distribution with density 8x ~ e x p ( - x ~  denoted by W(8), 
�9 the gamma distribution with density F ( o ) - i x  8-1  e x p ( - x ) ,  denoted by F(0), 
�9 the inverse Gaussian law IG(O) with density (8/2~)1/2x-3/2 exp[ -8 (x  - 1)2/2x], 
�9 the lognormal law LN(O) with density (0x) -1 (2r) -1/2 exp[-( logx)2/ (202)] ,  
�9 the Gompertz law GO(O) having distribution function 1 - exp[0- i (1  - eX)], 
�9 the power distribution PW(8) with density O-ix (1-~176 0 < x < 1, 
�9 the linear increasing failure rate law LF(O) with density (1 + 0x) e x p ( - x -  8x 2/2), 
�9 the exponential-power EP(8) law having distribution function 1 - e x p [ 1 - e x p ( x ~  
�9 the Poisson-exponential law PE(0) ,  which is the distribution of E1 + . . .  + EN, 

where N, El ,  E 2 , . . .  are independent, N has a Poisson distribution with E[N] = 0, and 
for j >_ 1, Ej is exponentially distributed with parameter equal to one. 

These distributions comprise widely used models in reliability and life testing, areas 
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Table 4. Percentage of rejection for 10 000 Monte Carlo samples of size n ---- 20 at significance 
level a = 0.05. 
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TMa BH M HE M HM M HM M TMa BH M HE M HM1M HM M 

altern, a = 1.0 a ---- 2.0 

W(1.0) 96 94 94 80 83 96 95 94 84 86 

W(2.0) 5 5 5 5 5 5 5 5 5 5 

W(3.0) 35 47 47 41 16 43 44 41 35 0 

G(1.5) 72 73 72 47 58 75 75 73 57 63 

G(2.0) 37 44 45 23 38 43 48 47 34 44 

IG(0.5) 96 98 98 93 96 98 99 98 96 97 

IG(1.5) 33 62 64 38 62 50 67 69 57 69 

LN(0.8) 55 74 75 50 69 66 77 78 66 76 

LN(1.5) , , , 99 99 , , , 99 99 

GO(0.5) 84 75 72 52 53 83 75 71 54 56 

GO(1.5) 60 40 37 25 22 54 38 34 24 23 

PW(1.0) 50 24 19 28 22 37 21 19 26 24 

PW(2.0) 99 96 94 87 82 99 95 93 85 84 

LF(2.0) 70 57 55 35 37 68 58 54 38 41 

LF(4.0) 58 43 41 24 27 54 43 39 27 30 

EP(1.0) 71 55 52 35 34 67 54 49 36 35 

EP(2.0) 13 24 25 25 20 18 24 24 29 24 

PE(3.0) 88 76 73 50 53 86 76 72 54 57 

PE(4.0) 61 47 45 25 32 57 49 45 31 37 

* denotes power 100%. 

w h e r e  t h e  R a y l e i g h  d i s t r i b u t i o n  is m o s t  f r e q u e n t l y  e n c o u n t e r e d ,  a n d  i n c l u d e  d e n s i t i e s  

f w i t h  i n c r e a s i n g  a n d  d e c r e a s i n g  h a z a r d  r a t e s  f ( x ) / ( 1  - F ( x ) )  as wel l  as  m o d e l s  w i t h  

U - s h a p e d  a n d  i n v e r t e d  U - s h a p e d  h a z a r d  func t ions .  

T h e  m a i n  conc lus ions  t h a t  c a n  b e  d r a w n  f rom t h e  s i m u l a t i o n  r e su l t s  a r e  t h e  fol low- 

ing: 
1. I n  m o s t  cases  a n d  for t h e  s a m e  va lue  of  a ,  t h e  t e s t  s t a t i s t i c  in  w h i c h  t h e  M O  

e s t i m a t o r  is e m p l o y e d  is m o r e  p o w e r f u l  t h a n  t h e  one  in  w h i c h  t h e  ML  e s t i m a t o r  is 

e m p l o y e d .  Di f fe rences  in  p o w e r  a r e  m o r e  p r o n o u n c e d  w h e n  t e s t i n g  a g a i n s t  one  of  t h e  

d i s t r i b u t i o n s  in  t h e  s e c o n d  p a r t  of  t h e  t a b l e s  (GO, P W ,  L F ,  EP ,  PE) .  
2. U n d e r  a l t e r n a t i v e s  b e l o n g i n g  to  t h e  f irst  p a r t  of  t h e  t a b l e s  ( W ,  G, IG,  L N )  a n d  

for a = 1.0 or  a = 2.0, T L a n d  T M a re  e i t h e r  less p o w e r f u l  o r  have  a s l igh t  a d v a n t a g e  

over  t h e  m o s t  p o w e r f u l  of  t h e  o t h e r  t e s t s ,  t h i s  b e i n g  t h e  B a r i n g h a u s  a n d  H e n z e  (1991) 

or  t h e  Henze  (1993) t e s t .  Fo r  t h e  s a m e  va lues  of  a b u t  for a l t e r n a t i v e  d i s t r i b u t i o n s  

b e l o n g i n g  t o  t h e  s e c o n d  p a r t  of  t h e  t ab l e s ,  t h e  t e s t s  p r o p o s e d  h e r e i n  a r e  in  m o s t  cases  

t h e  m o s t  p o w e r f u l  ( a t  t i m e s  b y  a w i d e  m a r g i n ) ,  u s u a l l y  fo l lowed b y  t h e  B a r i n g h a u s  a n d  

H e n z e  (1991) t e s t .  
3. Fo r  a = 5.0 o r  a = 10.0 a n d  for  a l t e r n a t i v e  d i s t r i b u t i o n s  c o n t a i n e d  in  t h e  f i rs t  

p a r t  of t h e  t ab l e s ,  t h e  s i t u a t i o n  r e p o r t e d  a b o v e  pe r s i s t s ,  t h e  on ly  d i f fe rence  b e i n g  t h a t  

now H M  i is in  s o m e  cases  t h e  b e s t  t e s t .  Fo r  t h e  s a m e  va lues  of  a b u t  for a l t e r n a t i v e  

d i s t r i b u t i o n s  b e l o n g i n g  to  t h e  s e c o n d  p a r t ,  T L o u t p e r f o r m s  i t s  c o m p e t i t o r s  in  t h e  g r e a t  / t~a 



148 SIMOS MEINTANIS  AND G E O R G E  I L I O P O U L O S  

Table 5. Percentage of rejection for 10 000 Monte Carlo samples of size n = 20 at significance 
level a = 0.05. 

TMa B H  M H E  M H M  M H M  M TMa B H  M H E  M H M  M H M 2  M 

altern, a -- 5.0 a = 10.0 

W(1.0)  96 96 96 92 92 96 96 96 96 95 

W(2.0)  5 5 5 5 5 5 5 5 5 5 

W(3.0)  45 40 37 14 2 44 40 41 37 32 

G(1.5) 77 77 76 70 70 77 77 78 77 75 

G(2.0) 49 49 48 48 46 47 48 54 49 47 

IG(0.5)  99 99 98 98 97 99 99 98 99 98 

IG(1.5)  62 66 65 70 67 60 62 68 65 64 

LN(0.8)  75 77 76 78 76 74 75 77 76 75 

LN(1.5)  * * * * * * * * * * 

GO(0.5) 80 79 80 68 68 81 80 81 80 78 

GO(1.5) 46 44 50 32 34 47 45 51 46 46 

P W ( 1 . 0 )  25 25 41 30 33 26 25 33 29 33 

P W ( 2 . 0 )  97 97 98 94 96 98 97 98 97 98 

LF(2 .0)  65 63 64 50 52 65 64 67 64 62 

LF(4 .0)  50 48 50 38 39 50 49 54 49 47 

EP(1 .0 )  62 60 63 46 48 62 61 65 61 60 

EP(2 .0 )  21 19 17 17 17 20 18 18 17 14 

PE(3 .0 )  83 82 82 70 72 83 82 84 82 81 

PE(4 .0 )  55 54 54 45 45 55 54 60 54 52 

* denotes power 100%. 

Table 6. Percentage of rejection for 10 000 Monte Carlo samples of size n ---- 20 at significance 
level (~ = 0.05. (1) 

W G I G  L N  GO P W  L F  E P  P E  

T L 91 5 46 69 44 98 66 76 * 62 22 5 79 46 33 38 28 67 41 

T M 96 5 39 78 50 99 66 77 * 79 41 18 96 63 48 59 18 81 55 

K S  86 5 39 57 32 97 56 67 * 56 23 16 87 38 26 35 25 56 30 

* denotes power 100%. 

(Ddistributions from left to right as they appear in Tables 2-5. 

majority of cases. When the MO estimator is employed in the test statistics, then TMa 
is either the best or (with the exception of testing against the PW(1.0)  distribution) the 
second best test, outperformed only by the H E  M test. 

4. It can be seen from Table 6 that, as a ~ co, the resulting 'limit tests' based 
on Tn L and T M retain the characteristics already revealed in Tables 2-5. For example 
under the G(2.0) alternative, the power of both the TLa and the TM~ tests is not sig- 
nificantly affected by the value of a. Then the corresponding 'limit statistic' T L (resp. 
Tn M) has a similar power to the test based on TLa (resp. TMa), uniformly in a. In other 
cases however, such as testing against the PW(1.0)  distribution, the power of T L (resp. 
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T M) greatly differs from that of the test based on TLa (resp. TMa) for a ---- 1.0 or 2.0. 
Despite the fact that TLa and TMa are overall more powerful than the corresponding 
'limit statistics', the tests based on T L and T M have considerable power against specific 
alternatives, and they are certainly more powerful than the KS test. 

By taking into account the competitive performance of the BH, the HE and 
the HM test reported in Baringhaus and Henze (1991), Henze (1993) and Henze and 
Meintanis (2002b), respectively, against classical procedures, including the Kolmogorov- 
Smirnov and the Cram~r-von Mises procedures, we conclude that TLa and TM~ (perhaps 
with a compromise value for a, such as a = 2.0), constitute serious competitors for the 
existing goodness-of-fit tests for the Rayleigh distribution. 

4. Real data examples 

In this section we apply the proposed procedures to two data  sets which have been 
recently employed by researchers, and compare their conclusions based on alternative 
methods, to the conclusions reached by our methods. The first data  set represents 
26 fracture toughness measurements for steels at given temperatures, and appears in 
Bowman and Shenton (2001), Section 4. The authors report a satisfactory fit for this 
data  set to a two-parameter (location-scale) Weibull model with known shape parameter 
equal to two (the Rayleigh distribution), and estimated location parameter equal to 
25.85. After subtracting the estimate of the location parameter, we have applied the 
proposed procedures to the toughness data and the results are shown in Fig. 1. They 
represent in logarithmic scale, the values of the two test statistics TLa and TMa, for 
several values of the weight parameter and the corresponding critical points (CR L and 
CR M) computed by simulation. Regardless of the choice of a and the estimation method 
for ~ (note that TLa and TMa are almost identical), the figure reveals a satisfactory fit, 
which is in agreement with the conclusions of Bowman and Shenton (2001) reached by 
a classical X 2 test. 

%CR L 

- . i  ~" ,~ -~ 

Tmn 

I ,0 2.0 3.0 4.0 S . ~  6.0 7,0 9.0 9.0 10.0 
WEIGHT PARAMETER 

Fig. 1. Values of the test statistics and critical points for the fracture toughness and the 
mileage data. 
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The second set of data represents mileages for 19 military personnel carriers that 
failed in service. Based on a Kullback-Leibler information test, Ebrahimi et al. (1992) 
satisfactorily fitted an exponential distribution to this data  set. As suggested by a referee, 
it is of interest to consider what kind of conclusions will be reached by an exponentiality 
test which results from our ELT-tests following a square root transformation of the data. 
After scaling the data by their sample mean, we have applied the proposed procedure to 
the square root of the mileage data. The results for the exponentiality statistic denoted 
by Rn,a are shown in Fig. 1. The corresponding critical points, computed by simulation, 
essentially coincide with those of the Tia- tes t .  We conclude, as Ebrahimi et al. (1992) 
did, that we can not reject the null hypothesis of exponentiality. 
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