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FUNDAMENTALS OF SEEPAGE THEORY 
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w Darcy's Law. Conservation Equations. Effective Forces. The seepage of liquid 
and gas through porous media have been investigated for more than two centuries. Mathematical 
analysis of the seepage phenomenon is founded on the law experimentally observed by the 
French engineer Darcy in 1856 [i]. This law establishes the proportionality between seepage 
rate (the volume of liquid or gas passing through a unit area of cross section of a porous 
medium per unit time) and the projection of the pressure gradient on the normal to this cross 
section. 

If ~ is the vector of the seepage rate, k is the "permeability," which has the dimen- 
sions of area, ~ is the viscosity of the liquid or gas, and p is pressure, Darcy's law assumes 
the form 

( 1 . 1 )  = _ " ~ p ;  

- -  = O ~ 0 - -  -~"z 
~ = l  j - f  + l-~-s + x �9 

The permeability is usually expressed in millidarcies (i mDc = 10 -11 cm=). The permeability 
of beds containing oil and gas is of the order of tens or hundreds of millidarcies. In coal 
seams, the permeability is i0-13-I0 -Is cm 2 in the vicinity of a working. 

Under large pressure gradients, laboratory tests sometimes correspond better to the more 
complex relationship (the generalized Darcy law for "turbulent flows") 

-- P~ ~, (1.2) 
--vp=~+ T 

where 0 is the density and L is a coefficient with the dimension of length. 

Laboratory tests to determine permeability are usually conducted on cylindrical speci- 
mens. A schematic diagram of such a test is shown in Fig. I, where Pl and Pll are the pres- 
sures in reservoirs I and II at the ends of the specimen. 

Darcy's law is always better confirmed under a steady-state uniform flow of liquid and 
moderate pressure gradients (see Fig. i). The pressure gradient is constant along the 
length of the specimen during the seepage of a liquid, and increases in the direction of 
flow during the seepage of a gas (Fig. 2). 

For large pressure gradients, relationship (1.2) or even the more complex relationship 
between pressure gradient and seepage rate is found to be more valid only for specific struc- 
tures of the soil particles. 

If the equation expressing the law of mass conservation is combined with relationship 
(i.i) or (1.2), it is possible to obtain a differential equation to determine the pressure 
field and seepage-rate field. 

Calculations of the steady-state flows of water, petroleum, and gas in layers of porous 
rock under the most diverse conditions indicate varying degrees of agreement with field 
measurements and confirm that Darcy's law or its generalization is a reliable basis of 
seepage theory [i]. 

In the 1970s, however, measurements of the pressure that develops under nonsteady regimes 
of the seepage flows of petroleum and water, which are a consequence of marked changes in 
flow rate in individual wells (for a large-scale oil reservoir), indicated a striking 
qualitative discrepancy between computational data based on Darcy's law and field measurements 
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[2, 3]. It was observed, for example, that propagation of disturbances in seepage flow 
occurs at a well defined and very small rate (of the order of units of centimeters per se- 
cond). At the same time, theoretical studies conducted with nonsteady flows of mixtures of 
coal particles and gas with a high concentration indicated that the force of interaction 
between the coal and gas in any case it is impossible to reduce to hydrodynamic resistance 
forces, which depend on the difference in the velocities of the coal and gas (for example, 
to Stokes law), and that these forces are normally almost negligibly small as compared with 
"Archimedes force," which is caused by the pressure gradient in a wave [4]. 

Let m be the porosity (the volume of pores per unit volume of soil), and m be the 
clearance (the cross-sectional area of pores per unit cross-sectional area of soil). For 
the analysis, the element of soil volume under consideration should always be sufficiently 
large to contain a large number of pores for a statistically reliable averaging process in 
determining m and ~. If ~ = m for a cross section of any orientation, the porosity is uni- 
form. The simplest isotropic structure of a porous medium is a structure with a uniformly 
distributed porosity. 

Porosity may differ in space not only in magnitude, but also in the quantity and size 
and shape of the pores which are required during averaging to determine a reliable value of 
the clearance ~, the average velocity u in the apertures and the average pressure p in the 
pores across a section at a site with unit cross-sectional area. 

During seepage, the liquid [gas) flows through an interconnected system of pores. 

Forces of interaction between the liquid (gas) and soil particles during seepage are 
always three-dimensional. We will designate the force acting in a unit volume of soil due 
to the liquid (gas) against the soil particles by the letter ~. When ~ appears hereinafter, 
it is precisely the structure of the porous space that plays the decisive role in formulating 
the character of the seepage flow. 

For simplicity, we will first dwell on study of a porous medium with a uniformly distri- 
buted porosity over the entire space under consideration in both magnitude and structure. 

Let us set up the equations of mass conservation and the variation in the amount of 
movement and the energy equation for the seepage of a gas. Then, we will concentrate on 
analysis of the nature of the forces of interaction between the soil particles and seeping 
liquid (gas). 

The equation of mass conservation for the liquid (gas) is derived from obvious considera- 
tions of the balance between the amount of liquid flowing into an element of soil volume and 
the increase in mass of this volume. For an absolutely rigid soil framework and when m = 
const, the equation of mass conservation is: 

dlnp 
dt + ~'u = 0, (1.3) 

where u is the average_a~tual velocity in the pores,p is the density of the fluid (gas), ~ = 
m~, and d/dt = 8/8t + u'V. 

Let us now set up the equation of variation in the amount of motion. Elements of the 
volume of the porous medium in conservation equations should always be reasonably large in 
comparison with the dimensions of the pores and contain the amount of resistance force applied 
to the mass of liquid (gas) per unit of soil. In our case -- one-dimensional flow - let us 
designate the projection of this force in the positive direction of the x axis by ~ (see 
Fig. 1). 
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Let us refer back to the experiment (see Fig. i). 

Fig. 4 

Let there be a steady-state seepage 
of liquid (Pl and Pll are the constant static pressures in chambers I and II). Since p = 
const, the seepage rate is constant over the length of the specimen. The flow is uniform, 
and there are no inertial forces of the averaged flow. The hydrostatic resistance force -~ 
is equated to the pressure gradient in the apertures of the sections. In an element of the 
cross-sectional area, which is equal to i and which is included between the planes of cross 
sections i and 2 at a distance Ax one from the other (see Fig. I), 

- - ~ A z  = r n ( p ~  - -  p,), 

where Pz and P2 are the average pressures in the apertures of these sections, so that 

=--m ~P. (l.a) Oz 
If Darcy's law (I.i) is valid, the force ~ in this case will be: 

~a= m~-~"'. (1.5) 

For nonuniform and nonsteady flows, it is obviously assumed that the inertial forces are 
always negligibly small in comparison with the hydrostatic resistance force, and it is 
assumed that the resistance force is always equated to the force of the pressure gradient 
alone. This is based on comparison of the inertial force pm(du/dt) for the mass of liquid 
included in the unit of soil volume and the force ~d- Let us compare the values of du/dt and 
~/pm = ~nu/~p. At an absolute temperature T = 300~ p % i g/cm a and ~ % 10 -2 g/(cm-sec) 
for water and petroleum*; and, ~ = 10 -4 g/(cm-sec) and p % 10 -2 g/cm 3 for a gas (when p = i 
MPa). Let us use typical values for seepage in porous rock: m = 0.i, w = 10 -9 cm 2 (i00 mDc), 
v = i0 -= cm/sec, and u = 0.! cm/sec. Then, ~mu/~p = lO s cm/sec 2. If the seepage rate doubles 
after i00 sec for a nonsteady flow when u = 0.i cm/sec, the acceleration du/dt will be of 
the order of 10 -3 cm/sec =, and the inertial force will then be i0 s times smaller than the 
resistance force. Even if the acceleration is very high (of the order of i cm/sec2), the 
inertial forces will still be lO s times smaller than ~d" 

This conclusion is directly associated with the method by which the experiments are 
carried out to determine the permeability; this method is based on considerations of dimen- 
sionality on the implied assumption that the forces of interaction between the seepage flow 
and soil framework are completely described by hydrodynamic friction forces dependent on the 
Reynolds number, i.e., on the seepage rate, viscosity, and density of the liquid (gas), and 
certain geometric dimensions. 

This statement is associated with specific but not always clearly expressed notions 
concerning the structure of the porous space. It is assumed that the "system of porous 
channels is hydrodynamically equivalent to a system of complexly coupled tubes" (see [5, p. 
i0]). 

For such a medium consisting of a system of capillary tubes, the forces acting on a flow- 
ing liquid (gas) due to the capillary walls is actually reduced to only hydrodynamic friction 
forces (tangential stresses on the walls of the tubes). The pressure forces on the walls of 
the tubes, the cross section of which is smooth and varies slightly with length, are balanced 

*The values are given in the CGS system, which is preferred by the author. 
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one with the other for each cylindrical element of tube, as if its section does not have 
shape, and do not ther~for~ yield any component of force in the dire_ction of the seepage 
flow (Fig. 2, where 6s = n-~s is an oriented surface element, and n is a unit vector of the 
normal). In this case, these tubes may be as complexly curved and seemingly intertwined as 
is desired. Darcy's law ~=~, =~ is always valid for this medium. The simplest model of 
this medium is shown in Fig. 3. It is more difficult to represent this medium with a uniform 
porosity, i.e. similar clearance in any direction. 

Actual porous media have an entirely different structure. This structure is either 
solid grains cemented one to the other (sandstones) or fissured pores (limestones), some 
of whose pores are cracks of different sizes and orientations, or pores in coals and arti- 
ficial materials. In all these cases, the porous space is a chain of reservoirs (pores) of 
different shape, but relatively large volume, which are interconnected by very fine slits, 
the section of which is usually many hundreds and thousands of times smaller than the sec- 
tion of the pores. The volume of these slits is negligibly small in comparison with the 
volume of the pores. Schematically, such a medium takes on the form presented in Figs. 4 and 
5. For such a medium, the hydrostatic force of interaction between the seeping liquid (gas) 
and soil skeleton ~=~,,+~ is reduced primarily to the sum of pressure forces~p ("Archi- 

meses force") and the hydrodynamic fiction forces', which are insignificantly small in com- 
parison with the pressure forces [6]. 

Corresponding sections of a pore close to the site of a cross section for two princi- 
pally different structures with the same clearance are shown in magnified form in Figs. 6 
and 7. In the cross sections, the clearance area is the same (the porosity is the same), 
but the projection of the cut portion of the surface of the pore on the area of the section 
is completely different for these structures. It is equal to zero in Fig. 7, and is nearly 
equal to the cross-sectional area of the pore in Fig. 6. When we examine the surface of a 
sandstone or limestone specimen, therefore, we do not see pores, and it appears continuous, 
while its surface is only slightly roughened. 

If the pores are a system of capillary tubes, the projection of the pressure forces of 
the liquid (gas), which is applied to the soil framework, is equal to zero in the sections 
of the pores, and is almost equal to pm per unit area of section for a real structure. 

Let us examine the flow of a liquid (gas) in a pore for small M numbers. We have p + 
Pw2/2 = P0, where w is the velocity, p is the static pressure, and P0 is the stagnation 
pressure (total pressure) at a given point in the flow, and the number M = w/a, where a is 
the speed of sound. Everywhere in the pore, with the exception of small volumes near the 
inlet to narrow connected slits, the velocity w is close to u, i.e., very small (of the 
order of fractions of centimeters per second), so that the velocity head pw2/2 is negligibly 
small as compared with the pressure p and p % P0- In the narrow connected slits, however, 
the velocity w is hundreds and thousands of times greater than u, and w can easily reach 
values of many meters per second. The velocity head pw2/2 becomes .significant, for example, 
p = 1 g/cm 3, w = 200 cm/sec, and pw2/2 = 2-104 g/(cm-sec) = 0.002 MPa for water. 

On exiting from a slit into the next pore, the velocity head is only partially restored 
in the form of pressure (this depends on the shape of the slit). When the slit is flat, this 
head is completely lost, i.e., is not transformed into pressure. For the slit shape shown 
in Fig. 8, only some of the velocity head is lost. On passing through each neighboring pair 
of pores, the next portion of the velocity head is lost, and the pressure p is correspondingly 
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reduced without a corresponding increase in u. The velocity u increases due only to a corres- 
ponding decrease in density. This is also a throttling phenomenon. For an ideal gas, this 
means a pressure loss p without a change in its absolute temperature T, i.e., its internal 
energy. 

The pressure force of the gas in section 1 (see Fig. i), which is applied to the soil 
framework in this porous medium at a site with an area equal to unity is pm(l - g2) when 
g2 << i, and at the same site at a distance Ax it is -m(p + 3p/3x Ax) (i -- ~). Con- 
sequently, the hydrostatic force ~p, which is caused by the pressure gradient of the 
"Archimedes force" and which falls on a unit volume of soil, will be 

#p 
.9~v------m-~Tz (I--~:). (1.6) 

The forces of hydrodynamic friction, which are caused by tangential stresses on the 
surfaces of the pores and narrow slits during laminar flow can be represented as 

,..~++. --___ m~tu ( i. 7 ) 
7. ' 

where X has the dimensions of area, or 

Z k ' 

where X has the dimension of length for turbulent flow. 

The forces acting on a volume of soil having a cross-sectional area of unity between 
planes at a distance Ax from one another (see Fig. i) will be the forces of gas pressure 
in the sections of the pores in these p• which are equal to -m(3p/3x)&x, and the hydro- 
static forces -(% +~y)&x. The equation of the change in the amount of pressure in the 
projection on the x axis for a laminar flow will he: 

d u  ,gp ., e-)p m ~tt u 
pm dt = - - m - : " -  + m ( l - - e - ~ - -  

Ox " Ox Z 

or 

For a uniform flow, however, 

d .  <)p ~tmu = O. 

( 1 . 5 )  s h o u l d  be s u c h  t h a t  

(1.9) 

Consequently [6], 

61, }..urn,. __- O. 
e)x ~: 
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e'Z. (1.1o) 
In the case of "turbulent" flow, 

p du o 1, ~tmu zn~u~ = O, (I.ii) 
e ~ dt + O--T "+  n + p L 

where 

L = ~2i (1.12) 

If the thickness of the surface of the film and the thickness of the layer along the 
boundary in the narrow connected slits is neglected, the constant E, as is apparent, is a 
geometric quantity (see below), which is related to the ratio of projections of the narrowest 
sections of the slits at the outlet from pores intersected by a given section with a clearance 
in the plane of this section. 

If ~2 is of the order of 10-7-10 -9 , the interial forces are comparable to the resistance 
forces, and may even exceed them, as the above-cited assessments indicate. 

To explain this matter, let us visualize the following experiment. Let a very light 
hollow body be immersed in a liquid and held in equilibrium by the tension T on a filament. 
Let us increase the filament tension to the limit at which the motion of the body becomes 
uniform. The difference between the tensile force of the filament and Archimedes force ~A 
will then be equal to the resistance force. If the observer does not know the presence of 
the Archimedes force, i.e., assumes, for example, that the body is in motion in the gas, he 
will assume that the large tensile force of the filament is associated with the large resis- 
tance of the body, and obtain T = ~uV/~, where V is the volume of the body, ~ is the viscosity, 
and u is the velocity that determines the coefficient m, which assumes the dimensions of area, 
if the resistance is considered proportional to the velocity and viscosity. Very small 
values are obtained for <. In effect, it would be necessary to write: T -- CA = ~uV/x. If 
T - @A = giT, then ~ = ~2 X. It is as though ~ or X are used indifferently for tmiformmotion; 
for motion with acceleration, however, this will generate large errors. 

Turning out attention to the fact that p/p = RT = ai/~ (R is the gas constant, a is the 
speed of sound, and ~ = Cp/C V is the ratio of the heat capacities), 

du a ~ ~ Olnp tim,, miu~ -- 0 (1.13) 
d--T+-V/e--T7--~ + ~  + x - 

for an ideal gas. Let us denote c = aE/~ as the spread velocity of a disturbance in a porous 
medium. For the three-dimensional laminar seepage flow of an deal gas, we then have 

d~ umz~ = O. (1.14) e--T + c2 ~'P + 

It is still necessary to consider the energy equation along with Eqs. (1.3) and (1.14). Baar- 
ing in mind that three-dimensional resistance forces of the soil framework due to the soil's 
immobility do not perform work, we obtain 

pm.d (e + 4 ) apmUoz 

for a one-dimensional flow. For an ideal gas, e = cvT, if we consider c V = const. Using 
(1.3) and (1.14) and bearing in mind that p = pRT, this equation is transformed to [6] 

o r  

d [ l n p - - • 2 1 5  ~,t  
p m  

dt ~ • / l 0t 

For steady-state flows, the temperature change will be of the order of g=, so that dT/dt % O. 
The temperature of the ideal gas during seepage must be considered constant when ~2 << i. The 
Joule effect is considered during the seepage of a real gas. 
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w Determination of e 2. With a uniform flow, it is neither possible to distinguish 
between "Archimedes force" and the force of hydrodynamic resistance, nor to determine r 
For this purpose, it is necessary to investigate flows with acceleration. The most direct 
method of determining g2 is to measure the spread velocity c of a disturbance in a seepage 
flow. 

During the seepage of gas, the simplest steady-state nonuniform flow under the conditions 
mentioned above (see Fig. i) can be used to determine e 2. Such tests were conducted at the 
N. Ye. Zhukovskii Central Aero-Hydrodynamic Institute by Kurshin [7] on a series of sand- 
stone specimens from different seams. These specimens were obtained and pretested to deter- 
mine their porosity and permeability by L. B. Berman at the All-Union Scientific-Research 
and Design Institute for Marine Petroleum and Gas. The results of Kurlaev's study [8] in 
which data derived from these experiments were investigated and processed, are given below. 

The steady flow of gas in a specimen will be nonuniform. The flow rate along the speci- 
men is constant, but the density along its length in proportion to the pressure drop. Let q 
he the flow rate through a unit cross-sectional area 

q- -  pmu. ( 2 . 1 )  

Since q = const and T = const along the specimen, d in p = d in p = -d in u, and the equation 
of the change in the amount of motion is 

d .  d i n  p + p.a.nz~ m~ :~ 
u -dT" + d- ..~ ~ + --;'7--" = O. 

Let us designate the reduced velocity by u/c = N. Then 

( t  .," ~a t ) d.," __yT_x + _:2~ + ~,m"- "fl----O. ~ ( 2 . 2 )  

When N + i, dN/dx + ~. 
If pI is the gas pressure in chamber I at the inlet to the specimen when x = 0, which is equal 

to the gas pressure Pl in the first row of pores in the specimen, and N o is the corresponding 
reduced velocity, then 

+ x = O .  (2.3) 

Let us designate Pl/P = Pl/P = ~- We have 

rap. pmNxc p~ m'y~N~ 
q =i-7ff-= a ~ a~ 

so t h a t  N/N 0 = 6- E q u a t i o n  ( 2 . 3 )  assumes t h e  form 

p,.,l/-7,.v o~ (2 .4 )  

1 m 2 / ~ + x = 0. In [~ -- 7 [~"- -- t] + k qz T 

Let P2 be the gas pressure in the last row of pores in the specimen. This pressure may differ 
significantly from PlI - the gas pressure in the chamber beyond the specimen (with the loss of 
a high velocity head pwa/eL in the last row of pores in the specimen). 

For a specimen with a length s we have 

where 

~ = P11P2; N= = q~21p,mc. (2.6) 

When the pressure gradient Pl - PII increases with a constant Pl and decreasing PlI, 62 = P2/Pl 

will increase, and the flow rate q and velocity u will rise. Finally, the velocity, even at 
the end of the specimen, is compared in terms of magnitude with the velocity c for a certain 
value ~2 = ~,. As is readily confirmed, this corresponds to the maximum q as a function of 
~2- In this case, N = 1 in (2.5) and (2.6). 
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Fig. i0 

With a further drop in the pressure PlI, the disturbances can no longer penetrate into 
the specimen (they will be blown away by the seepage flow encountered) and this pressure 
drop will no longer give rise to a change in the flow rate q. Let us designate the critical 
flow rate by q, and ~, as the critical value of ~. From (2.5), 

and 

e =  aq.~. ( 2 . 8 )  
pl,n'V~" 

M e a s u r i n g  q , ,  c a l c u l a t i n g  ~ ,  f r o m  P I  - P I I ,  and  k n o w i n g  m, a ,  r  and  P I ,  e i s  d e t e r m i n e d  f r o m  
( 2 . 8 ) ,  and  t h e  t e r m  c o n t a i n i n g  t h e  r e s i s t a n c e  f a c t o r s  • and  X f rom Eq.  ( 2 . 7 ) .  

The onset of the critical seepage regime is totally analogous to the familiar phenomenon 
observed during the outflow of gas from a convergent nozzle. When the velocity of outflow 
at the end of the nozzle in its narrowest cross section becomes equal to the speed of sound, 
the pressure drop in the chamber beyond the nozzle will no longer cause an increase in the 
flow rate of gas through the nozzle (St. Venant paradox). A similar phenomenon observed 
during seepage conforms, by nature, completely to this effect. The cessation of the increase 
in seepage flow is associated with the fact that the velocity w of the gas flow in the narrow 
sections of connected slits in the last row of pores becomes equal to the speed of sound w = 
a = a,. Let f = Zf i be the total area of the critical cross sections of these slits, which 
belong to a unit of cross-sectional area and which are formed by soil ~rains that intersect 
the last section of the specimen (Fig. i0). Let the velocity vector wi in this slit in the 
critical section be the angle ~i with the direction of the seepage velocity; in this case, 
~i may even be greater than ~/2. The amount of gas passing through this slit per unit time 
in the direction of the seepage velocity is fia, p,cos #i, such that p,a~lf = p0cm, where 

A = Z/~cos ~/E/~ < I, c = ae/~• . Considering the flow in the slits piror to the 

critical section to be isentropic a,/a0 = /2/(~ + i) and P./00= (2/(• + i)) '/(• we obtain 

where M = w/a. 
not restored, 

( • (2.9) 
= - -  x ~ l  \ •  m "  

In processing the experiments and determining ~,, attention should be focused primarily 
on the exhaust losses in the outlet section of the specimen. In narrow slits corresponding 
to the last row of dissected pores of the specimen, the velocity w for the critical regime 
is everywhere equal to the speed of sound, and this velocity at the outlet from the slits is 
virtually everywhere greater than the speed of sound for a nonuniform velocity distribution 
across the section of the specimen. The corresponding velocity head pa2/2 is completely 
lost, i.e., is not restored in pressure. If P2 is the pressure in the pores prior to the out- 
let section and p is the pressure in the narrowest section of the slits, we have, considering 
the flow at the inlet to the slit to be isentropic, 

p~/p = ( 1  + M2(• - 1)/2) "'r 

When M = i, p/p.= ((• + I) 2) •215 If the pressure in the outlet steam is 

p2 = p,~ ( (z + i)/2) ~"~-L, (2.10) 

for the critical regime; < -- 1.4 for air, and P2 % 1-90pll for the critical pressure. 
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At the end of the specimen, the pressure varies sharply, and the pressure gradient 
tends to infinity (see Fig. 2). The pressure distribution calculated for conditions where 
the inertial forces are neglected for a PII corresponding to the critical pressure, and for 
PII = 0, is also indicated by the broken line in Fig. 9. 

The pressure gradient in the last row of pores is extremely large (P2 - PII = Pl/~2 " 
[i - Pii/Pf]) and for high PI values, may lead to significant expansion and failure of the 
narrow slits in the last row of pores. 

If the average value of these new narrow-slit sections that are formed is denoted by 
fl and el is the corresponding value of e, el/g = fl/f- The value of this ratio may vary 
from specimen to specimen. A large pressure gradient may also lead to complete failure of 

at its end, and even to the development of a crushing wave, if a protective lattice is not 
established at the end of the specimen. Deformation of the specimen in its outlet section 
may increase the value of e I severalfold in comparison with its actual value e. 

Deformation of the soil framework with pressure variation in the pores of the specimen 
may also exert an influence on the spread velocity c of a disturbance in the specimen. 
This influence can be neglected for gas seepage; it is significant for the seepage of a 
liquid. 

Data derived from the processing [8] of experiments conducted at the N. E. Zhukovskii 
Central Aero-Hydrodynamic Institute by Kurshin [7] for a series of specimens prepared from 
cores of various sandstones and specimens of an artificial porous material are presented 
below. Initial data on these specimens are given in Table i. 

TABLE i. Initial Data on 
Specimens* 

Specimen I [ number m K, mDc l, m 

Specimens from sandstone cores 

4 
5 
6* 
7a 
7 

t0a 
i0 
t l  
12a 
12 
13a 
t3 
14a 
t4 
tSa 

0,13 , 0,39 
0,08 1,9 
0,24 [ 137 
0,14 3,8 
0,i4 3,8 
0.i3 2,6 

0.033 
0,034 
0,037 
0.025 
0,040 
0,028 
0,049 
0,055 
0,033 
0,056 
0,032 
0,062 
0,037 
0.068 
0,038 

0,i3 ] 2,6 
0,20 220 
0,t5 4,i 
0,i5 4,1 
0,24 [ 460 
0,24 I 460 
0,i3 3,1 
0.i3 I 3,i 
0,16 80 

Artificial material 

IA [ 0,20 5,2 
0.20 [ .  5,0 [ 0,02 0,05 2A I 

* S p e c i m e n s  6 a - 1 5 a  w e r e  b o r e d  
out from specimens 6-15. 
The values of m and k were 
determined from the bored 
specimens. 

TABLE 2. Measurement and Compu- 
tational Data 

' ~ MPa %'r kg/t t= ~ "T. (m2.sec PI/PII. = e .10  3 

c, 
cm/ 
s e c  

Sandstone-core specimens 

4 i0 
5 i0 

5 
6 i0 

5 
2 
i 

7a i0 
5 

7 i0 
5 
2 

!0a i0 
5 

i0 l0 
5 

i i  i0 
5 
2 
i 

12a t0 
5 

12 i0 
5 

i3a i0 
5 
2 

i3 iO 
5 

t4a i0 
5 

t4 i0 
tSa 10 

5 
2 
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Primary measurement data are presented as a relationship between the seepage flow rate 
q and the pressure gradient Pl-Pll in the chambers prior to and beyond the specimen. The 
measurement data for specimen No. 5 are given in Fig. ii. 

For calculations, it is convenient to represent these data in the form of a curve of the 
dimensionless parameters q/q, versus ~. For this purpose, it is necessary to calculate the 
value of P2 from the measured values of PlI- For small M numbers, i.e., for pressure 
gradients significantly smaller than the critical, P2 ~ PlI- When the regime is critical, 
p2=((• �9 For intermediate M values, this ratio can be determined [8] from the 
equations 

p=/Pn = [1 + M2(• - 1)/2~ ~'~-l', 
q/q,  = M [ l - - ( 1 - - M = ) ( x - - t ) / (  • + 1)] -(x+l)j~(x-1) 

or from corresponding tables in [9]. 

The relationship between q/q, and pl/Pll for specimen No. 5 is shown in Fig. 12; the 
corresponding computed curve for X = 0.03 mm = I = 0 4 mm, and pl/PlL. = 1.9"8, = 4 is also 

shown here. 

To determine the values of X and X and to define 8, more precisely, they are selected 
so as to obtain the best correspondence between computational data and experimental relation- 
ship. 

The q/q, - 8= curve for all other specimens tested, with the exception of No. 6a, 
assumes the same character. Specimen No. 6a failed catastrophically at the end during testing. 

The establishment of a critical flow rate and then its contancy over a broad range of 
variation in Pll/Pl are distinctly apparent in Fig. 12. The value of q, is determined rather 
accurately from experimental data. 

Since the speed of sound is different in the sections of the narrow slits that connect 
the pores, the flow rate is, as a result, stabilized only gradually with a drop in PlI" A 
more precisely defined value of 8, is obtained from comparison of the experimental and com- 
puted curves. 

All sandstone specimens were first tested under an initial pressure of i0 MPa; this 
could have led to failure at their ends for the most brittle specimens. 

Test and processed data for all specimens are presented in Table 2 from which it is 
apparent that the e~ value fluctuates from 10 -6 to i0 -s. Tests with these same values of 
the ratio pl/Pll, but for small Pl values should have been conducted to eliminate the possible 
effect of the end failure of the specimens and for more accurate determination of E~. 

w Liquid Seepage. Effect of Deformation of Soil Skeleton. During the nonsteady 
seepage of a liquid, when the relative change in the volume of the liquid as the pressure 
varies becomes comparable to the corresponding deformation of the pores, it is no longer 
possible to consider th@ porosity of the medium a constant that does not vary with the 
propagation of a seepage disturbance. 
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Let us write the conservation equation, assuming that m = m(p). Let the initial poro- 
sity when p = P0 be m0 = m(p0) over the entire space. For a one-dimensional flow, the 
equation of mass conservation with allowance for variation in porosity will be 

d l n p m / d t +  Ou/Oz = 0. (3.1) 

The equation of state of the liquid, i.e., the equation relating the variation in density 
with the variation in its pressure and temperature (or entropy), is usually represented as 

t + p/~oo = (P/Po) ". ( 3 . 2 )  

where ~0o ~ 300 MPa is the internal pressure of the liquid for water and the constant n = 7. 
The values of~00 and n are functions of entropy. In a small temperature interval, however, 
they can be considered constants; P0 is the density at the initial temperature. From (3.2) 

dp/dp = . -1  ] / 'n -~ .po  ' 
= a..(p/po) ; ao = ( 3 . 3 )  

where a0 is the spread velocity of sound in the liquid. 

Letting z = in(p/p0), we have [6] 

p = ~ [ e  . . . .  1] = n~ooz[l + nz/2 + . . . ]  = n~ooZ 

from (3.2), and 

so that 

dp/dz = n~ooe "z = n.~oo [1 + nz + . . . ]  

d In pm = [l + n5%oe"Zd In m/dp]dz 

or din pm = [1 + B]dz, where [6] 

(3.4) 

(3.5) 

(3.6) 

B = n~ooe"'dln m/dp ~ n ~ o o d l n  m/dp. ( 3 . 7 )  

F o r  a g a s ,  B = •  i n  m / d p ,  a n d  •  << 1 .  

When the porosity varies with pressure, equation of mass conservation (3.1) will conse- 
quently be [6]: 

[1 + S l d z / d t  + Ou/Ox = 0. ( 3 . 8 )  

The equation of the variation in the amount of motion with varying porosity will assume the 
form 

du 82 Op ~lmu pro'-. 2 
P-K-+ 3 ~ - + ~  + k =0.  

The equation of variation in the amount of motion is 
o o 

dl~ ,~ .~ 0.: ~.tnzzt m-u" 
--at + ~'aG-~j~ + ~ + k = 0 .  

(3.9) 

(3.10) 

It follows from Eqs. (3.8) and (3.11) that the spread velocity of a seepage disturbance in 
the porous medium with allowance for deformation of the soil skeleton D = ea0//l + B. 
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To determine this velocity and compute the value of B, it is necessary to investigate 
the change in pore volume as a function of the pressure variation of the liquid in the pores. 

Let us examine the change in pore volume as a function of the variation in their pres- 
sure with a constant external load on the soil skeleton, considering the deformation of the 
soil's framework to be elastic and neglecting inertial forces. The change in the volume 
of the pores as the pressure changes in them depends on their shape. A pore can always be 
approximated in the form of a certain ellipsoid, and the effect of a change in pore shape 
determined, comparing the deformations of the ellipsoids with different semi-axes from a 
sphere to a narrow slit (crack), which is an ellipsoid in planform with axes a and b and 
height 6 << a. Let us examine these two extreme shapes. For radial displacement in the 
vicinity of a spherical pore of radius a, which is located in an unbounded elastic space 
[12], we have 

.~ (p + .=) ~3 
, (3.11) Ur = ~ r 4  4~ r ~ 

where X and ~ are elastic constants, ~ is the uniform compressive stress far from the pore, 
and r is a spherical coordinate with its center at the center of the pore. When p varies 
by ~p and o= is constant, we then have 

Au~ = Apa/4~ 

for the displacement on the surface of the pore. If the volume of the pore varies by the 
amount Av = 4~a2aur, the relative change in volume will be 

Av/u = 3Ap14~ = 3(1 + v) ApI2E, 

where E is Young's modulus and v is Poisson's ratio. 

If the porosity is formed by spherical pores of different radii and is so small that the 
mutual effect of the pores on deformation can be neglected, then 

Amlm = Z ~ W E v  = 3(1 + v)~pl2E 
a n d  

d in  m/dp = 3(1 + v)/2E. (3.12) 

If the pore assumes the shape of a disk-like slit of radius a and height 6, the increase 
in the volume of the pore as its pressure increases by Ap and for a constant ~= will be [13, 
14] 

Av = 1 6 ( [ -  v~)a3Ap/3E 
and 

Av/v = 4(1 -- v2)aAp/nE6. 

If the porosity is formed by disk-like cracks of different dimensions, but with a 
constant ratio 6/a, we obtain 

d In m/dp = 4 ( 1 -- v z) a/nE6 ( 3 . 1 3  ) 

by neglecting the mutual effect of the pores on their deformation. 

In the Mathematics Department of the Novosibirsk Electrotechnical Institute, G. N. 
Mirenkova and E. G. Sosnina calculated in detail and compiled into tables and graphs the 
stresses and strains for a cavity in the shape of any form of ellipsoid to thin slits situated 
in an unbounded elastic space, and cited the relative changes in their volume as a function 
of pressure variation in the pores. 

As is apparent, variation in porosity as a function of pressure variation in the pores 
depends very heavily on the shape of the pores. If, for example, the pressure in a pore varies 
by Ap = 102 kgf/cm 2 when E = 10 s kgf/cm 2 and v = 0.3, the relative change in the volume of 
a spherical pore will be Av/v = 0.2%, and if this pore assumes the shape of a disk with 6/a = 
0.015, Av/v = i0%. 

Let us determine the spread velocity of a disturbance in a medium with a uniformly dis- 
tributed porosity consisting of geometrically similar pores of the same configuration, for 
example, spherical pores or pores in the form of ellipsoids with the same ratio of principal 
axes, which are connected by the finest slits, the mass of the liquid in which is negligibly 
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small as compared with the mass of the liquid in the pores. In this case, d In m = dv/v, 
where v is the volume of one of the pores. 

For spherical pores (3.12) 

B = 3~oon(l + v) /2E,  

and for a medium with cracklike pores (3.13) 

B = 4(1 - v2)a,~oo/~E6. 

I f  v = 0 . 1 3 ,  E = l 0  s k g f / c m  2, and~onn = 2"10 4 k g f / c m  2, B = 0 . 4  f o r  a medium w i t h  s p h e r i -  
c a l  pores, and B = 24 for a porous medium with cracks where a/6 = I00. 

If the shape and volume distributions of the pores are known such that it is possible 
to construct a corresponding distribution curve, the corresponding value of B is readily 
obtained by neglecting the mutual effect on their deformation. Let m = Em i = E=im, where 
~i is the percentage of pores of the same kind. However, Ami/m i = AiA p and Am = EAmi, and, 
consequently, Am/m = EAi=iA p and B = EAi=in~00. Let, for example, the medium contain 25% 
of spherical pores, 50% of crack-like pores with a/6 = i0, and 25% of pores with a/6 = iO0. 
Then ,  B = [0.25(t + v)3/2  + 0 . 5 - 4 ( 1 - - v 2 )  1 0 / n + 0 . 2 5 . 4 ( 1 - - v 2 ) t 0 0 / n ] n ~ o o / E ;  B = 7 w h e n E = 1 0  s k g f / c m  2, 
n~00 = 2"10 ~ kgf/cm 2, and ~ = 0.3. If the deformation of the soil framework is inelastic, 
the wave-propagation process is related to the failure and irreversible deformations of the 
soil sekeleton. The spread velocity of a seepage wave should then be determined with con- 
sideration of this process. 

If m << i and the pores are arranged in the volume such that the porosity is uniform, 
the influence exerted by pressure variation in one of the pores on the change in density in 
the vicinity of other pores can, as a rule, be neglected when Ap/E << i. Let us assess the 
effect of the deformation of one pore on the deformation in the vicinity of another, which 
depends not only on the distance between these pores and their size, but also on the stiff- 
ness of the material in the soil framework (on the modulus E). 

Let the pressure in a spherical pore of radius a increase by Ap. The corresponding 
values of the projection of the pressure force on the surface of the hemisphere will be 
~a2Ap on the normal to the diametral section. The quantity r0 = a~(~Ap)/E can be adopted 
as a measure of the distance determining the mutual effect between pores. Let the average 
distance between pores be equal to s If r0/s = ~&p/E.a/~ << i, the mutual effect of the 
pores is small, and we can neglect the change in density in the vicinity of one pore as the 
pressure varies in another. If the pores are a system of disk-like cracks of radius a' and 
thickness 6, then 

r~ = a" ]/-~p/E (3.14) 

is a measure of the mutual effect of the cracks. 

Let a be the radius of a spherical_~_pore having the same volume as that of the disk-like 
crack. Then, a' = aJa/6 and r~/r = (a/6. If r~ is of the order of unity or even higher, it 
is necessary to account for the mutual effect of the cracks to determine B. 

w Transformation of Seepage Equations. Computational Example*. Let us first examine 
a system of seepage equations in which the forces of hydrodynamic resistance are proportional 
to the seepage rate; this corresponds to Darcy's law. 

Consideration of the effect of inertial forces leads to two constants -- the "seepage- 
time scale" 

to = p0x/~m (4.1) 

and the spread velocity of a seepage disturbance c = a0r for the seepage of a gas or 
D = a0e/(l + B for the seepage of a liquid in a porous elastic medium. The length s = toc 
or s = t0D is then determined. 

The equations of gas seepage in an isotropic medium assume the form 

dz/dt + vz"-[ = O, d~/dt + c2V'h + ~m~9% = 0, ( 4 . 2 )  

where z = In(p/po),h = in(p/po),dz dh. Assuming ~ 
_ = r = s where v is a radius vector, t = to~, 
u = cN, equations (4.2) will assume the form 

*The results cited below were provided by A. R. Kurlaev. 
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Oh/O'~ + ( N  . ~ ) h  + v �9 N = O, 

OA//OT + (N �9 v ) N  + V h  + e -h l~ ' - -  - O. 

Setting z = (i + B)Z, we obtain 

OZ/Or + (N �9 v ) Z  + v N = O. 

0NI0r +(N. V)N+ vz + ?7= 0 

for the seepage of a liquid. For a one-dimensional flow, these equations will 
respectively, the form 

for the seepage of a gas 

Oh~Or + NOh/OX + ON/OX = O, 

ON~Or + NON/OX + Oh/OX + e -h �9 N = 0 

(x = s and 

OZ/OT + NOZ/OX + ON/OX = O, 

ON~Or + NON/OX + OZ/OX + N = 0 

assume, 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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for the seepage of a liquid. Let To be the interval of dimensionless time in which the 
variation Z occurs. Let us set T = T0q. In Eqs. (4.5) and (4.6), the time derivatives 
will assume the form T~lS.../Sq. If ~0 << i, the terms N and Ne -h can be neglected as 
compared with 8N/8~, and if N << I, NSN/SX and NSZ/SX can also be neglected in Eqs. (4.5) 
and (4.6). The seepage equations will agree with the equations of wave propagation in gas 
dynamics in the absence of viscous-friction forces. When ~0 ~ i, these equations agree 
with the equations of the propagation of sound waves (acoustics equations) in a medium with 
high hydrodynamic resistance. If To >> i, a small parameter appears for the time derivatives. 

Results of the computation of a one-dimensional seepage flow that develops in a tube 
filled with a stagnant gas at a pressure P0 = Pl and a temperature constant throughout the 
space under a sudden pressure variation of from Pl to Pll = 0.I Pl on the free surface are 
given in Fig. 13. The instantaneous pressure profiles over the length of the specimen are 
indicated by the solid curves, and the instantaneous flow-rate profiles by the broken curves. 
For specimen No. 5 with a length of 3.4 cm, to = 2.2 sec, c = 8 cmfsec, and ~0 = 18 cm~ the 
wave front will reach the initial section of the specimen after 0.4 sec. This corresponds 
to T = 0.19. A. P. Kurshin's direct measurement of the propagation time of a seepage distur- 
bance that develops in chamber I prior to chamber II for this specimen yielded approximately 
the same spread velocity. For specimen No. 13 with a length of 6.2 cm, to = 3.4 sec, c = 
58 cm/sec, and ~0 = 200 cm, the wave front will reach the initial section of the specimen 
after 0.ii sec; this corresponds to T = 0.03. 

The variation in pressure and flow rate with time in sections generated by computer 
calculation from Eqs. (4.5) is shown in Fig. 14; the broken line with the circles indicates 
corresponding pressure and flow-rate values obtained by Kochina [16] where the effective 
inertial f~rces were neglected. 

A comparison is made in Fig. 14 in dimensionless coordinates for the medium corresponding 
to specimen No. 5: m = 0.08; k = 1.9 mDc, E = 2.7"10 -~, and P0 = I0 MPa for air; and also 
to specimen No. 13: m = 0.22, k = 460 mDc, e = 20.10 -~, and P0 = i0 MPa. 
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DEFORMATION PROPERTIES OF NDCK DURING SUBCRITICAL 

FAILURE 

V. P. Skripka, A. V. Talonov, and 
B. M. Tulinov UDC 539.375 

Mathematical models of the deformation of rock in a nonuniform stress field, which are 
based on the theory of the elastoplastic dilatance deformation, are widely used in calculat- 
ing the stability of components of underground structures, predicting mine shocks, and 
investigating the mechanical effect of a blast [i, 2]. 

Numerous experimental investigations indicate that subcritical failure of geomaterials, 
which is characterized by the development of a large number of microcracks, is observed even 
prior to the appearance of main cracks in loaded specimens [3, 4]. Models of media corres- 
ponding to a large number of isolated cracks can be used for a theoretical description of 
this process [5-7]. 

The purpose of the present study is to model numerically the subcritical failure of rock 
in a nonuniform stress field on the basis of the fissured-medium model proposed by Talonov 
and Tulinov [7]. 

i. Let us examine an element of a linearly elastic medium weakened by a large number of 
isolated cracks, which is subjected to external stress Oik. Using the crack-distribution 
function F(Y) for a set of determining parameters Y (dimensions, spatial orientation of the 
cracks), the variation in the macroscopic strain tensor of the given element of the medium is 
represented as [5-7] 

(1 .1 )  

where Elk is the strain tensor of a solid linearly elastic medium, n i are components of the 
normal unit vector to the surface of the crack, and V i are components of the vector of the 
average jump in displacements of the crack edges, which can be determined from solution of 
the elastic-theory problem concerning the motion of the edges of an isolated crack in an 
external stress field. 

The rocks were initially weakened by a large number of cracks, the development of which 
leads to failure of the mass when its stress-strain state changes. The following relationship 
proposed by Talonov and Tulinov [7] is used to describe the variation in the size of an iso- 
lated crack with time: 

f0 K < Kle, 
v = "-{. ocD (K) K,~ ~< K < K/, 

/ vo K >~ KI, 
(1.2) 

where K=~K~ + (KIcK:/K~e) 2 , KI and K2 are factors of the tensile- and longitudinal-shear- 

stress intensity, which characterize the peculiarities of the stresses in the terminal zone 
of the crack, Kf is the threshold of failure at the limiting velocity v0, r = C exp(o/<) is 
for dry materials, and =, C, K1c, and Kac are material constants. 

Expression (i.i) is valid prior to the moment of multiple intersection of the cracks. 
Eremenko et al. [8] conducted an experimental investigation of the interaction and merging of 
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