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A b s t r a c t .  One-term Edgeworth Expansions for the studentized version of com- 
pound Poisson processes are developed. For a suitably defined bootstrap in this 
context, the so called one-term Edgeworth correction by bootstrap is also estab- 
lished. The results are applicable for constructing second-order correct confidence 
intervals (which make correction for skewness) for the parameter  "mean reward per 
unit time". 
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1. Introduction 

T h e  main  object ive  of  this invest igat ion is to ob ta in  one - t e rm Edgewor th  expansion 
and  establ ish second-order  correctness  of a su i tab ly  defined b o o t s t r a p  for the  s tudent ized 
compound  Poisson process.  We begin wi th  the definition of a renewal reward  process.  

Let  {N( t ) ,  t > 0}, be  a renewal  process wi th  the  inter-arr ival  t imes  T1, T2, . . . .  Here  
Ti, i = 1, 2 , . . .  are posi t ive i . i .d . r .v . ' s .  Thus  N ( t )  equals the  n u m b e r  of arrivals up to  
t ime  t. Suppose  X1, X2 , .  �9 �9 are i.i.d, r a n d o m  variables  independent  of {N( t ) ,  t > 0}. T h e  

renewal reward process is defined as ~-~N(0) Xi,  where X0 = 0. T h e  classical example  of 
a renewal reward process arises in a business se t t ing where cus tomers  arr ive according 
to a renewal process and  Xi denotes  the revenue direct ly  due to  the  i - th  cus tomer .  T h e  
to ta l  revenue up to t ime  t gives rise to  a renewal reward process.  

(x-~N(t) X i - ,~tp)/V/-~, where # = Hipp  (1985) ob ta ined  Edgewor th  expansions for ~z_~=0 
E(X1)  and E(T1) = A -1 > 0. In fact,  he considered a more  general  case, where  Xi  are  
r a n d o m  vectors  and Xi  and  Ti are allowed to be  dependent .  His results  are derived under  
a Cram@r's type  condit ion for the  d is t r ibut ion of (X1,T1).  In the univar ia te  case, one- 
t e r m  Edgewor th  expansions  for the  s tandard ized  mean  can be ob ta ined  under  a weaker  
a s sumpt ion  t ha t  Xi  has a non- la t t ice  dis t r ibut ion.  

Edgewor th  expansions  for pivotal  quant i t ies  such as the  s tudent ized m e a n  are dif- 
ficult to derive for general  renewal reward processes. We shall  invest igate  the  general  
case in a later  paper .  In  this art icle we concent ra te  on the  compound  Poisson process 
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by making use of the relation between the variance and the mean of T1. This rela- 
tion facilitates studentization by a simple expression involving only X 1 , . . . ,  XN(t), when 

v'N(t) X 2 is a natural {N(t ) , t  > 0} is a Poisson process. It can be easily seen that z_~i=0 

consistent estimator of the variance of (~-]N_(0) X~ - A#t). One might think of deducing 
an Edgeworth expansion for the studentized 

(1.1) Rt = 

-1/2 

by expressing it as a smooth function of v ' N ( t ) { x "  X 2~ Apt and applying (the re le -  A-.~i=0 \ ~, i 2' 
vant) part (i) of Theorem 2.7 of Hipp (1985). To treat such functions, expansions for 

P(~N(o)((Xi ,X2 ) -- E(Xi ,X2))  e C) are needed uniformly for a class of non-convex 
sets C defined through inequalities involving a linear term plus a quadratic form. It is a 
non-trivial task to extend Hipp's result on convex sets to such a wider class of sets. We 
shall not pursue this line of investigation further here. 

There are several related papers (Mykland (1992), (1993), (1995a, b), Yoshida (2001) 
and Kusuoka and Yoshida (2000)) on asymptotic expansions using nontrivial martingale 
approach and Malliavin calculus. However, our result is derived from the standard 
Edgeworth expansions in the i.i.d, case using simple and elementary estimates. 

In Section 2, we shall develop an Edgeworth expansion for Rt. In Section 3, a result 
on second order correctness (similar to Singh (1981)) for a suitably defined bootstrap 
procedure for Rt is established. Some simulation studies are presented in Section 4 
for standardized and studentized compound Poisson processes. The technical details, 
required in the proof of the main result, are presented in the Appendix. 

We conclude this section by noting that the results obtained here can readily be 
applied to form confidence bounds for Apt or A#. This is especially true for the second 
order bootstrap result on the studentized case. For a survey of the problems on esti- 
mation of the intensity function of a Poisson process see the monograph by Kutoyants 
(1998). Note that A# can be interpreted as 'mean reward' per unit time. Let ~ ( t )  and 
Ol-~(t) be the bootstrap estimates of the a- th  and (1 - a)- th  quantile for the statistic 
Rt. The interval 

1 7 E , 7 E E 
i=0 i=0 i=0 i : 0  

is an asymptotically second order correct 100(1 - 2a)-level confidence interval for A#. 
The proof of second order correctness can be carried out along the lines of Babu and 
Bose (1988), Bose and Babu (1991), or Hall (1988). 

2. Edgeworth expansions 

To establish a one-term Edgeworth expansion for the studentized statistic Rt, recall 
that  for the Poisson process {N(t ) , t  > 0} with rate A > 0, the inter-arrival times Ti 
have the exponential distribution with 

E ( T 1 )  = A - 1  > 0, v a r ( T 1 )  - -  A - 2 ,  a n d  /23 : E ( T  1 - A - l )  3 : 2A - 3 .  
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To state the main theorem, let 

~- E(X1),  (7 2 = var(Xl) ,  /t3 = E(X1 - #)3 and u2 _- E(X21) = a2 + #2. 

Unless otherwise stated,  throughout  this paper the limits are taken as t -~ co. 

THEOREM 2.1. Suppose E(X1) 6 < oc and the distribution of X1 has a continu- 
ous component. Let {N( t ) , t  > 0} denote a Poisson process with rate A > O, and be 
independent of the sequence {Xn}.  Then, uniformly in x, as t ---* co, 

(2.1) P ~( ~--~"g(~ Xi-~i~_(t)X~i Apt < x,,) = d2(x) + 6 y 3 v / ~  ( p 3 ( 2 x 2 1  + 1 ) -  ~t3(x 2 - -  1) 

+ 3 , ( (7  ~ + x 2 o  2 + x 2 ~ 2 ) ) r  + o( t -1 /2 ) .  

PROOF. Let Ht  = {IN(t) - At] < (At/2)}, 

(2.2) Wt = (N(t)  - At)/v/--~, At = IH,, Ct = Ht N {IWt] <_ logt},  Bt = I c t ,  

(2.3) z t  = a(x) = -~(~,~-,w,), and  ~ = v~(~) = -~(~,x- # W t ~ ) .  

If p = 0, then  the result follows trivially from 

(2.4) 
A 

P(H~) < A-~t2E(N(t) - At) 2 = O(t -1) ,  

E ( A t ( ~  - 1)) -- E(At((1 + (Wt/vr-~)) -U2 - 1)) 

= O(E(lWtl) /vq)  = O(t-~/2), 

and Lemma 4 by taking mn = 0. 
Prom now on, wi thout  the loss of generality, we assume # > 0. We use Lemma 4 

with m n =  ( n - A t ) / v ~ ,  when N ( t ) =  n. As P(]Wtt > logt)  = o(t -1/2) by Lemma 3, it is 
easy to check using (2.4) and P ( [ X ~ - v [  > v/2) = O(n-1) ,  tha t  P([Rtl > 5v(7 -1 logt)  = 
o(t-1/2). Hence it is enough to prove tha t  (2.1) holds uniformly in ]x I < 5u(7 -1 logt.  Let  

r  lit) = 3xO(Tv-lVt - #3(Vt 2 - 1). (2.5) 

By Lemma 4, we have on Ct uniformly in Ix] < 5u(7 -1 logt ,  tha t  

1 
P(Rt  <_ x IN( t ) )  = O(Vt) + 6(73v/-)~r V~)r Atxf~t-/N-(t ) + o(t- ' /2).  (2.6) 

Since on Ct, r  Vt)r = O(Ixl) and ~ = 1 + O((logt)t-1/2), we have for 
Ix[ _< 5v(7 -1 logt  and on Ct, 

r  Vt)r - ~ ) )  = O((logt)2t-U2). (2.7)  

Similarly on Ct, 

(2.8) Vt - Zt = (#/(7)Wt(1 - V / ~ / N ( t ) )  



86 GUTTI JOGESH BABU ET AL. 

and 

(2.9) 

_ i t W?+O(( log t )3 t -1 )  

or 
2#v/- ~ (Zt - (ux/or)) 2 + O((log t)3t-1), 

(Vt - Zt) 2 = O((logt)4t-1). 

By (2.8) and (2.9), there exists a ~t between Vt and Zt such that on Ct, 

(2.10) ~b(Vt) = ~b(Zt) + (Vt - Zt)r + O((Vt - Zt)2~tr or 
= r + 2 - - - ~ ( Z t  - (ux/or))2r + O((logt)4t-1), 

uniformly in txl _< 5uor -1  logt. 
For any polynomial Q, we have on Ct, 

(2.11) IQ(x, Vt)r - Q(x, Zt)r = IVt - Z,l" Iqx(~t) - ~tQ(x, ~t)lC(~t) 
= O((log t)rt -1/2) 

uniformly in x, for some positive integer r depending on the degree of the polynomial Q. 
OQ fx, y) and ~t is a number between Vt and Zt. Thus from (2.6)-(2.11), Here qx(Y) = Wffy, . 

we have, uniformly in Ixl _< 5~or -1 log t, 

(2.12) E ( B ,  P(Rt  <_ x I Zt) - ~(Zt) 

1 (~ (Zt-vx~2--~r Zt)) ([)(Zt)) =o(t-1/2). 
6v/-~ or,, + 

We have by Lemmas 1-3, uniformly in Ixl < 5uor -1 logt, 

= E  ( ( ( ~  a~3) (Z2 - 1) 

+ (302 6U) xZt + 3__a_a# ( 1 +  ~ ) 2 ) r  

( ( 7 ) ~  •3 - - ( z  2 - 1) 
0-3 V3 

( 3 0  6 u ) o r 2  30.2(  /]2x2 ~ ~ 
x 2 -  + 1 + r + 0(1) 

+ .2 7 or2 ] ]  

= (2x 2 + 1) + - - 7  + (,2 + or2) r + o(1). 

Finally to estimate E(O(Zt)),  let Z ..~ N(0, 1), U and the process {N(t), t > 0} be 
independent, where U is uniformly distributed on ( -1 /2 ,  1//2). Then W = ( x y - a Z ) #  -1 
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Fig. 1. Exponential, normalized, true 
distribution. 

Fig. 2. Exponential, normalized, boot- 
strap distribution. 
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Fig. 3. Exponential, studentized, true 
distribution. 

Fig. 4. Exponential, studentized, boot- 
strap distribution. 

has the normal distribution with mean xv/#  and variance or2# -2. Since E(U) = 0, we 
have by Lemma 3 (see (A.12)), 

E(+(Zt)) = E(O(Zt - U(#/av/-~))) + o(t -112) 
= P ( Z  <_ VO'- - Ix  --  ~ t o ' - l w t  - ( U ~ t / o v / ~ ) )  Jr- o(t -1/~) 

= E(P(Wt + (U/v/~) <_ W [ W)) + o(t -1/2) 
1 

= E(O(W)) 6v/_~E((W2 - 1)r + o(t-1/2). 

Lemma 3 is essentially used, for the expansion, only here. By Lemma 1, E(O(W)) -- O(x) 
and E ( ( W  2 - 1 ) r  --  (# /~ ] )3 (x2  - 1 ) r  Therefore 

/ t  3 
(2.14) E(O(Zt)) = O(x) 6~,~--v/~ (x 2 - 1)r + o(t -1/2) 

uniformly in x. Theorem 2.1 now follows from (2.12)-(2.14). 

3. B o o t s t r a p p i n g  

To describe the bootstrap procedure for Rt, let T1,T2, . . .  ,TN(t) and X l , X 2 , . ~  
XN(t) be the observed data. Let 

N(t) N(t) 
1 1 1 

- N ( t )  x ,  a n d  = - -  r , .  
i=o N(t) i=o 

Let T { , . . . ,  Tin, be i.i.d, exponential random variables with mean ~-1 satisfying 

i~_m* --1 i ~ m *  
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Fig. 5. Lognormal, normalized, true dis- 
tribution 

-2 0 2 4 6 

Fig. 6. Lognormal, normalized, boot- 
strap distribution. 
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Fig. 7. Lognormal, studentized, true Fig. 8. Lognormal, studentized, boot- 
distribution, strap distribution. 

Here N*(t) = m* - 1. Thus  N*(t) is a Poisson random variable with mean At. Also, 
note tha t  v3 = E*(T{ - ~-1)3 = 2~-3.  Furthermore,  let X~,X~, . . .  ,X~.( t  ) be random 
draws with replacement from X1, X2, . . . ,  XN(t). 

THEOREM 3.1. 

ple sequences {(Xi ,Ti)}  and N(t), that 

v/~ sup p (Y]i<-N(t) Xi - l# t  <_ x ) 

~i<N(t) X~ 
as t --~ oo. 

Under the conditions of Theorem 2.1 we have, for almost all sam- 

- < x  - ~ 0 ,  

V/~ i<N ' ( t )  X~ .2 

PROOF. Using Theorem 1 of Babu  and Singh (1984), a result similar to Lemma 4 
can be established for the boo t s t r apped  version. We also note tha t  for any c, C > 0, 
es t imate  (A.3) of Lemma 3 holds uniformly for c < )~ < C and In31 < C. By  strong law 
of large numbers,  the empirical versions of v 2, #3, A, a 2 , / t  converge to the corresponding 
parameters .  This leads to 

P* ( E~<y'(t) x*  - ~ftt " ' - - - - - -  < x 

\ ~Ei<N*( t )  x*2 -- 

1 
= (I)(x) + 6u3vf~(#3(2x2  + 1) - #3(x2 - 1) 

+ 3#(o .2 + a2x 2 + u2x2))r + o(t -1/2) 

uniformly in x for almost all sample sequences. Now the result follows from (2.1). 
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Fig. 9. Normal, normalized, true distri- 
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Fig. 10. Normal, normalized, bootstrap 
distribution. 
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Fig. 11. Normal, studentized, true dis- 
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Fig. 12. Normal, studentized, bootstrap 
distribution. 

4. Simulations 

Figures 1-12 give simulation results on the true distribution, bootstrap distribution 
for normalized and studentized compound Poisson processes. Taking A = 1, the Poisson 
process is simulated up to time t = 40. Given a realization of Poisson process N ( t ) ,  
t < 40, the reward random variables X1, X 2 , . . . ,  XN(4O) are generated from exponential 
distribution with mean # = 1 (Figs. 1-4), log-normal distribution LN(0,  1) (Figs. 5-8) 
and normal distribution N(0, 1) (Figs. 9-12), respectively. Each figure is based on 10,000 
runs. Figures 1, 5, 9 are the simulated true distributions of the normalized processes 

~ N ( t )  
~=1 X i  - Apt 

Figures 2, 6, 10 are the bootstrap distributions for the normalized processes 

~-~N*(t)  . 
i=1  x i  - 

2 + 

Figures 3, 7, 11 are the simulated distributions of the studentized process R~ and Figs. 4, 
8, 12 of their bootstrapped versions. From these histograms, it can be seen that the 
normalized Poisson processes are approximately normally distributed for t = 40 whatever 
the rewards are. But, the studentized ones are seriously skewed to the left for exponential 
or log-normal rewards. The skewness in each case is almost perfectly captured by the 
corresponding bootstrap distribution. For normal reward, studentization of the process 
does not incur any evident skewness. 
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Appendix 

We now present some technical lemmas needed in the proof of Theorem 2.1. 

LEMMA 1. If  X ~ N(xv /1  + ~2,/32) for j3 and x real, then 

(A.1) E(rb(X)) = (~(x) 
E(r  = (1 + ~2)--1/2r 

E(Xr  = (1 +/~2)-Xxr 
E((X 2 - 1)r = (1 + ~2) -3 /2 (x2  - 1)r 

PROOF. Let Z1, Z 2 be i.i.d, standard normal random variables. If X -- x x/~ + ~2+ 
~Z1, then (Z2 - 13Z1)(1 + j32) -1/2 is a standard normal random variable, and 

E ( r ~ ( X ) )  = P ( Z 2  ~ ]~Zl -t- x(1  -t- ~2)1/2) _- p ( ( z  2 _ ~Z1)(1  -t- ~2 ) -1 /2  ~ x) -- (I)(x). 

The rest of the three equations follow by taking derivatives of (A.1) with respect to x. 

LEMMA 2. 
differentiable function with derivative f '  and satisfying 

J I:'(y)l y < J I:I F < 
Then for any real a and ~, we have uniformly in x, 

(A.2) 

Let F and G be two probability distribution functions. Suppose f is a 

[fldG < o0. 

f f((xx + 13y)dF(y) - / f ( a x  +/3y)dG(y) 

_< sup IF(y) - G(y)l f If'(u)ldu. 
Y 

PROOF. If j3 ---- 0, then the left side of (A.2) is zero. For ~ ~ 0, the use of integration 
by parts yields the lemma. 

To prove Theorem 2.1, we require a result on one-term Edgeworth expansion for 
the Poisson Process. However, we derive a result on Edgeworth expansions for a general 
renewal processes, as it is of interest on its own. Though, Lemma 3 appears to be a stan- 
dard result, a short and simple proof of it is presented here for the sake of completeness. 
For a renewal process {N(t),  t > 0}, the inter-arrival times T1, T2, . . .  are i.i.d, positive 
random variables. Let E(T1) = •-1 > 0, T 2 = var(T1), and v3 -- E(T1 - ,,~-1)3. Recall 
that  for the Poisson process with rate A, T/are  exponentially distributed with T 2 = A -2. 
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LEMMA 3. For a renewal process { N ( t ) ,  t > 0}, i f  T > 0, EIT~ ]3 < ~ and T1 is a 
non-lattice random variable, then as t ~ co, 

( N ( t ) - A t  ) u 3 - 3 A T  a 
(A.3) P A--~-r~ - < x - (I)(x) 6r3V ~ (x 2 - 1)r + r 

= o( t -1/2)  

uniformly in x, where ht(x)  ---- 1 2 :(AT) -- 1 + {At+ ATXV/-~}, {a} = a -- [a], and [a] is the 
integer part of  a. Further, i f  U is a uniformly distributed random variable on ( -1 /2 ,  1/2) 
and is independent of the process {N(t),  t > 0}, then uniformly in x, 

( N ( t ) - A t + U )  t]3 -- 3AT 4 A2Tz-  1 
(A.4) P A v v ~  <_ x - r  6T3V/. ~- (x 2 - 1)r + 2-~-~-rv~r 

= o ( t - 1 / 2 ) .  

PROOF. For any real x, define at = at(x)  = 1 + At + Avxv /M,  nt = [at]. We will 
estimate the left side of (A.3) on x < --V/~/(2AT) and x _> -vfM/(2AT) respectively. 
Uniformly for x < -At/(2AT), we obviously have (I)(x) + (x 2 + 1)r = O(t  -1)  and by 
the renewal theorem, that  

P ( N ( t )  - At < xAvx/-M) < P ( 2 [ Y ( t )  - At I >_ At) _< ( 2 / A t ) 2 E ( N ( t )  - At) ~ = O( t -1 ) .  

So we only consider the case x > - v f ~ / ( 2 A r ) .  Note that  in this case nt > At~2. In 
addition, let [x I < logt, 

n n t  - At 
Sn = E T i ,  and xt - ATv/- ~ �9 

i=1 

By applying the usual Edgeworth expansions for sums of i.i.d, random variables, we have 

(A.5) P ( N ( t )  - At < xArV/-M) = P ( N ( t )  <_ at - 1) = P ( N ( t )  <_ nt - 1) 

= P(Sn t  > t) = P ( - ( S n t  - A--lnt) ( XtTvF~ 
u3 ix 2 = O(xt)  + 673V,~ , t - 1)r + o(t -1/2) 

uniformly for x > --V/~/(2AT). As nt - At = O(1 + Izlv ) and Izl _< logt, we have by 
Taylor series expansion 

1 - (n t /A t )  -1/2 = ((nt  - At) /2At)  Jr O( ( (n t  - At) /At)  2) 

(A.6) = (ATX/2V/~)  q- O((1 + x2) t  - 1 )  

(A.7) = O((1 + x2) t -1 /2) .  

Estimates (A.6) and (A.7) yield, 

2 ( 1  - { a t } )  - 
(A.8) xt - x - 

2Arv~ 
1 - { a t }  ( 1 1 ) ( Ay~n~ A T X ~  

- 2e 7] 

= O ( t - 1 ( 1  q-]X]3)) ,  
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and hence ]xt - x[ = O(t-1/2(1 -~-IX[3))- By another Taylor series expansion 

1 
= - - z )  (A.9) ~2(xt) r  + (xt x)dp(x) -~(xt - 2 

(A.10) (x 2 1)r (x 2 1 ) r  x)(3~t2 3 . . . .  , - 

for some ~t,1, ~t,2 between xt and x. Since ykr is uniformly bounded for any k > 0, 
we have by (A.8), 

( X t  --  X)2(~(~t,1)~t,1 ---- O ( t  -1 )  and 
(A.11) 

_ _ = 

uniformly for x > -VrM/(2AT) and Ix[ <_ logt. In particular, it implies that for x _< 
- l o g  t ,  

P ( g ( t )  - At <_ xv/-M) <_ P ( N ( t )  - At < - v ~ l o g t )  = o(t-1/2),  

and for x _> log t, 

P ( N ( t )  - At <_ x x / ~ )  > P ( N ( t )  - At <_ v/Mlog t) = 1 - 0(t-1/2).  

Consequently, (A.3) holds uniformly for x >_ --x/A-t/(2AT), by (A.5), (A.8)-(A.11). The 
expansion (A.4) follows as E { a  + U} = 1/2 for any real number a. This completes the 
proof of Lemma 3. 

Remark.  For the Poisson process N(t) ,  the results reduce to 

P ( Y ( t )  - At <_ xv /~ )  = (b(x) - ~ - ~ ( x  2 - 4 + 6{At + xv/M})r + o(t-1/2),  

and 
(A.12) P ( N ( t )  - At + U <_ xv /M)  = r 1 6 v / ~ ( x  2 - 1)r + o ( t - 1 / 2 ) ,  

uniformly in x. 

Although the Edgeworth expansions for studentized random variables axe well 
known, the explicit forms of expansions for 'perturbed'  studentized random variables 
are not easily available. Before stating the next lemma on such expansions, we estab- 
lish some notation. Let {ran} be a sequence of real numbers satisfying m n =  O(logn). 
Define 

O = E ( X  3)  - t t t j =  t t3  + 2#O "2, a n = - 

On -~ ( ] s  - -  (0 /2V/~)  v - 3 ,  "/3 ---- ]23/]-3 -- 30"2V-50, Z n ,  x -~ ( v x  - ]Amn)O " - 1 ,  

X---~ = _1 E X i ,  Wn = v ' ~ ( X n  - #), and X~ = _1 Xg. 
n n i=1 i=1 

LEMMA 4. Suppose E ( X  6) < co and the distribution of  X1 has a continuous com- 
ponent.  Then, as n -~ co, 

sup IP(v~(Xn - , )  + r a n ,  <_ x V / ~ )  - ~(Z~,~) 
x 

Z 2 _ _ _- 1 )  o(n-1/2). 
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PROOF. 
of 
(A.13) 

where 

We start with the computation of the first three "approximate cumulants" 

(W,~ + Itmn)(X2n) -112 -- Zn + o(u (IWnl + logn)ln),  

Un = v/-n(X~ - u2), and 

A simple algebra leads to 

(A.14) 

and 

(A.15) 

Z .  1Wn 1 It 
= 2tj3--------~WnUn + ~-mn -- u u 2u3V"-n m"Un" 

E(UnW.)  = O, 

E(Z . )  = 0., 

1 
Zn - 0.  = !W,~, 2~,%~(i tm.U,.  + (W.U.  - 0)), 

2 0((1 m lln), Var(Zn) = a n + + 

u3E(Zn _ 0) 3 = E(W3 ) 3 2u3 V/_~ E(Wn(WnUn - 0)) 

+ O(n- l (1  + m2n) + n-312EIUnWnl3). 

So the third "approximate cumulant" of (A.13) is given by 

_ "/3 i~t.(it3V--3 -- 3.20U -5) _ ~ .  

To establish the validity of the formal one term Edgeworth expansion, note that the 
distribution of (X1, X~) is strongly non-lattice. So by Theorem 20.8, 24.2 and Lemma 
24.1 of Bhattacharya and Ranga Rao (1986), it follows that the distribution of (Wn, On) 
has a valid one term Edgeworth expansion. Hence by (A.14) and (A.15), as in Lemma 
3 of Babu and Singh (1984) or Theorem 2 of Babu and Singh (1985), it follows that 

(A.16) P(W,~ + #ran <_ xv/-~n) = ~((x  - On)/an) + o(n -i/2) 
"73 

6a3~_v/_~(((x _ On)/an)2 i 1)r - On)/an), 

uniformly in x. See also Bhattacharya and Ghosh (1978). Since 

1 V ( 1 0 ~ m n  ,~-1/2 v (1_4_ Oitmn "~ ( m ~ )  

and 
Z #m,~9 9 x -  On _ Zn,x + + - -  

fin n,x 2G2U2 V/~ 2U20.V ~ 

the lemma now follows from (A.16) and the estimate 

3.)) + 0 1 + [xlm , 

On = d2(Zn,x) + ~ ik ~ + - ~  r -k- o(n-1/2), 

which holds uniformly in x. This completes the proof. 
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