
Hydrobiologia 145: 225-243 ,  (1987) 225 
© Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands 

Cladocera:  Predators  and prey 

R. de Bernardi, G. Giussani & M. Manca 
C.N.R. Istituto Italiano di Idrobiologia, 28048 Pallanza, Italy 

Keywords: Cladocera, predator, prey 

Abstract 

Among the freshwater zooplankton community, Cladocera represent one of the most common elements 
of pelagic populations. Being almost exclusively filter feeders and algae users and, at the same time, the 
favourite prey of invertebrate and vertebrate predators, Cladocera represent the most important group in the 
plankton community of lakes as regards energy transfer along the food chain. Because of their short genera- 
tion times and their high reproductive efficiency, predation by invertebrates, usually, has only a Iimited role 
in controlling their density. However, at high densities, invertebrate predators can provide an effective control 
of Cladocera populations. The intensive research on selective predation by vertebrates has demonstrated that 
this activity can be responsible, together with competitive interactions, for the dominance of different groups 
in the planktonic community: large Cladocera dominate when predation is low, Rotifera and small Crustacea 
dominate at high predation levels and high nannoplanktonic densities. These evidences on the role of ver- 
tebrate predation in structuring aquatic environments has greatly contributed to our better understanding 
of aquatic ecosystem functioning. In particular, it seems that the removal of large filter-feeding herbivorous 
Cladocera by zooplanktivorous fish can lead to worsening environmental conditions in eutrophicating lakes. 
In this respect, Cladocera appear to be the key group among zooplanktonic organisms, and their interactions 
the key factors in aquatic food chain management. 

It is widely recognized that biotic interactions in 
freshwater ecosystems represent the most impor- 
tant factor determining species selection and the 
structure of biological communities. This is partic- 
ularly true in the unstructured and partially uni- 
form pelagic environment of lakes, where biotic in- 
teractions like competition and predation are 
extremely severe, because no refuge is offered by the 
environment, 

Biotic interactions, therefore, exert an important 
selective pressure on pelagic organisms, which has 
induced a series of strategies to counteract or mini- 
mize the ill-effects of predation and competition, 
among which are: vertical migration (Cushing, 
1955; Hardy, 1956; David, 1961; Wynne-Edwards, 
1962; Narver, 1970; Dumont, 1972; McLaren, 1963 
and 1974; Lane, 1975; Zaret & Suffern, 1976; Hair- 

ston, 1977; Buchanan & Haney, 1980; de Bernardi, 
t981; Orcutt & Porter, 1983; Stich & Lampert, 1981, 
1984; Welder, 1984), spatial segregation (Tappa, 
1965; Dumont, 1972; Lane, 1975; de Bernardi & 
Soldavini, 1979; Weider, 1984), variations in size 
(Hrb~ek,  1962; Hrbfi~kov~-Esslov~, 1963; Gilbert 
& Waage, 1967; Zaret, 1972a; Kerfoot, 1974; Dod- 
son, 1974a; Pourriot, 1974; Zaret & Kerfoot, 1975; 
de Bernardi & Giussani, 1975; Langeland, 1978; 
Gophen, 1985), selection of less visible strains 
(Green, 1967, 1971; Zaret, 1972b; Zaret & Kerfoot, 
1975), cyclomorphosis (Lauterborn, 1904; Brooks, 
1946, 1964; Jacobs, 1961, 1964, 1965, 1966, 1980; 
Brooks, 1965; Hutchinson, 1967; Galbraith, 1967; 
Green, 1967; Brooks, 1968; Dodson, 1974b; 
Fedorenko, 1975; Kerfoot, 1970; O'Brien et al., 
1980; Black, 1980; Grant & Bayly, 1981; Wong, 1981; 
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Havel, 1985), and, finally, the induction of  di- 
apausing or resistant stages, such as cysts and 
ephippial eggs (Mellors, 1975). 

Moreover, a further peculiarity of  the pelagic en- 
vironment is that primary producers (unicellular or 
colonial algae) are very small relative to the size of 
the planktonic herbivores. These herbivores in turn 
are much smaller than many of  their own preda- 
tors. Thus, because the pelagic environment is un- 
structured and uniform, and because pelagic preda- 
tors are often much larger than their prey, the prey 
are completely open to predator attack. In addi- 
tion, despite differences in the mechanisms of food 
collection (McMahon & Rigler, 1965; Hrb~i~ek, 
1977; Rubenstein & Koehl, I977; Geller & Mfiller, 
1981), all planktonic herbivores compete for parti- 
cles in the same size range, about 1 to 15 p.m 
(Brooks & Dodson, 1965; Geller & M/.iller, 1981). 

However, we must take into account that in 
pelagic ecosystems, the relative importance of  both 
predation and competition in structuring the 
zooplankton community may appear in different 
ways in different lakes in relation to the different 
environmental characteristics (both biotic and abi- 
otic). 

Among the freshwater zooplankton community, 
Cladocera represent one of the most common ele- 
ments of  pelagic populations. Usually they are 
more abundant in eutrophic, phytoplankton-rich 
waters, in which they may constitute the major 
component  of  phytophagous organisms (Hrb~i~ek, 
1977). In oligotrophic waters, their density is usual- 
ly much less. With the exception of Leptodora, 
Bythotrephes and Polyphemus they are phytopha- 
gous covering a wide range of  particle selection, 
competing with microfiltrators for smaller particles 
(1-20/~m) (Brooks & Dodson, 1965) and also be- 
ing able to use larger food items (>  50/~m) (Burns, 
1968; Gliwicz, 1969). Moreover, their body size 

ranges from 200-300  ~.m in mature chydorids to 
7 - 8  mm in Leptodora and even more in the Cer- 
copagidae. In this respect they may cover the whole 
size range of  prey size taken by invertebrate and ver- 
tebrate predators. Being almost exclusively filter 
feeders and algae users and, at the same time, the 
favourite prey of  vertebrate and invertebrate preda- 
tors, Cladocera represent a key group in the plank- 
ton community of  lakes as regards energy transfer 
along the food chain. 

As a consequence of the high predation pressure 
both by vertebrates and invertebrates, they have de- 
veloped a countering adaptation of parthenogenet- 
ic reproduction. This guarantees, through a high 
rate of  reproduction, a rapid increase in population 
density, a ready adaptation to environmental fluc- 
tuations in food availability, and a certain ability to 
counterbalance mortality due to predation (Gadgil 
& Bossert, 1970). 

As has been pointed out in many papers, the spe- 
cies of  Cladocera are the major food supply of  
both vertebrate and invertebrate planktivorous pre- 
dators. 

However, the effects of  predation by inver- 
tebrates or vertebrates on the dynamics of  
Cladocera populations, species selection, and evo- 
lution are very different. These differences derive 
mainly from the fact that vertebrates and inver- 
tebrates prey on different sizes. Whereas the elec- 
tivity of  vertebrates increases with prey size 
(Fig. la), invertebrates select smaller sized speci- 
mens (Fig. lb). Thus, when both vertebrates and in- 
vertebrates prey upon a given species, the former 
select a size range corresponding to adult individu- 
als, while the latter choose young, smaller sized 
specimens. Table 2 shows some of  the most impor- 
tant features that characterize predation by ver- 
tebrates and invertebrates in pelagic freshwater 
ecosystems. Vertebrate predators are clearly much 

Table 1. Main characteristics of the most important taxonomic groups of zooplankton (from de Bernardi, 1981). 

Rotifera Cladocera Copepoda 

R max (I/day) 
Typical adult body size (ram) 
Largest species (mm) 
Food size range (t~m) 
Filtering rate 
Susceptibility to vertebrate predators 
Susceptibility to invertebrate predators 

0 .2 -  1.5 0 .2 -  1.5 0.1 -0 .4  
0 .2-0 .6  0 .3-3 .0  0 .5 -5 .0  
1.5 5.0 14.0 
1 - 2 0  I - 5 0  5 -  100 
very Iow high low 
very low high low 
high moderate moderate to high 
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Fig. 1. An idealized representation of the effect of prey size on 
selection by vertebrate (A) and invertebrate (B) predators (from 
Zaret, 1980, redrawn). 

more efficient in capturing prey, and therefore their 
impact on the dynamics of prey population is prob- 
ably the most relevant. 

The searching mode of preying by invertebrate 
predators is usually tactile or chemical, sometimes 
enhanced by receptors. This means that usually 
their search range is limited to a few millimeters, 
and the prey encounter can be considered casual 
(Fryer, 1957; Dodson, 1972; Fedorenko, 1975; 
Lewis, 1975; Strickler & Twombly, 1975; Pastorok, 
1980, 1981; Riessen et aL, 1984; Kirk, 1985; Spitze, 
1985; Gilbert & Stemberger, 1985). 

Studies of predation by invertebrates upon 
planktonic Cladocera are usually concerned with 
rate of predation and the ways in which it is carried 
out (Anderson, 1981; Folt et al., 1982). Table 3 
reports some of the most interesting results ob- 
tained in this field. 

The effect of this kind of predation at popula- 
tion level is shown in only a very few examples 
(Dodson,  1970; Confer, 1971; Sprules, 1972; 
Fedorenko, 1975; Langeland,  1981; Folt, 1985), and  
there are even fewer studies on  the impor tance  of  
invertebrate predators as a force s t ruc tur ing  the 
Cladocera z oop l a nk t on  c o m m u n i t y  (Hall,  1964; 
Wright,  1965; Dodson ,  1972; Duncan ,  1975; de Ber- 
nardi & Giussani ,  1975; Argentesi  e t  al., 1974; Ram- 
charan e t  al., 1985). 

Predat ion  by invertebrates on Cladocera,  be- 
cause of  the short genera t ion  times of  the latter a nd  

Table 2. Main characteristics of invertebrate and vertebrate predation on zooplankton (from de Bernardi, 1981). 

Characteristics of predation Predator type 

Vertebrate Invertebrate 

searching mode 
search range 
prey size 

prey selective 

prey escape 

predator mobility relative to 
prey movement 
feeding rates of predators 

visual 
essentially unlimited 
very much smaller than the predator; large size 
strongly selected 

generally opportunistic; if sufficiently 
abundant, anything larger than above defined 
minimum size is consumed 
once seen, escape chances are low 

considerably more mobile 

high; may consume up to 104 zooplankton/ 
day 

tactile or chemical 
less than a few millimeters 
usually smaller than the predator 
but increases with the predator 
size 
unknown 

probably depends on relative 
sizes of prey and predators and 
specific swimming speed 
somewhat greater than for prey 

easily saturated; predators usual- 
ly consume less than their own 
weight per day 
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Table 3, Predation rates of some invertebrates. 

Predator Prey Prey Prey eaten Reference 
ind/l per day 

Cladocera 
Bythotrephes longimanus (10-  15 °C) 
Bythotrephes longimanus (15-20°C)  
Bythotrephes longimanus (20-  25 °C) 
Leptodora kindtii (10 - 15 °C) 
keptodora kindtii (15 - 20°C) 
Leptodora kindtii (20 -  25 °C 
Insecta 

Chaoborus americanus IV instar 

Chaoborus americanus II instar 
Chaoborus borealis IV instar 

Chaoborus flavicans IV instar 
Chaoborus flavicans IV instar 
Chaoborus flavicans IV instar 
Chaoborus trivittatus tV instar 
Chaoborus trivittatus III instar 
Chaoborus punctipennis 
Chaoborus punctipennis 
Chaoborus punctipennis 

mixed zooplankton - 9 
mixed zooplankton - 27 
mixed zooplankton - 25 
mixed zooplankton - 16 
mixed zooplankton - 25 
mixed zooplankton - 30 

Daphnia rosea 
D. pulicaria 154 
Diaptomus sicilis 
Diaphanosoma nauplii 
Daphnia 73 
Aedes larvae 
Copepods & Cladocera 8 
Copepods & Cladocera 44 
Daphnia pulex 99 
Daphnia pulex 57 
Diaphanosoma 70 
Holopedium 
Daphnia 
Bosmina 

Mordukhai-Boltovskaja 1960 
Mordukhai-Boltovskaja 1960 
Mordukhai-Bohovskaja 1960 
Mordukhai-Boltovskaja 1960 
Mordukhai-Boltovskaja 1960 
Mordukhai-Bolt ovskaja 1960 

1.53 Anderson & Raasveldt 1974 

20 Fedorenko 1975 
0.4 James & Smith 1958 

8.8 Kajak & Ranke-Rybicka 1970 
8.0 Kajak & Ranke-Rybicka 1970 
4.4 Dodson 1970 
3.9 Dodson 1970 

28 Fedorenko 1975 
0.96 Allan 1973 
2.13 Allan 1973 
3.99 Allan 1973 

their high reproductive efficiency, usually has only 
a limited role in controlling prey density. However, 
invertebrate predators at high densities can provide 
an effective control of prey populations. 

The main invertebrate predators for zooplank- 
tonic Cladocera are such planktonic species as 
adult cyclopoid copepods, carnivorous Cladocera, 
and, among insects, meropelagic organisms such as 
Chaoborus and midge larvae. 

The most efficient invertebrate predators of 
Cladocera are the carnivorous Leptodora and 
Bythotrephes (which can capture up to 30 prey/day) 
and Chaoborus larvae (Monakov, 1972). All species 
of herbivorous Cladocera may become a prey for 
invertebrates, even the largest species. In the latter 
case, young (= small) individuals will be selected 
positively. For small species, such as chydorids and 
bosminids, invertebrate predation can also be for 
adults. Some authors have indicated that inver- 
tebrate predation on small organisms, together with 
competition for food, are the prevailing factors 
responsible for the dominance of large Cladocera 
when the predation pressure by vertebrates is low 
(Hrb~ieek, 1962; Hrb~kov~i-Esslov~t, 1963; Hall, 
1964; Brooks & Dodson, 1965; Stenson, 1972; de 
Bernardi & Giussani, 1975; Andersson et aL, 1978; 

Langeland, 1978; Gliwicz et aL, 1981). 
The mechanisms underlying these processes have 

not been fully evaluated. Nevertheless, it is clear 
that, while vertebrate predation has an important 
effect on zooplankton community structure and 
dynamics, the role of invertebrate predation is not 
inconsiderable, despite the fact that available infor- 
mation relevant to this second process is much 
sketchier (Bossone & Tonolli, 1954; Wright, 1965; 
McQueen, 1969; Cummins et aL, 1969; Anderson, 
t970; Anderson & Raasvelt, 1974; de Bernardi, 
1974; de Bernardi & Giussani, 1975; de Bernardi & 
Canali, 1975; Fedorenko, 1975; Threlkeld et al., 
1980). 

Bossone & Tonolli (1954) provide a particularly 
good example of how invertebrate predation can in- 
fluence zooplankton community structure. They 
found that the coexistence of two herbivorous diap- 
tomids (Arctodiaptomus bacillifer and Acanthodi- 
aptomus denticornis) in a high alpine lake in 
Northern Italy (Lago di Monscera, altitude 
2071 m) depended upon the predation by Heter- 
ocope saliens on the former. Even if this example 
refers only to copepods, there is no reason to sup- 
pose that such kind of effect does not occur also 
for Cladocera. An appropriate example could be 
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Fig. 2. The annual catch of whitefish and the densities of Daphnia hyalina ( 
nus ( -  - )  in 1972 and 1973 (from de Bernardi & Giussani 1975). 

), Leptodora kindtii (...) and Bythotrephes longima- 



230 

the role of  Leptodora predation on the competition 
between Daphnia and Diaphanosoma in Lago 
Maggiore, where the Diaphanosoma population 
can increase in density only when Daphnia declines 
from predation by Leptodora and Bythotrephes (de 
Bernardi & Canali, 1975). From these studies it 
emerged also that, following a decline of  the 'bon- 
della' whitefish in 1973, there was a marked in- 
crease in the populations of  its prey, namely the 
herbivore Daphnia hyalina and the two predator 
Cladocera, Bythotrephes longimanus and Lep- 
todora kindtii (Fig. 2). The daphniid population 
showed a substantial spring increase in density; fol- 
lowed by an equally rapid decline in early summer, 
when the populations of  these two invertebrate pre- 
dators increase. Detailed analysis of  the population 
dynamics of Daphnia (de Bernardi, 1974) by a 
compartmental model for different age classes (Ar- 
gentesi et al., 1974) showed that the collapse of  the 
Daphnia population was due to an increase in the 
juvenile mortality rate (Fig. 3), reflecting predation 
by Leptodora and Bythotrephes, which select prey 
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in the size range of  young Daphnia hyalina 
(Mordukhai-Boltovskaya, 1958). 

These experimental results have been validated 
by a statistical analysis that confirms the highly sig- 
nificant correlation between the death rate of  
young Daphnia and the fecundity rate of  Lep- 
todora, as shown in Fig. 4. 

Similar evidence of  the effect of  Leptodora pre- 
dation on the Daphnia population has been ob- 
served by Duncan (1975) in London Reservoir, as 
shown in Fig. 5. 

Further evidence of  invertebrate predation 
balancing competition is presented by Allan (1973), 
who found that Chaoborus predation on Daphnia 
allows the coexistence of  Holopedium. The inferior 
competitor Holopedium can survive, because its 
gelatinous cover protects the young against preda- 
tion. 

Chaoborus predation on Cladocera may result in 
contrasting effects; for example, Neill (quoted in 
Pastorok, 1980) found that Daphnia rosea popula- 
tions were twice as abundant in the absence of 
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Fig. 3. Upper: the densities of Leptodora kindtii ) and Bythotrephes Iongimanus (...) and the instantaneous mortality (d) ( -  - ) 
of the entire daphniid population in Lago Maggiore. Lower: the instantaneous mortalities of young ( ) and adult ( . . . .  ) 
Daphnia hyalina (from de Bernardi & Giussani, 1975). 
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Fig. 4. Trophic relationships among pelagic Cladocera in Lago 
Maggiore tested by ARIMA Models (from Argentesi & de Ber- 
nardi, 1978). 

Chaoborus. Smyly (1976), after the experimental 
removal of Chaoborus, documented a shift in dom- 
inance relations among the zooplankton, with no 
species invading or becoming extinct. On the other 
hand, Lynch (1977) found that Chaoborus excluded 
Ceriodaphnia from experimental vessels. In con- 
trast, large rapidly growing Cladocera, like D. pu- 
lex, D. pulicaria, and Simocephatus vetulus, may 
coexist with Chaoborus by exploiting a strategy of 
escape in size (Dodson, 1974a; Paine, I974; Kerfoot 
& Pastorok, 1978; Zaret, 1978; Pastorok, 1978). 

More data are available about the rates of inver- 
tebrate predation on Cladocera (Table 3). However, 
it must be stressed that, despite the great number of 
papers dealing with predation rates by inver- 
tebrates, up to now it has still not been possible to 
evaluate the weight of invertebrate predation on 
lake ecosystem structure and functioning. The 
measured levels of invertebrate predation can range 
from 10% (Brandl & Fernando, 1981) to 90% (Dod- 
son, 1972). However, even at the highest levels, in- 
vertebrate predation alone never seems to deter- 
mine the disappearance of a species. In particular, 
Dodson (1972) reported an extreme case in which a 
population of Daphnia rosea survived despite such 
heavy predation by Chaoborus that the instantane- 
ous mortality rate of the cladoceran reached 90% 
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per day. Such low effectiveness of invertebrate pre- 
dators may be explained partially by the results re- 
cently obtained from laboratory experiments in 
which artificial size selective predation was exerted 
on Daphnia populations. In particular, in these ex- 
periments the dynamics of the density of seven 
populations of Daphnia obtusa submitted to 
different levels of predation were analyzed over a 
period of about one year. The experimental design 
provided information on three different levels of 
predation (30%, 60% and 90%) every two days, ex- 
erted separately on young, adults, and at random. 
The main results are reported in Fig. 6, which 
demonstrates that at all levels of predation ex- 
perimentally induced, predation on the immature 
individuals produced less damage on the popula- 
tion. When predation is exerted on both young and 
adults, density drops very quickly, thus confirming 
in the laboratory evidence obtained in natural en- 
vironments, where the disappearance of a species 
has been observed when both kinds of predation 
were active (Zaret & Paine, 1973; Richards et al., 
1975; Goldman et al., 1979; Gophen, 1979). 

A further explanation of the results may also be 
attributed to the biological characteristics of these 
organisms. The adult females carry their eggs in the 
brood pouch and, under experimental conditions, 
each female once mature produces eggs in each in- 
star almost until death. The consequence is that 
predation on adult females works as a simultane- 
ous predation on eggs and reduces the recruitment 
of new individuals into the population. 

However, the fact that these results have been ob- 
tained under laboratory conditions must be kept in 
mind, because in natural environments predation 
levels are never constant, and, in addition, trophic 
relationships in a lacustrine community can never 
be reduced to a simple binary connection. 

However, these experiments also indicate that 
predation by vertebrates can have a potentially high 
ill-effect on Cladocera species. 

In Fig. 1 we presented the electi'~ity of vertebrate 
predation in respect to prey size. The general rule is 
that electivity increases with size of prey. This is 
true both for obligate and facultative planktivorous 
species (Brooks & Dodson, 1965; Galbraith, 1967; 
Giussani, 1974; Hall et aL, 1976; O'Brien et al., 
1976; Langeland, 1982; Gophen, 1985). 

Starting from papers by Hrbfi~ek (1960) and 
Hrb~ek  et al. (1960, 1961), and Brooks & Dodson 
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(1965), an intensive research activity on selective 
predation by vertebrates (mainly fish and 
salamanders) has been developed. From these 
studies, two main theories have emerged, largely 
overlapping, the first, focusing attention on size 
selection (Hrbfi~ek, 1962; Brooks & Dodson, 1965; 
Dodson, 1974a; Werner & Hail, 1974; Taylor, 1980) 
and the second, stressing the importance of visibili- 
ty of prey (Fox, 1948; Boulet, 1958; Braum, 1963; 
Greze, 1963; Hemmings, 1966; "~hwrik, 1966; 
Brooks, 1968; Hester, 1968; McNaught, I975; 
Zaret, 1972b; Nilsson & Pejler, 1973; Ware, 1973; 
Dodson, 1974b; Mellors, 1975; Zaret & Kerfoot, 
1975; Kring & O'Brien, 1976; O'Brien et al., 1976; 
Eggers, 1977; Kerfoot, 1980; Stenson, 1980; Zaret & 
Kerfoot, 1980). 

However, it must be noted that in many cases 
large organisms also present a greater visibility, and 
hence this large amount of work seems to confirm, 
at least partially, Brooks & Dodson's size selective 
hypothesis (1965). 

In particular, this body of research has shown 
that predation together with competitive interac- 
tions is responsible for the dominance of different 
groups in the planktonic community: large 
Cladocera dominate when predation is low, 
Rotifera and small Crustacea dominate at high pre- 
dation levels and high nannoplanktonic densities 
(Hrbfi~ek, 1962, 1977; Brooks & Dodson, 1965); or- 
ganisms with a large spectrum of sizes can coexist 
when selective predation is moderate, thus confirm- 
ing the fact that predation represents a mechanism 
that maintains disequilibrium among competing 
species (Hrb~i~ek, 1962; Paine, 1966; Dodson, 1970; 
Dumont, 1972; Allan, 1974; Lane, 1975; Lewis, 
1980). 

Since the well-known example presented by 
Brooks & Dodson (1965) on Crystal Lake, particu- 
larly impressive evidence has been presented by 
Langeland (1982) through the comparison of spe- 
cies and size composition of zooplankton from five 
lakes characterized by different fish predation pres- 
sure (Fig. 7). 

Other than size and visibility selection, ver- 
tebrate predation presents a series of characteristics 
that determine its highly damaging effect on 
Cladocera species (Table 2). Once seen, the prey 
has no chance of escaping. Moreover, each single 
predator, conducting an active search for prey in a 
large area, is able to consume a very large number 

of prey/day (up to 10 4 organisms/day). 
A few representative examples from the great 

number of papers on this subject in the last 20 years 
can illustrate easily the importance of vertebrate 
predation on Cladocera populations. In the Lago 
Maggiore system it has been demonstrated that 
among the zooplanktonic species, Leptodora, 
Bythotrephes and Daphnia are the most electively 
selected by pIanktivorous fish, and that among all 
of them, electivity increases with size (Giussani, 
1974) (Fig. 8). 

The results obtained in this research also indicate 
that a size-specific selectivity exists even within the 
same species (de Bernardi & Giussani, 1975) 
(Fig. 9). 

Galbraith (1967) studied the recovery and de- 
velopment of the zooplankton community of 
Sporley Lake after the original fish and zooplank- 
ton had been eliminated with toxaphene. When the 
zooplankton reappeared, it included two Daphnia 
species, one large (D. putex) and the other smaller 
(D. retrocurva). The subsequent introduction of 
Sahno gairdneri and Perca flavescens into the lake 
led to the local extinction of larger D. pulex and the 
increase in number of tiny D. retrocurva. Schindler 
& Comita (1972) obtained similar results in a Cana- 
dian pond when prolonged complete deoxygena- 
tion destroyed the fish. During the following 
spring, tiny Daphniaparvula, which had been pres- 
ent before the fish kill, reappeared. Soon after- 
wards, the larger D. pulex, which had not been 
found previously, appeared and eliminated D. par- 
vula from the pond. The elimination of fish preda- 
tion thus shows that fish influence the Cladocera 
community both directly by killing the larger in- 
dividuals and indirectly by altering competitive 
forces within the herbivorous Cladocera communi- 
ty. Analogous findings have been reported from the 
rocky intertidal zone (Paine, 1974) and from 
prairies (Harper, 1969). 

Still more evidence from zooplankton communi- 
ties is provided by observations on Lago d'Annone 
(Northern Italy) (de Bernardi & Giussani, 1978). 
This lake is divided into east and west basins, both 
of which normally maintain a substantial popula- 
tion of bleak (Alburnus alburnus alborella), which 
is by far the most important planktivorous fish in 
the lake. In the summer of 1975, within a few days 
almost the entire bleak population (about 50 tons) 
in the east basin was wiped out because of a fungal 
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/,~*g. 7. Species composition and the structure of the zooplankton community in lakes with different predation pressure (from Lan- 
geland, 1982, redrawn). 
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gill infection, while in the west basin the bleak 
population was almost untouched. The effects on 
the Cladocera community were very clear (Fig. 10): 
in the east basin, where the mortality had occurred, 
there was a marked increase in Daphnia hyalina, 
and a corresponding decrease in the population 
density of  tiny Bosmina. The same study also 
showed the role of  natural selection in reducing the 
effects of  size-selective predation by the bleak on 
larger Daphnia (Fig. 11). For some years prior to 
the die-off, the bleak population had increased 
yearly, with a consequent reduction in the maxi- 
mum size of Daphnia in the east basin; these Daph- 
nia reached maturity at the small size of 630 ~m. 
Just 15 days after the fish mortality, the minimum 
size at maturity had become 1000/~m, as in the 
west basin. It seems that intense predation by the 
bleak favoured small, early maturing daphniid 
strains, which after the disappearance of the bleak 
were competitively eliminated by larger strains. 

Similar findings emerged from research carried 

out by Langeland (1978) showing the decline in 
mean body length of  adults of  both D. galeata and 
Holopediurn gibberum in relation to increasing fish 
predation pressure (Fig. 12). 

H r b ~ e k  & H r b ~ k o v a  (1960) found that strains 
of  the same species of  Daphnia from lakes and 
ponds with different fish stock presented differ- 
ences in body-length increase in laboratory experi- 
ments with high food availability. In particular, 
strains from environments with low or absent fish 
predation pressure, had a larger increase than spe- 
cies and strains collected in water bodies with high 
fish predation. Moreover, they a l so  found that 
smaller females produced smaller eggs, resulting in 
smaller newborn. 

The different prey selectivity and in more general 
terms, the different features that characterize pre- 
dation by vertebrates (see Table 2) may be responsi- 
ble for the evolutionary divergence of  closely relat- 
ed prey species. For example, de Bernardi & Manca 
(1982) and Manca & de Bernardi (in press) have 
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shown that  the two filter-feeders D. obtusa  and  S. 
vetu tus  have developed a strategy of  food util iza- 
t ion and energy par t i t ion ing  between reproduct ion  
and somatic  growth as a result of  coevolut ion with 
their d o m i n a n t  predators.  When  food is lowered, 
the free swimming  D. obtusa,  which is more subject 
to vertebrate predators,  consumes  the available 
energy to ma in t a in  a high rate of  egg product ion ,  
with a consequent  lowering of  somatic  growth. S. 
vetulus,  which is preyed upon  more intensively by 
invertebrates, presents an inverse strategy. 

The large body of evidence accumula ted  dur ing  
the last twenty years on the role of vertebrate preda- 
t ion in s t ruc tur ing  aquat ic  env i ronments  has great- 
ly con t r ibu ted  to our  better unde r s t and ing  of  
aquat ic  ecosystem funct ioning.  It now appears evi- 
dent  that the removal of  large filter-feeding her- 
bivorous Cladocera  by zooplankt ivorous  fish can 
lead to worsening env i ronmenta l  condi t ions  in eu- 

t rophica t ing  lakes. 
In effect, large Cladocera  are also the most  effi- 

cient in removing algae from lake water. For that 
reason, an enhancemen t  of  their popu la t ion  
through an effective control  of  the densi ty of 
zooplankt ivorous  fish can increase water trans- 
parency through an  increase in Cladocera  fil tering 
activity. This k ind of  intervent ion,  ini t iated in the 
p ioneer ing  studies of  Hrb~i~ek & co-workers (1960, 
1961), and called b ioman ipu l a t i on  for the first t ime 
by Shapiro et al. (1975), shows fairly well how theo- 
retical studies can produce results far beyond their 
immedia te  interest, and  lead to the possibili ty of a 
direct m a n a g e m e n t  of  ecosystem structures. In this 
respect, Cladocera  appear  to be the key group 
a m o n g  zoop l ank ton  organisms,  and their interac- 
t ions the key factors in aquat ic  food chain manage-  
ment .  If  we look at the results obta ined in the past 
on  Cladocera popu la t ion  dynamics  in the light of  
this new approach,  we can see clearly the role of  
selective preda t ion  on the Cladocera  popula t ion .  
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