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A b s t r a c t .  Let ~ be a general family of probability measures, t~ : ~ -+ R a func- 
tional, and N(o,o2(p)) the optimal limit distribution for regular estimator sequences 
of t~. On intervals symmetric about 0, the concentration of this optimal limit distri- 
bution can be surpassed by the asymptotic concentration of an arbitrary estimator 
sequence only for P in a "small" subset of ~ .  For asymptotically median unbiased 
estimator sequences the same is true for arbitrary intervals containing 0. The em- 
phasis of the paper is on "pointwise" conditions for P E ~ ,  as opposed to conditions 
on shrinking neighbourhoods, and on "general" rather than parametric families. 

Key words and phrases: Estimation, asymptotic theory, local uniformity, nonpara- 
metric theory, minimax bounds. 

1. Introduction and summary 

Bounds  for the  a sympto t i c  concent ra t ion  of e s t ima to r  sequences in nonpaxamet r ic  
families are the  main  objec t  of the  present  paper .  We s ta r t  wi th  a survey of wha t  is 
known for pa r ame t r i c  families. 

Let {P~ : z0 E 0 } ,  O c Rk, be  a family of p robabi l i ty  measures  fulfilling the  usual  
regular i ty  condit ions (say a LAN-condi t ion  for every ~ E O). T h e  p rob lem is to  e s t ima te  
a "smooth"  funct ional  a : O -+ R f rom a sample  ( x l , . . . , x n ) ,  governed by P~ .  Let  
a(n) : X n _+ R denote  an es t imator .  

As a consequence of the  convolut ion theorem,  for every 0 C O there  exists an  op t ima l  
limit dis t r ibut ion,  say Q#,  such t ha t  

(1.1) l imin f  [ ~(cn(~ (n) - ~(O)))dP~ >_ [ ~dQ~ 
n-*~  j J 

for every subconvex loss funct ion ~ which is symmet r i c  abou t  0. Rela t ion  (1.1) is t rue  for 
es t imator  sequences (a(n))ner~ which are regular  (in the  sense t ha t  pn  o Cn(t~ (n) -- O+c~la 
t~(O-F cnla)), n C N, converges to the same limit distribution for every a in a neighbour- 
hood of 0). 

If our intention is to interpret a limit relation like (1.1) as "approximately true" 
for large samples, the assumption of a "regularly attainable limit distribution" comes in 
like a "deus ex machina". It seems therefore advisable to consider the approach via the 
convolution theorem as just a technical device for obtaining an asymptotic risk-bound, 
and to search for a role this bound could play in a wider context. 

If relation (1.1) were true for every estimator sequence, this would be a convincing 
expression of the asymptotic optimality of Qo. Yet, straightforward examples show that  
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there are always estimator sequences such that 

f g(c~(a (~) - a(#)))dP~ < f gdQo for some z~ E (1.2) lim O. 
n----> O0 J Y 

Many scholars consider, therefore, the following "local asymptotic minimax theorem" as 
an adequate expression of the optimality of Qr i.e. the relation 

(1.3) lim liminf sup f g(c~(a (n) - a(P~+c;la)))dP~+c;l a > f gdQ,~ uToo n.--*oo la[~uj J 
for every ~) E 0 and every estimator sequence (a(n))neN. 

In cold fact, relation (1.3) is not very informative. It does not tell us that  
(i) a relation like 

(1.4) limsuPn__~cr / ~(Cn(~(n) - ~(~)))dP~ ( / edQ~ 

can't possibly hold for every 0 E O, and that 
(ii) terrible things are bound to happen in the neighbourhood of a point of superef- 

ficiency, namely: If (1.4) holds true for a certain O, then the inequality in (1.3) is strict 
for this ~. 

It requires a different approach to show that, for every estimator sequence, relation 
(1.4) can hold on a Ak-null set only, i.e. that for every estimator sequence and every 
symmetric subconvex loss function, 

(1.5) limsUPn___.oo / e(Cn(t~(n) -- g(?~)))dPg ~_ / edQ# f o r  ,~k-a.a. ?~ E O. 

Relation (1.5) is by necessity restricted to symmetric loss functions. If Qo is sym- 
metric about 0 (the usual case is Qo = N(0,~2(#))), and P3 o cn(~(n) - ~ ( 0 ) )  ~ Q~, then 
the estimator sequence ~(n) + Cn 1, n E N, has an asymptotic risk smaller than fedQ# 
if g is a loss function like 1 - 1[0,2 ] . It is only in the case of properly centered estimator 
sequences that  asymmetric loss functions can be used for expressing optimality. In this 
connection, the appropriate concept of "properly centered" is asymptotic median unbi- 
asedness. Whereas the existence of a limit distribution is something fictitious, median 
unbiasedness is a property which refers to every sample size. 

It will be shown in Section 2 that for asymptotically median unbiased estimator 
sequences, relation (1.5) holds )~k-a.e. for loss functions which are not necessarily sym- 
metric, a result which was known up to now under the assumption that the asymptotic 
median unbiasedness holds locally uniformly. 

The main purpose of the present paper is to obtain results in the spirit of (1.5) 
for more general families ~ of probability measures. If ~ is endowed with a suitable 
topology, then such assertions hold for every P E ~ ,  except for a set of first category. 
Whether a set of first category can be considered as "small" (with the same force as sets 
of Lebesgue measure zero are considered as small) will be discussed in Section 2. Mind 
that the results for general families do not imply the results for parametric families: 
Borel sets of first category may be of positive Lebesgue measure. 
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2. The main results 

In this section we present asymptotic bounds for the concentration of asymptotically 
median unbiased estimator sequences on arbitrary intervals containing 0, and for arbi- 
trary estimator sequences on intervals symmetric about 0. These bounds hold for every 
probability measure in the given family, except for a "small" subset. The theorem refers 
to a general family gl of probability measures, endowed with a topology L/, alternatively 
to a parametric family {Po : ~ E O} with 0 an open subset of IIr k. For parametric 
families the exceptional set is of Lebesgue measure zero, in the general case it is of first 
category. 

The basic assumption: For every P E gl we are given a family of sequences (Pn,u)neN, 
u E N, fulfilling a condition slightly weaker than LAN (see (4.2) and (4.8)) which deter- 
mines the variance a2(P) in the concentration bound N(o,a2(p)). For parametric families, 
the sequence (Pn,u)neN pertaining to Po is assumed to be P#+c2lu. 

Though this does not enter in the following theorem, the interest is in "narrow" 
bounds which, in this case, means "large" a (P)  resulting from "least favourable" se- 
quences. 

(2.1') 

and 

(2.1") 

DEFINITION 2.1. 

An estimator sequence (~(n))neN is asymptotically median unbiased for a at P if 

liminf pn{a (n) <_ t~(P)} >_ 1/2 
n - - ~  CX:) 

l im in fPn{a  (n) _> n(P)} >_ 1/2. 
n ---~ O O  

Equivalently, 

l imsupPn{a  ('~) < a(P)} _< 1/2 _< liminf Pn{a  (n) _< t~(P)}. 
n ----~ O O  n - - * O O  

We hope that the reader will not be confused by our endeavour to combine 4 theo- 
rems (parametric / nonparametric; median unbiased / arbitrary) in one. 

THEOREM 2.1. (i) If (a(n))neN is asymptotically median unbiased for every P E ~,  
then there exists an exceptional set ~3+ and a subsequence No such that, for P ~ ~+, 

(2.2) limsup P"{c.(a  (n) - a ( P ) )  E I} < N(o,~2(p))(I) 
nENo 

for arbitrary intervals I containing O. 

(ii) If (t~(n))n~N is an arbitrary estimator sequence, then for every subsequence No 
there exists an exceptional set ~3 + such that P ~ ~3 + implies 

(2.3) liminf Pn{cn(a (n) - g(P)) E I} < N(o,~2(p))(I) 
nENo 

for intervals I symmetric about O. 

For general families, the exceptional set ~3+ is of first category, for parametric 
families of Lebesgue-measure zero. 
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REGULARITY CONDITIONS. For  every P E ~ there exists a family of sequences 
(Pn,u)nEN fulfilling condition (4.2) in case (i) and conditions (4.8), (4.9) in case (ii). 

a) General families: ~ is endowed with a topology, at least as fine as the topology 
of the sup-distance, such that a is continuous and the sequences (P,~,~)neN from Propo- 
sitions 4.1 and 4.2, respectively, converge to P.  Then relation (2.2) holds with 5t0 -- 51. 
Relation (2.3) holds if a is, in addition, upper semicontinuous. 

b) Parametric families: ~ = {P~ : z9 E (~), O an open subset of R k. The functions 
0 --, g(Po) and 0 -~ Po(A), A E .A, are measurable. The conditions (4.2) and (4.8), 
(4.9), respectively, hold with Pn,u replaced by P~+c~lu. 

Observe that  convergence to a limit distribution is not required in Theorem 2.1. I f  
pn o c,~(n(n) - ~(P)) => Qp, we obtain from (2.3) that Qp(I) ~_ N(o,~2(p))(I) for every 

interval symmetric about 0. If (n(n))neN is asymptotically median unbiased, Qp has 
median 0, and we obtain from (2.2) that Qp(I) <_ N(o,o2(p))(I) for arbitrary intervals 
containing 0. This is, however, not the sharpest result which could be obtained in this 
case. In fact, Qp is in the spread order equivalent or inferior to N(o,a2(p)) (see Pfanzagl 
(2002), Section 6). 

It would be preferable, of course, to have relation (2.3) with lim infneNo replaced 
by limsupn_~oo. Yet, this is impossible. There axe always estimator sequences (n(n))~eN 
such that l i m s u p ~ o  o P~{Cn(~ ('~) -- n(P)) E I} = 1 for every P E ~ and every nonde- 
generate interval I. (Hint: Let rn E R, n E N, be a countable subset of R such that 0 is 
an accumulation point of cn(rn - r), n E N, for every r E R, and define ~(n)(x) = rn for 
every x E X n. See van der Vaart (1997), Example, p. 407.) 

An estimator sequence fulfilling lim supn_. ~ Pn{Cn(n(n)--n(P)) E I} > N(O,a2(p))(I) 
is of no use if the "superefficiency" occurs for different P along different subsequences. 
What  would count for possible applications is the existence of a subsequence N0 (from 
which one could choose the sample size) such that 

(2.4) liminf Pn{(t~ (n) - ~(P))  E I} > N(o,,,2(p))(I) 
nENo 

for P in a large subset of ~ .  This is, however, impossible: Whatever the subsequence 
No, Theorem 2.1 (ii) implies that  the set of those P for which (2.4) holds true, is "small" 
(in the sense of being of first category or of Lebesgue-measure 0, respectively). 

2.1 The topology on 9~ 
Not much has been said so far about the topology on ~ .  The interpretation of a 

set of first category as "negligible" is easier to justify if the topology 34 is derived from a 
metric Q under which ~ is complete. In this case, any set of first category has an  empty 
interior. Equivalently: Every nonempty open subset of ~ contains elements which axe 
not in the exceptional set of first category. 

A metric which renders a particular family ~ complete has to be invented, tak- 
ing details of ~ into account. (See Pfanzagl (2002), Section 8, for examples.) Since 
we use Corollary 5.1, the metric Q has to be "stronger" than the sup-metric. The se- 
quences (Pn,~)neN converge to P with respect to the sup-metric as a consequence of 
conditions (4.2) or (4.8). In using a metric ~ stronger than d, one has to make sure that  
the sequences (Pn,u)nen are chosen such that they converge to P also with respect to 6, 
and that ~ is ~-continuous (and a upper semicontinuous). 
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Notice that the (semi)continuity of cr is not continuity along the sequences (Pn,u)neN. 
It is continuity of a as a function of P.  a (P )  is determined by the family of paths 
converging to P. Since these paths are chosen for each P separately, one could ask 
where the continuity of a should come from. There is a natural answer to this question: 
If one chooses for every P �9 ~ the least favourable path, this connects the values of 
a (P )  for different P,  and the resulting minimal variances are, in the usual instances, 
continuous functions of P .  

Even if the metric 0 should be artificial, on occasion: If superefficiency is impossible 
on 0-open subsets of g3, it is afortiori  impossible on d-open subsets, a property which is 
easier to interpret. 

2.2 Results in terms of loss functions 
Since most results available in the literature are formulated in terms of loss functions, 

we mention that relation (2.2) implies immediately that  

(2.5) liminfn~No Yf~(Cn(~(n)-t~(P)))dpn>/~dN(o,o2(p)) for P ~ V +  

for not necessarily symmetric loss functions. In the general case, this holds with No = N; 
for parametric families, it seems preferable to replace lim infneNo by limsupn_.oo- 

As against that, relation (2.3) does not lend itself to a conversion into loss functions. 
This is, in the author's opinion, not a big disadvantage. Yet, it should be mentioned 
that such a result is available for O C JR, namely 

(2.6) lira sup / ~ ( C n ( g  (n) - O))dP~ >_ f gdY(o,a2(#)) 
n-.---~ o 0  J J 

for every symmetric subconvex loss function up to a set of Lebesgue measure 0. That  
the exceptional set in relation (2.6) is of Lebesgue measure 0 and of first category was 
already claimed in Le Cam ((1953), p. 292). A proof for "Lebesgue measure zero" follows 
from his Corollary 8.1, p. 314. Le Cam's remarks following Theorem 4a, p. 296, indicate 
that the exceptional set is of first category. Not all readers are willing to accept Le Cam's 
proofs in this paper (so, for instance, Wolfowitz (1965), p. 249), which Le Cam himself 
later calls "rather incorrect" (see Le Cam (1974), p. 254). 

Strictly speaking, Le Cam's assertion is more restrictive than (2.6). In harmony 
with his definition of "superefficiency" (see Definition 4, p. 283) he just says: "If (2.6) 
holds with _< for every ~9 E O, then it holds with = except for a set of Lebesgue measure 
0". This assertion follows by a Bayesian argument which was, at this time, obviously in 
the air. Wolfowitz ((1953), p. 116) gives an informal proof of about the same result. A 
mathematically contestable Bayesian result, from which the Lebesgue-a.a. version could 
easily be obtained, is Proposition 1 in Strasser (1978), p. 37. Explicitly, the Lebesgue-a.a. 
version occurs in van der Vaart (1997), p. 407. 

2.3 A side result for finite sample sizes 
Relation (2.3) implies that  

liminfPn{cn(~ (n) - t~(P)) �9 I} < N(o,a2(p))(I) 
n - " +  O 0  

for symmetric intervals I (up to an exceptional set of first category / Lebesgue measure 
zero). Being merely an asymptotic assertion, this is compatible with 

(2.7) Pn{cn(~(n) - ~(P))  �9 I} > g(o,~2(p))(I) for every P �9 ~ and every n �9 N. 
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Straightforward examples show that this does, in fact, occur. (Take q3 = {N(0,a2) : a 2 > 
0} and ~(n)(xl,. . .  ,Xn) = (n + 2) -1 ~-]~n=l X~.) 

Relation (2.3) was derived from Proposition 4.2, a slightly stronger result which can 
be used to show that (2.7) cannot hold for every P in some neighbourhood of a point of 
asymptotic superefficiency (i.e. where (2.3) holds with < replaced by >). 

PROPOSITION 2.1. Assume the conditions 
l i m ~ o o  a2(P~,~) = a2(p) for every P E ~3. 

Then relation (2.7) implies 

lim Pn{cn(~(n) - ~(P)) e I} = N(o,o2(p))(I) 
n --'~ O 0  

of Proposition 4.2, and 

for every P E ~3. 

Mind that  there is no exceptional set in ~3. 

PROOF. Relation (2.7), with P,~,u in place of P,  reads 

P~,~{c~(~ (") - ~(P~,~)) e I} > N(o,o,(p.,.))(I) for u e R and n e N. 

Since a 2 is continuous, this implies 

liminf P~,~{cn(~ (n) -~(Pn ,~) )  E I} _> N(o,a2(po))(I), 
n - - - ~  O O  

and the assertion follows from Proposition 4.2. [] 

In terms of loss functions, Proposition 2.1 asserts that 

/ g(c.(n (n) - ~(P)))dP n </edN(o,~,(p>> for P E ~  a n d n E l ~ l  

implies 
/ -  / )  

l i m  J t ( c n ( t r  ( n ) -  n(P)))dP"=/gdN(o,~2(p))  for P E~3, 

for 1-dimensional functionals and bounded, symmetric loss functions. The example of 
Stein's shrinkage estimator for the mean vector # in the family {N(t,,13) : # E R 3} 
shows that this is not so in general. The optimal limit distribution, attained by the 
sample mean, is N(o,l~). Stein's estimator n(n) : X"  - -+ ~ 3  fulfills for the loss function 
~(u) = Ilull 2 the relations 

and 

/ - .))tiNTS,..) < / edY<o,,.> for every tt E R 3 and n E N, 

nlimoo / ~(nl/2(/~ (') - -  12))dN~l~,,3 ) < / ~.dN(o,,,) for # = O. 

3. Proofs of the main results 

The proofs of the various versions of Theorem 2.1 (median unbiased / general; 
parametric / nonparametric) follow the same pattern: (i) If a certain asymptotic property 
of an estimator sequence holds for every P E 90, then it holds locally uniformly on ~30, 
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except for a "small" subset. (ii) If this asymptotic property holds locally uniformly at 
some P, then one may derive asymptotic bounds for the concentration of this estimator 
sequence at P by the usual techniques. 

To make the proof of Theorem 2.1 as simple as possible, we isolate the abstract core 
of our argument. Let X be an arbitrary set, and f,~, g~, n = O, 1 ,2 , . . .  functions from X 
to R. 

CONDITION A. For every x E X there exists a s e t  ,~A(x) of sequences xn E X ,  
n E N, with the following property: If 

(3.1) l iminf fn(x)  _> fo(x) for x E Xo C X, 
r t  ---+ (X~ 

then there exists an exceptional set X+ c Xo and a subsequence No such that  for 
x E  X o - X +  

(3.2) liminf fn(Xn) > fo(x) for (xn)neN E EA(X). 
nENo 

CONDITION B. For every x E X there exists a s e t  ,'~.B(X) of sequences Xn E X ,  
n E N, with the following property: For every x E X and every subsequence No, 

(3.3) l iminf f,~(xn) >_ fo(x) for (Xn)net~ E EB(X), 
nENo 

implies 

(3.4) lim sup (x) < go 
nENo 

THEOREM 3.1. Assume Conditions A and B, with SB(x) C ~A(X) for  every x E 
X .  Let Xo denote the set of all x E X for which (3.1) holds true. Let X+ denote 
the exceptional set and N0 the subsequence from Condition A. Then (3.4) holds for 
x E  X o - X + .  

Addendum. If g~ = f~, n = 0 , 1 , 2 , . . . ,  then 

(3.5) l iminf fn(x)  ~ fo(x) for x E X~ .  

PROOF. Theorem 3.1 is an immediate consequence of Conditions A and B. The 
Addendum follows from 

l iminf fn(x)  < fo(x) for x E X~) and 
n---~ cx) 

liminf fn(x) <_ limsup fn(x) <_ fo(x) 
n---~cx) nENo 

for x E X o -  X+. [] 

Theorem 2.1 now follows by specializing Theorem 3.1. Since N(0,~2) is nonatomic, 
it suffices to prove (2.2) and (2.3) for closed intervals. 

a) General families 



102 J. PFANZAGL 

Let fn(P)  : =  p n { c n ( E ( n )  -- ~(P)) �9 B}  for n �9 N, and fo(P) := 1/2 in case (i) of 
Theorem 2.1, fo(P) = N(o,~2(P))(B) in case (ii) of Theorem 2.1. 

If B is closed, f~ is for n �9 N upper semicontinuous by Corollary 5.1. Since f0 is 
lower semicontinuous (for this we need upper semicontinuity of a in case (ii) of Theo- 
rem 2.1), Proposition 5.2 implies Condition A for X = P with N0 -- 51, ~ +  a set of first 
category, and ~A(P) the set of all sequences (Pn)n~N --* P (hi). 

(hi) If (n(n))~e~ is asymptotically median unbiased, Condition A holds for fn (P) : =  
P~{n(~) > n(P)} and fo(P) := 1/2. Proposition 4.1 implies Condition B for X = P 
with gn(P) := pn{cn(t~(n) - t~(P)) ~ t} for rt �9 51 and go(P) := N(o,~2(p))(-oo, t], with 
EB(P)  consisting of the sequences (Pn,~)~cN, u �9 Q. 

Provided (P~,~)~cN converges to P in the topology/4, Theorem 3.1 implies 

limsup P~{cn(n (n) - n(P))  < t} < N(o,~2(p))(-c~, t] 
n-- -~  OO 

for every P ~ ~ _  and every t > 0. 

The corresponding argument using fn(P)  = pn{n(n) < n(p)}  yields 

l imsupP~{c~(~ (~) - n ( P ) ) >  - t }  < N(o,~2(p))[-t,c~) 
n - - ~ O O  

for every P r  and every t > 0. 

Hence (2.2) follows with N0 = N for P r ~ O ~3~. 
(aii) For arbitrary estimator sequences, we apply the Addendum to Theorem 3.1 

with fn(P) := gn{cn(tC(n) -- t~(P)) �9 [ - t , t ]}  for n �9 N and fo(P) := N(o,~2(P))[-t,t] �9 
Condition A is fulfilled with an exceptional set of first category which now depends on 
t, say ~t- By Proposition 4.2, Condition B holds with f~ = g~ for n -- 0, 1, 2 , . . .  for 
=~B(P) consisting of the sequences (Pn,u)neN, u �9 Q. 

Provided (P~,~)~eN converges to P in the topology b/, the Addendum to Theorem 3.1 
implies 

(3.6) lim__jnfP~{c~(t~ (~) - n(P))  �9 [ - t , t ]}  _< N(o,~2(p))[-t,t] for every P �9 ~ t .  

It is now easy to see that  (3.6) holds simultaneously for all t > 0 if P r U{~  t : t �9 
Q N (0, c~)}, again a set of first category. 

This proves relation (2.3) with N in place of No. Starting these considerations ab 
ovo with a subsequence No, relation (2.3) follows. 

b) Parametric families 
It is now convenient to consider fn, gn as functions on O, i.e. fn(v~) := P~{cn(~ (n) - 

~(P~)) �9 B} for n �9 N, and fo(0) = 1/2 in case (i) of Theorem 2.1, fo(vg) = N(o,a2(p~))(B) 
in case (ii) of Theorem 2.1. Conditions (4.2) and (4.8), (4.9) are now understood with 
Pn,~ replaced by 0 + c;lu.  With v9 ~ P~(A), v~ --* n(P~) (and v~ --~ a(P#) in case 
(ii) of Theorem 2.1) measurable, the functions fn, n = 0, 1, 2 , . . .  are measurable. The 
Addendum to Proposition 5.1 implies Condition A for X = O with a subsequence No, a 
set O+ of Ak-measure 0, and EA(0) the set of all sequences (0 + CnlU)neN, u �9 Q. 

(hi) If (n(n))neN is asymptotically median unbiased, Condition A holds for X = O 
with f~(0) := P~{n(~) > n(Po)} and f0(0) -- 1/2. Proposition 4.1 implies Condition B 
with g~(~) := P~{cn(~ (n) - ~(Po)) <- t} for n �9 5t and g0(~)) := N(o,~(P~))(-oo,t], with 
~B(O) consisting of all sequences (~ + c~lu).~N, u �9 Q. The proof is now concluded as 
under (ai). 
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(bii) For arbitrary estimator sequences, we apply the Addendum to Theorem 3.1 
with fn(O) :-- P~{cn(g(n) - n(Po)) E [- t , t ]} for n E N and f0(O) = N(o,~2(~))[-t,t] �9 
Condition A is fulfilled with a subsequence Nt, a set (~t of )~k-measure 0, and ~A(O) the 
set of all sequences (0 + c~lu)~eN, u E Q. By Proposition 4.2, Condition B holds with 
gn = fn for n = 0, 1 ,2 , . . .  for -EB(r consisting of all sequences (0 + c~u)neN, u E Q. 
The proof is now concluded as under (aii). (Notice that the subsequence which enters 
through Condition A drops out.) 

4. Auxiliary results on concentration bounds 

This section contains asymptotic bounds for the concentration of estimator se- 
quences. The bound at a given P E ~ is based on the performance of the estima- 
tor sequence along sequences (P~,u)neN, u E R, fulfilling certain LAN-type regularity 
conditions. 

The constitutive condition which connects the local properties of ~3 with local prop- 
erties of the functional n is 

(4.1) Cn(n(Pn,u) - n(P0)) -~ u(r(Po) for u E R. 

In the following, (n(n))neN is an arbitrary estimator sequence for re. 
Using a suitable asymptotic version of the Neyman-Pearson Lemma (see e.g. Lemma 

8.2.15, p. 275, in Pfanzagl (1994)) we obtain the following. 

PROPOSITION 4.1. Assume that 

(4.2) P~ o log dP~n,u/dP~ =:~ N(_u2/2,u2 ) for 

Then the following is true. 
I f  for every u E Q, 

(4.3') 

and 

(4.3") 

then 

(4.4) 

u E R .  

linminf Pnn, u{n (n) _< n(Pn,u)} >- 1/2 

l iminfPY. (n(n) > n(Pn,u)} > 1/2, 

l imsupP~{cn(n ('0 - a(Po)) E [ - t ' ,  t"]} <_ N(o,a2(po))[-t', t"] 
T t  ---~ O O  

for all t', t" >_ O. 

PROOF. (i) Assume that Ca E .A, n E N, fulfills liminfn__.ooP~n,u(Cn) > 1/2. 
Considering C~ as a critical region for the test problem P~ : P~,~,, we obtain from (4.2) 
by the Neyman-Pearson Lemma that 

(4.5) linm inf P~(Cn) ~ / (0 ,1) (U,  OO). ' 

(ii) Given t > 0, let u > t be arbitrary. 
n(Pn,~)}, we obtain 

From (4.5), applied with Ca = {a(n) _> 

(4.6) lim__ i~f P~{t~ (n) _> n(Pn,u)} >_ N(o,u (u, oc). 
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By (4.1), we have ca(g(Pit,~) - a(P0)) > ta(Po) for n large. This implies 

{cit(a (It) - a(Po)) > ta(Po)} D {a (a) > a(Pa,,)}- 

Together with (4.6) this implies 

(4.7) l im_infP~{ca(a (a) - a ( P o ) )  > ta(Po)} >_ N(o,D(u, ~ ) .  

Since u > t was arbitrary, relation (4.7) holds with u replaced by t. 
Off) The same argument, applied to Ca = {~(n) < ~(Pa,u)} with - u  < - t  yields 

linm__ inf P~{cit (to (a) - t~(Po)) < - t a ( P o ) }  > N(o,i)(-co, - t ) .  

Both relations together imply (4.4). [] 

PROPOSITION 4.2. Let ua,va �9 R, n C N, be convergent sequences with v := 
lima--.oo vit. Assume that 

n I t  I t  P~,u, o logdPn,u,+v~/dP(~ n =~ N(_v2/2,v2) (4.8) 

and that 

(4.9) 

Let t > 0 be fixed. I f  

(4.10) 

then 

(4.11) 

u --~ g(Pa,u) is continuous on ~ .  

liminfP~u{c~(~(it) - n ( P a , ~ ) )  �9 [ - t , t ] }  > N(o,~2(po))[-t,t ] 
a - - # O O  ~ 

for  every u �9 Q, 

nlirnoo P~{cit(n (It) - n(Po)) e [ - t ,  t]} = N(o,a2(po))[-t, t]. 

Proposition 4.2 is a modification of Theorem 8.6.3 in Pfanzagl ((1994), p. 298). We 
give the proof in extenso, since the proof given in 1.c. is certainly less than optimal. 

The implication from (4.10) to (4.11) is equivalent to the following. 

(4.12) 

implies 

(4.13) 

limsupPo~{Cit(n (a) - n ( P o ) )  e [- t , t ]} > N(o,o2(po))[-t,t ] 
a - - - ~ O O  

linm inf Pn, u{Cit(n(n) - tc(Pn,u)) G [- t ,  t]} < N(o,a2(go))[-t, t] 

for some u E Q. 

Though technically less convenient, this expresses more clearly that superefficiency of 
(n(it)))aeN at P0 brings about unwelcome properties of this estimator sequence in the 
neighbourhood of P0. 

PROOF. We shall prove that (4.12) implies (4.13). Since P0 and t are fixed, they 
will be omitted if there is no danger of confusion. 
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Since u ~ cn (n(P,~,~,)- a(P0)) is continuous, relation (4.1) implies that  for a rb i t rary  
n, k E N there exists Un, k such tha t  

cn(n(Pn,~,,k) - n(Po)) e (2kt + (k - 1 ) / n , 2 k t  + k /n )  (4.14) 

and 

(4.1o) lim un,k = 2kt.  
n - - - ~  O O  

To simplify our notations, let Qn,k :-- Pn,u~.k. Moreover, let 

(4.16') A~,k = {~;(n) < ~(Qn,k) - c~ i t }  

(4.16") A+,k = { re(n) > n(Qn,k) + cn l t }  " 

The relation cn(n(Qn,k) - t~(Qn,k-1)) > 2t implies 

- -  c + 
(4.17) (An,k) C An,k_ 1. 

Moreover, let 

(4.18) + r)n /A+ Otn,k ~ "r n,k]" 

With these notations, relation (4.12) may  be rewri t ten as 

(4.19) 

Let 

(4.20) 

W.l.g. we may assume tha t  

(4.21) 

lim in f (a~  o + + 2 r  n--*oo ' O/n'0) ~ 

+ 
a k := lim inf c~ + . .  

n _...+ O 0  n ~ g  

< 

Considering An,k_ 1 as a critical region for testing Q,~,~-I : Q'~ c~+ n,k a t  level n , k - l ~  w e  
obtain from a suitable asymptot ic  version of the Neyman-Pearson  Lemma  that  

( 4 . 2 2 )  - �9 n + (I) ( (I)-  1 ( O~+ 1) + hnm_+mf Qn,k (An ,k - l )  <- _ 2 t /a ) .  

Together with (4.17), evaluated by Qnn,k, we obtain 

(4.23) l imsup a~, k __~ O ( - - ~ ) - I ( o z L 1 )  - -  2t /a ) .  

Now we shall prove tha t  

l imsup(an,  ko + a+,ko) > 2r  for some k0 E N. 
n - - - ~  O o  

This is relation (4.13) with Un,ko in place of u. Because of (4.15), this implies (4.13) with 
u = 2kot. 
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(4.24) 

Since 

J.  P F A N Z A G L  

Assume that, on the contrary, 

limsup(O/~,k + O/+,k) <- 2q~(-t/~r) 
n ---*(X) 

for every k ~ N. 

Since (4.29) implies 

log d P ~ ' ~  +'~ 
dP ~ , ~  

relation (4.8) follows from (4.31). 

1 + 2uv))  v A .  - ~ ( v  2 0 

+ + 
limsup(a~, k + an,k) > a k + l imsupa~, k, 

n - - -4  O 0  ~----~ 0 0  

we obtain from (4.23) and (4.24) that 

+ < + 
( 4 . 2 5 )  O/k - -  - -  ( O / k - l )  -- 

With 5k := g2( - t /a )  - O/+, relation (4.25) may be rewritten as 

(4.26) 5k >_ r -- 5k-1) -- 2 t /a )  -- O(- - t /a) .  

If 0 < 5k-1 < g2(--t/a), relation (4.26) implies 

(4.27) 6k > 5 k - 1  ~- A 5 ~ _ 1 ,  

with A > 0 not depending on k. (By Lemma 8.6.23 in Pfanzagl (1994), p. 302, relation 
(4.27) holds with A = t / a ~ ( t / a ) . )  

Recall that 5o > 0 (by (4.21)). If (4.24) holds true for every k = 1 , . . . ,  K, we obtain 
from (4.27) that  

(4.28) 5K > 50 + K A S ~ .  

Since 5k <_ O(- - t /a )  for every k E l~I, relation (4.24) must be violated for some k smaller 
than 5o2 A - l r  [] 

Remark  4.1. Condition (4.8) follows from LAN. Assume that 

(4.29) log dP~ uA= - --* 0 (P~) if u~ --* u > 0 

and 

(4.30) P~ O A n ==~ N(0,1). 

This condition implies that  for every bounded sequence (un)n~N the sequences (P~n,~,,)n~N 
and (P~)ncN are mutually contiguous. From this and Le Cam's 1st Lemma one obtains 
that 

(4.31) Pn, un o A n ~ N(u,X ). 

(For a convenient reference see Witting and Mfiller-Funk (1995), p. 311, Korollar 6.1.24 
or Pfanzagl (1994), p. 217, Addendum to Corollary 6.7.11.) 
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5. Auxiliary results on locally uniform convergence 

The proofs in Section 3 make use of the fact that a relation like liminfn~o~ fn(x)  >_ 
fo(x) for x �9 X holds in some sense locally uniformly on a "large" subset of X.  For 
the application to parametric families it suffices to have such a result for X = I~ k. 
This is Proposition 5.1. For the application to general families of probability measures, 
Proposition 5.2 presents results under topological conditions. 

The following proposition is a slight generalization of Bahadur's Lemma: The as- 
sertion refers to lira inf rather than lim, and to a subset Xo C ~k (rather than Rk itself). 

PROPOSITION 5.1. Let f~ : I~ k ~ IR, n = 0, 1 ,2 , . . .  be measurable functwns such 
that 

(5.1) l iminf  fn(x)  >_ fo(x) for x �9 Xo �9 ~k. 

Then for every sequence (u~)neN ~ 0 there exists a Ak-null set X+ C Xo and a subse- 
quence I~o such that 

(5.2) l iminf  fn(X + Un) > fo(x) for  x �9 X o -  X+. 
nENo 

Addendum. Relation (5.2) holds simultaneously for any countable family of se- 
quences (un)neN ~ 0. 

PROOF. (i) Let N(0,x) I ]~k denote the normal distribution with mean-vector 0 and 

covariance matrix I. Recall that for every function f �9 ff.l(l~k,~k,N(o,I)) and every 
sequence (Un)neN -4 O, 

I" 
(5.3) l irn J I f (x  + Un) - f (x) lN(o,o(dx)  --~ O. 

(Hint: Use Hewitt and Stromberg (1965), p. 199, Theorem 13.24.) 
(ii) Let gn := fn -- fO. Using the decomposition gn = g+ - g ~ ,  we obtain from (5.1) 

that limn~c~ g~(x) = 0 for x �9 Xo. Given a sequence (Un)neN ---* 0, let Xn := Xo + un. 
We have 

e Xo: gn(X + un) > = Y(uo,+)(x e : g# (x )  > 

= N(o,~){x �9 X~ :  g~(x) > ~} + o(n ~ = N(od){x �9 Xo :  9~(x) > E} = o(n~ 

(Hint: N(o ,o (XoAXn)  ~ 0 as a consequence of (5.3), applied with f -- lxo.) 
Since the sequence g~(. + u~), n E N, converges to 0 in N(od)-measure restricted 

to X0, there exists (see e.g. Hewitt and Stromberg (1965), p. 156, Theorem 11.26) a 
subsequence No and a subset X '  c Xo with N(o,I)(X') = 0 such that lim~e~o g~ (x + 

un) -- 0 for x �9 2(o - X' .  Since g+(x + un) > 0 for x �9 •k, this implies 

(5.4) liminf gn(x + un) > 0 for x E X0 - X' .  
nENo 

(iii) By (5.3), applied with f -- fo and No in place of N, there exists N1 C No and a 
N(0j)-null set X "  such that limneN1 f o ( x + u n )  = fo(x) for x r Z " .  Together with (5.4) 
this implies (5.2) with X+ = X '  U (Xo N X" )  and N1 in place of No. [] 
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The following proposition generalizes Lemma 9.1 in Pfanzagl (2002). 

PROPOSITION 5�9149 Let (X,b/) be a Hausdorff space. For n E N let fn : X --* R be 
upper semicontinuous, and fo : X ~ R lower semicontinuous. 

i f  

(5.5) l iminf  fn (x )  > fo(x) for x E Xo, 
n - - ~  O 0  

then there exists a set of first category X+ c Xo such that for every xo E Xo - X+ 

(5�9 l iminf  fn(Xn) > fo(xo) for every sequence (Xn)nEN ---* XO. 
n ---* C O  

PROOF. (i) For n, m E N let A~,m C X be closed. Then 

CO O0 CO (30 

N UA-,  - N UA;,  
rn=l n----1 ra=l n=l 

is of first category�9 
o o  ~ o c CO If x0 E (Nm=l Un=l An,m) , there exists mo such that  xo E Nn=l(A~ c C 

o c (A,~,mo) for every n E N. 
If x0 E Nm~=l U~=I An,m, then Xo E U~__l A~,mo; hence there exists no, such that  

Xo E Ano,mo Therefore, xo E Ano,mo - A~ which implies �9 n O  ~T$ 0 ' 

Since An,m 
(i). 

(30 OO (30 (X) CO 

N UAo, - N UA~ U 
m = l  n = l  m = l  n----1 m = l  n = l  

-- A~, m is a closed set with empty interior, this proves the assertion under 

(ii) First we prove the assertion for fo(x) = 0. Let now 

o o  

An,m := n {x E X :  fk (x)  >_ - 1 / m } .  
k=n 

Since fk is upper semicontinuous, the sets {x E X : fk (x)  >_ - -1 /m}  are closed. This, in 
turn, implies that An,m is closed. 

We have 
OO (X) 

linm_)nf fn(Xo) > 0 iff Xo E N U An,m- 
m=l n=l 

Moreover, x0 E Nm~=l co Un=l A~,m implies 

(5.7) l iminf fn(xn) > 0 
n---+ OO 

if 
[ \ 

tx, j x0. nEN 

If X0 E ~'~m~=l Unco=l A~,m, then for every m there is nm such that Xo E A~m,m =: Vm. 
The set Vm is open, and infxEym fk(X) > - -1 /m for k > nm. Since (Xk)kEN --~ XO implies 
xk E Vm for k > ' nm, we have fk(Xk) >_ - -1 /m for k > max{nm, n~n }. Hence (5.7) is true 

OO OO (3~ OO 
for every xo E Xo, except for Xo E Nm=l Un=l An,m o - -  Un=l An,m, set of first N m = l  a 

category. 
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This proves the assertion with fo(x) = 0. Applying this assertion for fn - fo (which 
is upper semicontinuous, since f0 is lower semicontinuous), we obtain from (5.7) for 
x0 ~ X0 - X +  

l iminf(fn(Xn) - fo(xn)) > 0 for every sequence (xn)neN -~ xo. 
n - - -~(X)  

Since fo is lower semicontinuous, we have l i m i n f n - ~  f0(x~) > fo(xo), and (5.6) fol- 
lows. [] 

The application of Proposition 5.2 in Section 3 requires the semicontinuity of func- 
tions like f~(P)  = P~{cn(~ (~) - to(P)) e B}. This is guaranteed by CoroUaxy 5.1. 

LEMMA 5.1. Let ~ denote the family of all probability measures Q [ B, endowed 
with the topology Lid induced by the sup-distance. Let )2 denote the topology of the Eu- 
clidean distance on R. Let B E ~ be fixed. 

Then the map ( Q, t) --~ Q( B + t) is lower [upper] semicontinuous with respect to the 
product topology Lid • )2 if  B is open [closed]. 

PROOF. It suffices to show that d(Q0, Qm) ~ 0 and tm ~ to, m E N, implies 

(5.8) liminf Qm(B + tin) > Qo(B + to) 
m ---e. O 0  

if B is open. W.l.g. we assume to = 0. I f B  is open, x c B implies x E B + t  if 
t is sufficiently small. Hence B N  ( B + t m )  c I 0 if tm -~ O. Since Q o ( B + t m )  >_ 
Qo(B) - Qo(B A (B + t,n)c), this implies lira infn_.~ Qo(B + tin) >_ Qo(B). Since 

[Qo(B + tin) - Qm(B + tm)[ _< d(Qo, Qm), 

relation (5.8) follows. This proves the assertion for B open. The assertion for closed B 
follows since Q(B) = 1 - Q(BC). [] 

COROLLARY 5.1. Let H D Lid be a topology on ?~. I f  ~ : ~3 - ,  R is H-continuous, 
then, for every n C N, P - .  pn{cn(g(n) - a(P)) E B}  is lower [upper] semicontinuous 
with respect to Lt if B is open [closed]. 

PROOF. If the maps P ~ Qp and P ~ t(P) axe (bl, Hd) and (H,)2)-continuous, 
respectively, then P --* Q p ( B + t ( P ) )  is lower semicontinuous by Lemma 5.1 for B open. 
Applied with Pno cnt~(n) and Cng(P) in place of Qp and t(P), this yields the assertion. [] 

Remark 5.1. Notice the analogy and the distinction between Corollary 5.1 and 
Alexandrov's theorem, asserting that  

l iminfQm(B)  > Qo(B) for open subsets B, if Qm ~ Qo. 
r n - -*~  

Since P~{cn(tc(n) - ~(P)) E B}  depends on P through P~ and through ~(P) ,  we need 
the stronger condition d(Po, Pro) --* 0 instead of Pm =:~ Po. 
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