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Abstract .  Increasing convex order is one of important stochastic orderings. It is 
very often used in queueing theory, reliability, operations research and economics. 
This paper is devoted to studying the likelihood ratio test for increasing convex 
order in several populations against an unrestricted alternative. We derive the null 
asymptotic distribution of the likelihood ratio test statistic, which is precisely the 
chi-bar-squared distribution. The methodology for computing critical values for the 
test is also discussed. The test is applied to an example involving data for survival 
time for carcinoma of the oropharynx. 
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1. Introduction 

Stochastic ordering of distributions is an important concept in applied probability 
and the theory of statistical inference. It arises in many situations and has useful appli- 
cations in practice. Many types of stochastic ordering have been defined in the literature, 
for example, in Stoyan (1983). 

Statistical inference concerning stochastic ordering has been studied extensively. 
Because it is often easy to make value judgments when such orderings exist, and be- 
cause incorporating these orderings into an inference increases its statistical efficiency, 
it is desirable to recognize the occurrence of such orderings and to model distributional 
structure under them. Brunk et al. (1966) obtained a closed form for nonparametric 
maximum likelihood estimates (MLE) of F and G under the assumption that  F _<st G 
(F is smaller than G in the (usual) stochastic order). Dykstra (1982) considered a 
similar problem with censored data and gave the MLE's in the form of Kaplan-Meier 
product-limit estimators. Testing procedures based on MLE's of two stochastically or- 
dered distributions have been discussed by Franck (1984), Lee and Wolfe (1976), and 
Robertson and Wright (1981), among others. For more than two stochastically ordered 
distributions, Dykstra and Feltz (1989) and Feltz and Dykstra (1985) obtained MLE's 
by using an iterative algorithm. Y. Wang (1996) has characterized the asymptotic distri- 
bution of the likelihood ratio statistic. The inferences involving the uniform stochastic 
ordering and the likelihood ratio ordering have been discussed by Dykstra et al. (1991, 
1995). 

In this paper we derive the null asymptotic distribution of the likelihood ratio test 
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statistic for hypothesis testing problem involving increasing convex order constraints in 
the null hypothesis. We write the formal definition of the increasing convex order as 
follows (see Shaked and Shanthikumar (1994) for a general reference). 

DEFINITION 1. The random variable (r.v.) X is smaller than the r.v. Y in the in- 
creasing convex order, written as X ~_icx Y, or equivalently, their respective distribution 
functions (d.f.s) F and G satisfy F <_icx G, if 

(1.1) E ( X  - x) + = (t - x)dF(t)  = (1 - F(t))dt  

<_ (1 - a ( t ) ) d t  = E(Y - x ) + ( a i l  realx) 

provided these expectations (equivalently, integrals) are finite. 

An important result about increasing convex order is that X _<is Y if and only 
if E f ( X )  < E f ( Y )  holds for all non-decreasing convex real functions for which the 
expectations are defined, and if X _<~c~ Y and E X  = E Y ,  then E l ( X )  < E l ( Y )  holds 
for all convex functions f (see Stoyan (1983), p. 9). 

There are interpretations of this ordering concept in applied research. For example, 
if non-negative random variables X, Y are the lives of two machines A, B respectively, 
X _<ic~ Y means that  the mean residuM life of the machine A is smaller than that of the 
machine B (e.g., see Definition 1.3.1 of Stoyan (1983)). Ross (1983) has given another 
kind of interpretations for this ordering. If X _<~c~ Y and E ( X )  = E(Y) ,  then from the 
result above we have that Var(X) < Var(Y) (since f ( x )  -- x 2 is convex). For this reason 
it is said intuitively that X is less variable than Y provided X _<icx Y- 

Many applications of the increasing convex order have been found in queueing the- 
ory, reliability, operations research, economics and so on. For example, Stoyan (1983) has 
used this ordering to find the optimal sample size in experimental design. Ross (1983) 
has presented some applications of this ordering in comparison of queues and stochastic 
processes. 

Because the increasing convex order has so many applications and theoretical im- 
plications, statistical inference concerning this ordering is certainly worthy of study. 
However, it is surprising that very little attention has been given to the problem of 
developing inference procedures for distributions ordered in this ordering. We do not 
find any tests in the literature specifically designed for the testing problem that we will 
discuss. 

As in Robertson and Wright (1981), we assume the underlying populations are dis- 
crete in this article. However, because there is no closed-form expression for the MLE 
under increasing convex order constraints, we could not invoke the theory of isotonic 
regression to derive the asymptotic distribution of the likelihood ratio statistic. We 
overcome this difficulty by transforming increasing convex order constraints into a poly- 
hedral cone constraint and then characterizing the likelihood ratio test statistic by an 
optimization problem. We will get desired asymptotic distribution by using the limit 
problem of the primal optimization problem. 

This article is organized as follows. The definitions and preliminary results con- 
cerning the chi-bar-squared distribution, which we will need in our development, are 
summarized in Section 2. Section 3 derives the asymptotic distribution of the likelihood 
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ratio test (LRT) statistic. Section 4 gives the methods to find critical values of the test. 
Section 5 presents an example to illustrate the developed theory. 

2. The chi-bar-squared distribution 

Let Y N N(0, V) be an m-dimensional normal vector, C be a convex cone and define 

(2.1) ~2 = y , v - 1 y  _ r~i~(y  _ f l ) ' V - ' ( Y  - ]3). 

Suppose tha t /3  is the optimal solution to the optimization problem (2.1), that  is, ~ is 
the projection of Y onto C in the V -1 metric. Then we have ~2 _- [[~[[2, where the norm 
and inner product are taken with respect to the matrix V -1. The basic distributional 
result concerning :~2 is that it is distributed as a mixture of chi-squared distribution, i.e., 

m 

(2.2) P()~u > c ) =  E w'P(x2  >- c), 
i=0 

where X~ is a chi-squared random variable with i degrees of freedom, X] - 0 and wi's 
are nonnegative weights such that ~-~im=0 wi = 1. The distribution of ~2 is determined by 
V and C, and we write )~2 ~ ~2(V ' C). 

Particular cases of the distributional result (2.2) first appeared in Bartholomew 
(1959). His results were extended to a very general context by Kud6 (1963) and indepen- 
dently by Nfiesch (1966) for known covariance matrix, by Perlman (1969) for unknown 
covariance matrix. Shapiro (1988) has given a presentation of the general case. 

Using properties of projections onto convex cones and their dual, we can write )~2 
as follows 

(2.3) 2 2 = min (Y - 13)'V-I(Y - t3), 
B~C o 

where C o is the dual cone of C. 
The weights wi = wi(m,  V, C) which appeared in (2.2) depend on V and C, and the 

computation of the probability weights wi is a difficult numerical problem. In the case 
of C = R ~  = {x:  x _> 0} gud5  (1963) proposed a formula for the weights wi(m,  V, R'~), 
denoted subsequently by wi(m,  V).  An expression in a closed form of wi(m,  V)  for 
m ___ 4 is available. For m > 4 , reasonably accurate estimates of the weights can be 
easily obtained by Monte Carlo simulations. 

3. Distribution theory for the test 

3.1 Hypothesis testing problem 
In this subsection we transform increasing convex order constraints into a polyhedral 

cone constraint and then we can formulate our hypothesis testing problem in a tractable 
f o r m .  

Let Xi ( i  -- 1 , . . . ,  m) be independent random variables, each taking value in the same 
set {bl , . . .  ,bk+l} (assume bl < ..- < bk+l) with Pij = P ( X i  = bj), i = 1 , . . . , m , j  = 
1 , . . . , k  + 1. Set Pi = (Pi l , . . . ,P i ,k+l) ' ,  i = 1 , . . . , m .  Assume we have a random 
sample of size ni from the population Xi ,  and nij  observations sampled from Xi with 
the outcome bj(ni .~-~k-t-1 . = z...,j=l n i j , z  = 1 , . . . ,  m). Then i5i, the vector of relative frequencies 
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with  15i5 = n ih /n i ,  is also the unconst ra ined max imum likelihood es t imate  of Pi, and niihi 
m 

has a mult inomial  dis t r ibut ion with parameters  ni and Pi. Let  n = ~-~-i=1 ni .  In deriving 
the asymptot ic  results, we assume tha t  limn--.~ n i / n  = ri > 0, i = 1 , . . . ,  m. 

Consider the hypothesis  HI  : Pl <icx "'" <_icx Pro. By Definition 1 we have 

(3.1) H1 : 

k+l  k + l  

j = / + l  j = l + l  

1 = 1 , . . . , k , i  = 1 , . . . , m - 1 .  

Because 

k 

(3.2) Pi,k+l = 1 -- E Pih, i = 1 , . . . ,  m ,  
5=1 

the  probabi l i ty  dis t r ibut ion of X i  is complete ly  de termined  by the vector  Oi = 
( P i l , . . .  ,Pik) ' .  Combining (3.1) and (3.2), we have 

(3.3) 
l k 

H i :  (bl - b k + l )  E p i 5  -~- E (hi -- bk+l)PiJ 
j----1 5=l+1 

t k 

_< + (b5 - 

5=1 j = / + l  

l = 1 , . . . , k , i  = 1 , . . . , m -  1. 

For l = 1 , . . .  ,k,  let t ing al = bz - bk+l, 

B l = ( a l , . . . , a l 2 a l + t , . . . , a k ) ' ,  C I = ( - B ~ , B ~ ) ' ,  D i l = ( O ' k , . . . , O ~ , C ~ , O ' k , . . . , O ' k ) ' ,  

7 i : l  

where Ok is a k x 1 zero vector,  Dil is a m k  x 1 vector,  0 = (04, . . . ,  0'm, ~', (3.3) can be 
rewri t ten  as 

(3.4) H1 : 0 E S -- {0 : D~tO > O,l =- 1 , . . .  , k , i  = 1 , . . .  , m  - 1} 

= { O A } O  > 0 , j  = 1 , . . . , ( m -  1)k} = {0:  AO > 0}, 

where A is a ( m -  1 )k -by - ink  matrix,  and rank(A) = (m - 1)k. S is a polyhedral  
, . . . , X  ! cone. On the other  hand,  the potent ia l  constraints  are tha t  Pi E {(xl k+l) : x j  > 

x-~k+l 0, z--,5=1 x5 = 1}, i = 1 , . . .  ,m.  Equivalently, we can write these constraints  as 0 E 

0 a E = {0 : Pi5 > , ~-~5=1 Pi5 < 1, i = 1 , . . . ,  m}.  In this paper ,  we consider likelihood rat io 
stat ist ic for test ing problem involving two hypotheses,  namely, H t  and/-/2: no restr ict ion 
among pi ( i  = 1 , . . . , m ) .  With  the no ta t ion  above, our  hypothesis  test ing problem can 
be  wr i t ten  as 

(3.5) //1 : 0 E S N E versus /-/2 - H1 : 0 E R mk  - S A E .  

The  hypothesis  H1 : Pl <icx "'" <_icx Pm is implied by the hypothesis  H1 : Pl <_st "'" <-st 
Pro, but  not  conversely. Hence the test  discussed here has a less restr ic t ion t h an  the one 
considered by Rober t son  and Wright (1981). 



T E S T I N G  F O R  I N C R E A S I N G  C O N V E X  O R D E R  125 

3.2 The asymptotic distribution 
In this subsection we give the null asymptot ic  dis t r ibut ion of the LRT statist ic for 

our test ing problem. We begin by expressing the likelihood function of ( p l , . . . , p , ~ )  as 

m k + l  

i ( p i , . . . , p r n )  (2( H I - [  Pi3 ~" 
i=1 j = l  

For the hypothesis  testing problem (3.5), the likelihood ratio stat ist ic  is 

(3.6) T12 = 2  { m a x l o g L ( p l , . . . , p m ) -  pl <_icx...max<~c~p,~ l o g L ( p l , . . . , p m ) }  

= 2{log L(151,.. . ,  15m) - log L(151,.. . ,  15m)} 
m k + l  

= 2 E E[n i j ( l~  - loglbij)] 
i=l  j = l  

---- 2 E[n i j ( log~ i j  - log/5ij)] 
i=1 j = l  

k k 

+ ~ _ _ l [ n i ' k + l ( l ~ 1 7 6  

= 2{log L(0) - log L(0)} 

~Eb'NE 

where 15i(i = 1 , . . . ,  m) and t~ are the  restricted MLE's  of Pi(i = 1 , . . . ,  m)  and 0 under 
H1 respectively, 0 is the unrestr icted MLE of 0. Under  H1, for i = 1 , . . . , m  we denote 

, (0) ~(0) ~ Thus  the unknown true value the unknown true value of Pi by p~0) = (Pil , . - .  ,t 'i,k+lJ �9 

of 0 i s 0 0  ((0~~ ~, ,(0(m~ ~ , (o) ~(o)~ To derive the asymptot ic  = . . . .  (Pil  , ' ' "  ,F ik  ] �9 
distr ibution of T12, we first give the following lemma. 

LEMMA 1. nl /2(0 -- 0o) is bounded in probability, that is, 0 - Oo = Op(n-1/2). 
Here Op(.) is used in the sense of Mann and Wald (1943) (that is, for a sequence of 
k-dimensional chance variables {an} and a sequence of positive numbers {bn}, we write 
an = Op(bn) if for each e > O, there is an M~ such that P(lanl < Mr > 1 - e). 

PROOF. We first show that  0 is a consistent es t imate  of 00. Note  tha t  0o E S. Let 

1 logL(O) E ni g~(O) = n i=1 n PiJ l~ + Pi,a+l log 1 - Pit �9 
t = l  / J  

Then 

i=l n Pij logpij 
j = l  

+ Pi,k+l log 1 - t~=lpit . 
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The gradient vector  and the Hessian matr ix  of g(8) are given respectively by 

( 09(8) Og(8) Og(8) ag(8) ~ ', Vg(8) 
~, oqptl ' ' ' ' '  OQPlk ' ' ' ' '  ~QPml , ' ' ' ,  aPmk ] 0 / 

~ - -  oo  , 

\ - - o - - J *  (me)x(mk) 0 Hm 

(o) -1 ,(o) (1 k -1 h i i - - ~J-~.t=lPit) ]; Hi = ( fl)k• with hj j  where Og(O)/Opij = ( n d n ) ~ i j  Pij Fi,k+l k ~ ~ -  

(o) -2  (o) 
- ( n i / n ) ~ i j  Pij + Pi,k+l( 1 -  ~kt=l Pu)  -2] and h}t = - ( n d n ) p ~ ? i + l ( 1 -  ~-~kt= l p i t ) - 2 ( j  # 
l), j ,  l = 1 , . . . ,  k , i  = 1 , . . . , m .  It is easily seen that  H(8)  < 0 (negative definite) and 
vg (8o )  = 0. Hence g(8) is a str ictly concave function and 8o maximizes g(8) over S. 

By the central limit theorem, we obtain 

(3.8) 1 /2 ,  ~ ni (Pi -P~~ L Ui, i = 1 , . . . , m ,  

where Ui -- ( U i l , . . . ,  Ui,k+l)', i = 1 , . . .  ,m,  are independent ,  and Ui follows a multivaxi- 
ate normal distr ibution with the covariance matr ix  satisfying 

(3.9) var(Uij)  = _(o)~1 _(oL cov(Ui j ,  Uil) (o) (o) Pij k • - -Pi j  ), = --Pij Pit (J r l), i = 1 , . . . , m ,  

and ,,___,L,, s tands for convergence in distribution�9 Thus,  appealing to Theorem 5.1 of 
Billingsley (1968), we have tha t  

(3.10) gn(8)  = g ( 8 ) + n  -1/2  ~ r  i U i j l o g p i j + U i , k + l l O g  1 - E p i t  
~=1 LJ=I t=l  / j 

�9 {1 + o p ( 1 ) } .  

g~(8) and g(8) achieve their maxima on S at 0 and 80, so (3.10) implies tha t  0 is a 
consistent es t imate  of 80. 

Next  by Taylor 's  theorem we have 

(3.11) g,~(8) - g,~(8o) = vgn(8o) ' (8  - 80) + 1(8  - 0o) 'Hn(8o)(8 - 80) + 118 - 8o113Op(1). 

V g n ( 8 0 )  and H , ( 8 o )  can be  obtained by replacing p~O) with ihij and pij with _(o) in (3.7). Pij 
Again using (3.8) and the weak convergence result ment ioned earlier we get tha t  

(3.12) [ hi/2 V g n ( 8 0 ) ] ' ( 8  - 80)  & f ' ( 8  - 8o) ,  

where f ( f l l ,  f l k ,  f m l ,  �9 , f m k ) ' ,  f i j  1/2,, (0),_1. .  , (0) , _ i V  ' . . . .  , �9 �9 ", �9 �9 = ri [(Pij ) uiJ - (Pi,k+l) i ,k+l) 
(i 1, ., m, j = 1,. k). Since/5i ---* _(0) . . . . .  , Pi in probabili ty,  Hn(So)  --* - V  in probability, 
where V is defined in Theorem 1. Hence 

(3.13) 1(8-8o)'Hn(8o)(8-8o) = -~(0-8o)'V(8-8o) +Op(1)118-8oll 2. 
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Refer to the equat ion (3.11) with 0 replaced by 0. Note  that  0 is a consistent es t imate  
of 00. Then for any c > 0, there is a constant  Ce (> 0), and a sequence Cn (e) -~ 0 such 
tha t  with probabil i ty  greater than 1 - e 

(3.14) 0 < gn(0) - gn(Oo) < _1 (~  _ Oo)'V(O - 0o) + n-1/2C~11 ~ - 0oll + - 0 o l l  = 

Multiplying (3.14) by - n  we obtain  0 > I"~'V~/- C, tl ll- c,(~)I1~112, where ~ /=  n1/2(0-  
0o). Then  one could find a constant  M,  such tha t  IV/II _< Mr by the  posit ive definiteness 
of V. The  lemma follows. [] 

It can be easily seen that  the  equali ty (3.6) is equivalent to 

(3.15) T n  = rain {2[log L(/51,...,/Sin) - log L ( p l , . . . ,  Pro)]} 
Pl ~_iex ""~--iezprn 

= min {2[logn(O) - logL(O)]}. 
OESNE 

Let Fn(O) = 2[logL(0) - log L(0)] ( then F~(p l , . . . , pm)  = 2[logL(/51,... ,15m) - l ogL  
(Pl , - . -  ,Pro)l)" From Lemma 1 we can use/3 = nl/2(0 - 0 0 )  as the  opt imizat ion variable. 
The variable ~ is often used in the stat ist ical  literature, for example, in Prakasa  Rao  
(1987), and J. Wang (1996). Because /3  = nl/2(0 - 00) could be any real number,  the  
constraint  set E will be slackened in this case. Subst i tu t ing ~ into the problem (3.15), 
w e  h a v e  

(3.16) T12 = min Gn(~) = Gn(fln), 
fleS~ 

where Cn(~) --- Fn(n-I/2~ + 80), Sn -- {~: A~(r~-i/2~ + 80) >__ 0,1 -- i,..., (m - l)k} 
and ~n is the optimal solution. To find the limit form of problem (3.16), we first give 
the limit form of the objective function Gn (/3). 

T H E O R E M  1. 

(3.17) Gn(B) A G(13) = (Z - f l ) 'V(Z - B), 

where Z ~ N(0,  V -1)  and the block diagonal matrix V = d i a g ( V ~ , . . . , V , ) ,  ~ = 
r iMi ,Mi  , (/), _ ( i )  , (0),-1 {p(O) ~-1,.  = ( m j l ) k x k ,  ttejj = ( P i j )  + ~ i,k+l) [] --~ 1 , . . . ,  k) ,  'rn(i),,,,jl = t/P(~ (j # 
l),i  = 1 , . . . , m .  

PROOF. 

Fn(pl , . . .  ,Pro) = 2[logL(/51,. . .  ,/Sin) -- l o g L ( p l , . . .  ,Pm)] 
m k+l 

= 2 E E {ni~ij(logf~ij - logpij)]}. 
i----1 j = l  

Writing a second order Taylor 's expansion for logpij  about /Si j ,  we obtain  

m k + l  

F n ( P l , . . .  ,Pm) = E E [ n i P i J ~  2(pij - J~  
i - 1  j = l  

- - 2  1 / 2  --E n i E ~ i J C ~ i J ( n  (Pij p!O)~ nl/2(/5ij _(0),,2, . . . . .  Pij 11 1 
i=1  ?% j = l  ~1 j ' 
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where aij  is between Pij and Pij. Since 15i is a consistent est imate of p~O) and 0 is in 

a n-U2-shr inking neighborhood of 0o, wi th  probabili ty 1 as = ( a s 1 , . . . ,  a i ,k+l) '  ~ p~O) 

1/2[~ 8~ O) & Ui,i ,m,  and/5i -0 p~O), i = 1 , . . . ,  ra. From (3.8) it follows tha t  n i tvi - ) = 1 , . . .  
where Us = (Ui l , . . . ,Usk ) ' ,  i = 1 , . . . , m ,  are independent,  Ui follows a multivariate 
normal distr ibution with mean zero and covariance matr ix  satisfying the equality (3.9), 

and 0i (fiSl, - - , P s k )  I, 8~ O) {~(0) _(0)~! = �9 = ~VSl , ' " , P i k  ) for i = 1 , . . . , m .  Hence, appealing to 
Theorem 4.4 of Billingsley (1968), we have tha t  

( 3 . 1 8 )  (nl /2(~ ~o) ,,. lm/ (Ore--Urn ) ,Pl , . . . ,Pm,Cel , . . . ,C~m) 1 - -  8 ) ..,n 2 ~(0)~!  -! ~I I / / 

L TTt (_(0)~,! ~0) / . - ,  J , . . . , ( p ( ~  ) 

as ni( i  = 1 , . . . , m )  simultaneously approach oo. Since F n ( p z , . . . , p m )  are continuous 
function of the vector in the left side of (3.18), we may apply the weak convergence 

result mentioned in the proof of Lemma 1. Subst i tut ing p(O) -- 1 - ~-~.tk=l p~~ -- i,k+Z -- -- 
k ~ k ~ 

1 - ~-t=l  Pit,Ps,k+l = 1 - ~-t=l  Pit, and/3  = nl /2(0  - 8o) into F n ( p z , . . .  ,Pro) we obtain 

m 

i = l  

m 

{ [~--~(_(O),-1/r-1/2rr rs [Z..~pij ) ~ i t J i j - /3 i j )  2 
L j=l 

+ 1 - Z_,pi t  I (ri-W2Uit - /3s t )  
t = l  / \ t = l  

= - A)'v (zs - A ) ,  

S----1 

_(oL where Zi -- (r i -1/2Uil , . . . , r i -1/2Uik) ' , /3i  = (/3il , . . . , /3ik) '  wi th  /3ij = n l / 2 ( p i j -  Pij ) 
for j ---- 1 , . . . , k ,  V/ is defined in Theorem 1, i -- 1 , . . . , m .  It is easily seen tha t  Zi " 
N(O,V/-1), a n d  V/-1 = r [ 1 M i  -1, M~ -1 Iw(i)~ with _ (i) jt ,k• = P~3),1 -- P,3),,~ = 

(o( = wj j  
1 , . . . , k )  , (i) (o) (o) an(] w~z = -P i j  Pa (J # l). 

- -  f I I I ! Let Z -- ( Z l , . . .  , Z ~ ) ,  V = d i ag (Vl , . . . ,Vm) ,  /3 = ( /3~ , . . . , / 3~ ) .  Since Zs, i = 
1 , . . . ,  m,  are independent,  Z .-- N(0, V - l ) .  Thus (3.17) follows. The proof is complete. [] 

Next we s tudy  the limit of the feasible solution set S~. Let So be the interior of S. 
Suppose tha t  S i is the set tha t  exactly (m - 1)k - i of the (m - 1)k inequalities of S are 
strict (without  loss of generality suppose tha t  the last (m - 1)k - i inequalities of S are 
strict), tha t  is, 

So = {0 :A~9  > 0 , j  = 1 , . . . , ( m -  1)k} 

S i = {0: A~n 8 = O,n = 1 , . . . , i , A ~ 9  > O,l = i + 1 , . . . ,  ( m -  1)k}(0 < i _< ( m -  1)k). 

Then  we have the following result. 

THEOREM 2. Suppose that 00 is the unknown true value of 0. Then as n ---* oo we 
have 

(1) I f  0o E So, then Sn T R ink. 
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(2) IfOo E S i, then Sn 1" T i = {/3: A ~  > 0 , j  = 1 , . . . , i } ( 0  < i < ( m -  1)k). 

(3) If  Oo E S (m-1)k, then Sn T S. 
Here "An T B"  means that An C An+l for any n and limn--.cr An = B. 

PROOF. We have that 

Sn = {/3: A}(n-1/2~+ 00) >_ O,j = 1, . . . ,  ( m -  1)k} 

= {~:  A}~ >_ nl/2(-A}Oo),j = 1 , . . . , ( m -  1)k}. 

Then S1 c $2 c $3 c . . .  since A}O0 >_ 0 for j = 1 , . . . , ( m -  1)k. Furthermore, if 

A}00 -- 0 for some j ,  A}~ > 0. If A}t~o > O, A}~ >_ ni/2(-A}t?o) --* -oa(n --* 00), that  
is, this inequality is slack. Thus the result of the theorem follows immediately. El 

Remark 1. Because. {Sn} is monotone and closed, the convergence in Theorem 2 
is also the convergence of sets in Kuratowski's sense. We write S = (K) l imSn,  if for 
any z E S there is a sequence {zn} such that Zn E Sn and zn --~ z and for any sequence 
{zn} with zn E Sn any accumulation point of {zn} must belong to S (e.g., see Attouch 
(1985)). This kind of convergence of sets will lead to convergence of optimal solution of 
the related optimization problems, as shown later. 

With Theorems 1 and 2 we can formulate a limit problem of (3.16): 

(3.19) T = G(~) = ~ i~ (Z  - /3 ) 'V (Z  - 13), 

where K is one of the T~(0 < i _ (m - 1)k), Rmk and S, and ~ is the optimal so- 
lution. Although for the objective function we have Gn(~)--~LG(~) for any fixed/3, it 
has not been shown that G n ( ~ ) ~ L G ( ~ ) .  When/3 is varying over some connected set 
D, {Gn(fl),fl E D} and {G(fl),fl E D} can be viewed as stochastic processes. We will 
study the convergence in distribution of the sequence of these stochastic processes in the 
following lemma. 

LEMMA 2. The stochastic processes {Gn(/3),~ E D} converge in distribution to 
{G(/3),/3 E D}, that is, 

(3.20) {Gn(~),~ E D} L {G(fl), f~ E D}, 

where D = {~:  I]flil -< M,/3 E Rink}. 

PROOF. According to the theory of probability (see Prakasa Rao (1975)), {Gn(~), 
/3 E D} converges in distribution to {G(/3),/3 E D} if and only if the following two 
conditions are satisfied: 

(a) Any finite dimensional distribution of process {Gn(~),/3 E D} converges weakly 
to the corresponding finite-dimensional distribution of {G(/3),/3 E D}; 

(b) For any e > 0 it holds that 

( 
lim sup P ~ sup iGn(fl(1))_ Gn(~(2))[ > e,fl(1),fl(2) E D ~  = 0. 

n---*~176 [ ]1~(1)_fl(2) ii< h J 
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First  we check condi t ion  (a). By Cram~r-Wold theorem,  it suffices to show tha t  for 
any c l , . . .  ,cT C R and any f~(1), . . . ,  f~(T) E D, we have 

?* 

j = l  j = l  

This  convergence result  can be proved in the same way as T h e o r e m  1. We will not  repeat  
the  procedure  here. 

Next  verify the condi t ion (b). For j3 (1), j3 (2) in D,  we have 

] e n ( Z  (1)) - e n ( Z ( 2 ) ) l  

= 2l l ogL(n -U2 f l  (2) + 00) - l ogL(n - ' / 2 f l  (1) + O0)l 

= 2nl[g (n-l/2Z r + Oo) - g (Oo)] - [g (n-1/2Zr + Oo) - g . ( 0 o ) ] l ,  

where gn(') is defined in the  proof  of L e m m a  1. From (3.11) and (3.13) it follows tha t  

g~(n-1/2~ (i) + 0o) - g~(Oo) = n - 1  [ - 2  (~(i))tV~ (i) ~- %(1)llf~(i)]l 2 

+(n I/u V g~(O0))'~ (i) + n -1/2 II~ (i) ll3Op(1)] �9 

Therefore,  when n -+ cr and  I1~ (1) - fl(2) H -~ 0, for any given e we h a v e  I ( ~ ( l ) ) t V ~  (l) - 
(~(2))'V~(2)] < ~, and  wi th  probabi l i ty  approaching one 

[G~(~(1)) - G~(13(2))[ < [(f~('))'V~ (1) _ (f~(2))'V~(2)[ 
s 

+21(n ~/2 V g~(Oo))'(J (~) - + 7 

Using (3.12) and the  fact t ha t  D is compac t  we conclude t ha t  

l im sup P / sup I G n ( ~ ( i ) ) -  G~(j(2))I > e , j ( i ) , j ( 2 )  E D ~  
n--~oo h--*0 (lift(l) _f~(2)II _<h ) 

/ l e  f~(i),f~(2) } _< lim sup P sup I( ul/2 V g~(Oo))'(~ (1) - f~(2))] > 4 , E D 
~ r 1 6 2  a-.o I. IlZ (~)-z(2) II<h 

----0. 

T h e n  bo th  condi t ions (a) and  (b) are satisfied. The  assert ion of this l emma follows. [3 

From the convergence result  on  the  sequence of s tochast ic  processes in L e m m a  2, 
the desired convergence will be obtained.  

THEOREM 3. T12 converges in distribution to T,  that is, 

(3.21) T12 = Gn(~n) L G(~) = T. 
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PROOF. Note that  the sample functions of the stochastic processes {Gn(r),r E 
D} and {G(r),  r E D} are continuous functions on D. Let C(D) be the space of all 
continuous functions over D whose metric is defined by 

d(hl, h2) = sup Ihl(fl) - h2(r)[, 
flED 

hi, h2 E C(D). 

Then the stochastic processes {Gn(r),r E D} and {G(r),r E D} induce a family of 
probability measures {#, #n, n = 1,. . .}.  By Lemma 2, the convergence in (3.20) implies 
{#n} converges weakly to #, written as #~ ~ #. 

Define mappings H=(-) and H(.) on C(D) such that 

(3.22) Hn(fn) = ~ n~in D f~(fl) = A(fl(~ n)) 

and 

(3.23) H(f) : ~nnD f(r) = f(fl (D)) 

for fn, f E C(D), where K is as in (3.19), and/~(D) and/~(D) are optimal solutions. First 
we are going to show that 

(3.24) Hn(Gn) L H(G). 

Since G(r)  is a strictly convex function a n d / ( N  D is a convex set, the problem H(G) = 
min~eKnD G(r )  has a unique optimal solution. To show (3.24), by #n ~ tt and an 
extension of the continuous mapping theorem (cf. Theorem 5.5 of Billingsley (1968)) it 
suffices to show that 

(3.25) lira Hn(f~) = H(f) 

for any fn, f in C(D) with fn --~ f and f is such that (3.23) has a unique optimal 
solution. Observe the convergence of fn to f means that max Ifn(r) - f ( r ) l  --+ 0 and 
this implies fn( rn)  --+ f ( r )  for any rn  -~ r .  Thus, to show (3.25), it suffices to show 
that ]~(D) -~ ~(n). We first show the following: if]~ (D), n = 1, 2 , . . .  are optimal solutions 

of problem (3.22) and fi is an accumulation point of {/~(D)}, then fl must be an optimal 
solution of problem (3.23). Suppose it is not true. Then there is a point r0 in K O D 
such that f ( ro )  < f(/~)- Without loss of generality we assume r0 is a interior point 
of D (since f is continuous). On the other hand, by Remark 1 there is a sequence fin 
such that fin E Sn and rn  --+ rio, and then rn  E D when n is large enough. As/~ is an 
accumulation point of {/~(D)}, there must be a subsequence {/~(D)} such that fl(n D) --~ ft. 
Noticing that  fn --* f ,  we obtain 

f(ro) lim fn(fln) > l ira  ^(D) = f,.(;3.. ) = . f ( 3 ) .  

This contradicts the working assumption f ( r0)  < f(fl).  Hence fl must be an optimal 
solution of problem (3.23). 

Since D is compact and S,~,K are closed, {~(D)} must have accumulation points. 
Moreover, by the assumption on f the only possible accumulation point is ~(D). Thus 
we get (3.25) and then (3.24). 
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Since/~ is the optimal solution of the problem (3.19) and/3 = 0 E K,  we have 

o >_ ( z -  3 ) ' v ( z -  z ' v z  = 3 ' v 3 -  23 'vz  

Observe that  Z ~ N(0, V -1) and V > 0 (positive definite). Then for any e > 0 there 
exists a constant M~ such that II/~ll < Mr with a probability larger than 1 - e. Without  
loss generality, we assume that this M~ is the same as that M~ in the proof of Lemma 
1 (otherwise we may choose the larger one as the common M~). Note that Gn(/~n) = 
Hn(Gn),G(~) = H ( G ) w h e n  II~nll < M~ and II/~ll < M~. Therefore 

P(Gn(~n) r Hn(Gn)) < e, P(G(~) # H(G)) < e. 

By the arbitrariness of e and H,~(G,~)--+LH(G), we get (3.21). This is the desired result. [] 

Now we come to the distribution result of the likelihood ratio test statistic. 

THEOREM 4. Let So, S i, T i and Oo be as in Theorem 2. Let (Ti) ~ and S O be dual 
cones of T ~ and S. Then we have: 

(1) If  Oo E So, then limn--.o~ P(T12 = 0) = 1. 
(2) IfOo E S i, then TI2---~Lfc2(V -1, (Ti)~ < i < (m - 1)k). 
(3) If  Oo C S (m-1)k, then T12---~L~2(V-1,S~ 

PROOF. The result of the theorem follows immediately from Theorems 2,3 (replac- 
ing K in (3.19) by R m k , T  ~ and S respectively) and the equality (2.3). [] 

4. Computing the critical value for the test 

It is well known that H1 that 0 is in the polyhedral cone S is a composite hypothesis. 
In view of Theorem 4 we know that the asymptotic distribution of T12 depends on the 
location of 00 in S. To compute the critical value of the test, we need the least favorable 
null distribution, which is given by the following theorem. Robertson and Wegman (1978) 
has established a similar result for testing hypotheses that a collection of parameters 
satisfy some order restriction. 

THEOREM 5. Let BOoeD(E) be the probability of the event E computed under the 
assumption that Oo E D. Then 

lim POo~S(T12 >_ t) < lim Poo~S{..-,}k(T12 >_ t) 
n - - - ~ o 0  n- - -+  O 0  

holds for any real t, where S (m-1)k = {0 :A}0  = 0 , j  = 1 , . . . , ( m -  1)k}. 

PROOF. First, Theorem 4(1) states that all elements in So can be removed from 
consideration as a least favorable value since T12 converges in probability to zero for 
these values of 00. 

Next, for 0 < i < ( m -  1)k, let /~T' and /~s be optimal solutions in (3.19) when 
K = T i and K = S respectively. By the comment given in Section 2/~T~ and/~s are the 
projections of Z onto T ~ and S in the V metric, and G(~T,) and G(/~s) are the distances 
from Z to T i and S. Because S C T i, G(~T~) <_ G(~s). Thus for any real t we have 
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P(G(3T~) >_ t) <_ P(G(~8) >_ t). The proof is then completed by noticing the result of 
Theorem 3. [] 

From Theorem 5 it follows that S (m-1)k is the least favorable null hypothesis among 
hypotheses satisfying Hi in the sense of yielding the largest type I error probability. 
Then by Theorem 4(3) we get that the least favorable null distribution of the test is 
~2(V-1, sO). Therefore, for a chosen level ~, the critical value ca could be chosen to 
satisfy 

(4.1) P(~2(V-1,  S ~ > ca) = ~. 

We now supply some methods to computing ~, the restricted MLE of 0 under Hi.  
As stated in Subsection 3.1 we can transform increasing convex order constraints into a 

k 
polyhedral cone constraint. Substituting Pi,k+l with 1 - ~ j = l  Pij for i -= 1 , . . . ,  m, we 
express the log-likelihood function of (p l , . . . , pm)  as 

logL(O) = Z (n j logpi ) + ni, +i log 1 - + const 
i=1  t = l  

= -N(O)  + const. 

Then it can be easily seen that  0 is the optimal solution of the optimization problem 

(4.2) ~ min N(O) 
( s.t. O c S n E .  

Since for i . . . . .  1,.. , m and j 1 , . . . ,  k, ON(O)/Opij -n i jp i j  1 +hi,k+1(1 ~-]~t=lk pit)_1, 

02N(O)/OpijOPil ni,kT 1 (1 k - 2  (1 - -  = --~-'~"t=l Pit)--2(J ~ l) and 02N(O)/Op2j = nijPij + n i , k + l  
k - 2  �9 ~-~=1 P~t) , it is easily verified that the Hessian matrix of N(8) is positive definite. Thus 

N(8) is strictly convex and has a unique minimum belonging to the convex set S fl E. 
Several algorithms in mathematical^programming can be directly used to compute 

~. For example, we can get the value of 8 by making use of penalty function methods or 
feasible direction methods (e.g., see Bazaraa and Shetty (1979)). However in practice the 
specific optimal solutions could be computed by a system of Matlab functions. We have 
computed the restricted MLE in the example of Section 5 by the function "fmincon" 
(the trust region method) and the function "constr" (the penalty function method) in 
which the starting points must be chosen to be feasible points. A computer program 
that  implements all the computations in the example is available from the authors on 
request. 

There are still two problems for applying the testing procedure above: how to 
compute the weights wi and how to handle the unknown parameter 80. From the formulas 
(3.4) and (5.5) of Shapiro (1988) we have 

( 4 . 3 )  odi(mk , V -1, ~o) __~ O)rnk-i(m]g, U -1, ~) 

= w(,~-x)k-,((m - 1)k, A V - 1 X ) ,  i = 0, 1 , . . . ,  (m - 1)k, 

while the remaining weights vanish, where A is defined in (3.4), and U)(m_l)k_i((m -- 
1)k, AV-1A ' ) ,  i = 0, 1 , . . . ,  (m - 1)k, can be obtained according to the method described 
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in Section 2. However, the distr ibution of )~2 depends on the unknown parameter  8o(E 
S (m-1)k) through the weights. For this problem one may use ~ = (n -1 ~ i ~ 1  n i l , . . . ,  n -1 

rn .. m . m n i ~-~i=1 nik, ", n -1  ~-~i=1 n i l ,  . . ,  n -1 )-~i=1 ik) as an est imate of the unknown 90 and 
compute the weights based on this estimate,  where ~ can be obtained by sett ing PU = 
. . . .  Pmj  ( j  = 1 , . . . ,  k §  1) and solving the resulting optimizat ion problem. The est imate 

is the MLE of 80 under the least favorable null condition 80 E S ('~-l)k, and ~ converges 
to 00 in probability. Then  V(~) also converges to V in probability. Therefore it is very 
reasonable to use 8 for the unknown 00. 

5. An example 

In order to il lustrate the theory developed in earlier sections, we consider some 
da ta  given in Da ta  Set II from Kalbfleisch and Prentice (1980). These da t a  consist 
of survival t imes for pat ients  wi th  carcinoma of the oropharynx and several covariates. 
Patients  diagnosed with  squamous carcinoma of the oropharynx were classified by the 
degree to which the regional lymph nodes were affected by this disease. Since lymph 
node deterioration is an indication of the seriousness of the carcinoma, one would expect 
the populations wi th  increased or decreased effects of the disease on the lymph nodes 
between them to be ordered in the increasing convex order. The da t a  were grouped 
into seven classes in Table 1 of Dykstra  et  al. (1991). Just  like in Y. Wang (1996), we 
delete all censored da t a  and Group VII (in which most da t a  are censored). We next 
merge every two next groups into a single group, tha t  is, we group the da ta  into three 
intervals (0,260], (260,540] and (540,900]. Table 1 lists n i j  for the grouped samples. 
We treat  the grouped da t a  as occurring at the interval midpoints.  Thus we obtain four 
distributions wi th  the common set of outcomes bl -- 130, b2 : 400,b3 -- 720. Let Pi+l 
be the probabili ty distr ibution of Populat ion i, i -- 0, 1, 2, 3. Thus m -- 4, k = 2, and 
E --- {8 : P i l  > O,pi2 > O,pi l  -}-Pi2 < 1,i  -- 1 , . . .  ,4}. Consider the hypothesis testing 
problem H1 : P4 _<icx P3 <_icx P2 <_icx Pl +-+ H2 - H1.  Subst i tut ing bl = 130, b2 = 400 
and 53 = 720 into (3.3) we get S -- { 8 : A 8  > 0}, where 

A = 

( 1 1 - i  -1 0 0 0 0 

59 32 -59 -32 0 0 0 0 

0 0 1 1 -1 -1 0 0 

0 0 59 32 -59 -32 0 0 

0 0 0 0 1 1 -1 - i  

\ 0 0 0 0 59 32 -59 -32 

Let a -- (33, 25, 11, 7, 9, 4, 4, 8, 5, 8, 14, 6)', b(8) = (logpal, logp42, l o g ( i - p a l  -P42), logp31, 
logp32, log(1 - Pal - P32), logp21, logp22, log(1 - P21 - P22), logp11, logp12, log(1 - Pl l  - 

Table 1. Number of observations for grouped data. 

Population nil  ni2 hi3 ni 

Pop 0 8 14 6 28 
Pop 1 4 8 5 17 
Pop 2 7 9 4 20 
Pop 3 33 25 11 69 



TESTING FOR INCREASING CONVEX ORDER 135 

P12))'. Solving the optimization problem (4.2) with N(O) -- -a'b(O) we obtain 

= (0.4783, 0.3623, 0.3500, 0.4500, 0.2667, 0.4889, 0.2667, 0.4889)'. 

Then T12 = 2[a'b(O) - a'b(0)] = 0.3912, where 0 = (33/69, 25/69, 7/20, 9/20, 4/17, 8/17, 
8/28, 14/28) / is the unconstrained MLE of 0. 

We now compute the p value for the test. First, we use Monte Carlo techniques to 
obtain the weights. Here i~i = (52/134, 56/134, 26/134)'. From the expression of V -1 
(see the proof of Theorem 1), a direct computation can give the matrix A _-- A V - 1 A  '. 
By the equality (4.3) we must compute the weights w~(6, A), i ---- 0 , . . . ,  6. 

We take 10,000 draws from a multivariate normal distribution with mean zero and 
covariance matrix A. For each sample point R we minimize (x - R ) I A - I ( x -  R) subject 
to x = (Xl , . . . ,  x6)' _> 0. Denote the optimal solution by k. Then we count the number 
of elements of the vector & greater than zero. In this case wi(6, A) is computed as 
the proportion of the 10,000 draws in which ~ has exactly i elements greater than zero. 
Implementing this technique in Matlab program gives that w0(6, A) = 0.0090, 021 (6, A )  = 

0.0881, w2(6, A) _-- 0.2659, w3(6, A) = 0.3532, w4(6, A) --_ 0.2187, w5(6, A) = 0.0600, 
w6(6, A) _-- 0.0051. Therefore, the p value for the test is 

P0~2(V -1, S ~ > 0.3912) 
8 

= E w/(8, V - 1 , S ~  > 0.3912) 
i=0 

6 

= E w 6 _ i ( 6 ,  A ) P ( x  2 > 0.3912) 
i=0 

= 0.5317w5(6, A) + 0.8223w4(6, A) + 0.9421w3(6, A) 

+0.9832w2(6, A) + 0.9956w1(6, A) + 0.9989wo(6, A) = 0.9026. 

This large p value indicates that the null hypothesis is true. This result gives a positive 
support to our proposed testing scheme. 
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