B. DULIAN Institute of Geodesy and Cartography Warsaw

DETERMINATION OF THE ANGULAR VALUE OF A GRADUATION INTERVAL OF HANGING LEVEL TUBE ON A TRANSIT INSTRUMENT BY OBSERVATIONS OF STARS

Ι

The method of determining the angular value of a graduation interval of level tube by means of a level trier gives reliable results in the case only when the trier is carefully examined, the influence of temperature defined and faults of the screw, which should be of perfect construction, eliminated. Moreover, the position of level tube, its loading and fastening or suspending should be the same during whole examination as in the time of observations when it is used to define the axis inclination of a transit instrument. All these difficulties fall off when a more direct method is used for the level tube examination, consisting in the determination of the value of intervals from star observations during their transit across the meridian of a place.

II

The suggested method consists in observation of passage of stars across the meridian of a place, very near of zenith point, the inclination of horizontal axis of the instrument being changed during observations by means of a setting screw, position of the bubble read and transit moments of a star registered for both tilts of the axis.

III

In spite of imperceptible changes in azimuth which occur as a result of the revolutions of setting screw - the program of star observations shall be limited to the stars, whose azimuth coefficient of the Mayer's formula

$$K = \frac{\sin (\varphi - \delta)}{\cos \delta}$$

does not exceed 0^S,1.

IV

Investigations of the level tube from the star observations were performed with a Zeiss transit instrument with an object lens of 100 mm diameter and 1000 mm focal length, a photoelectric contrivance for transit observations and an electronic chronograph of Belin, registering the electronic impulses. The movable vertical hair of the impersonal micrometer (or a fixed reticule) is replaced by a diaphragm,

B. DULIAN

which has 15 slots, symmetric to the optical centre of the telescope.

The passage of each star is observed in four groups:

for first telescope tilt - on the eastern side with N° 5 to 8 slots.

for second telescope tilt - on the eastern side with N° 11 to 14 slots and on the western side with N° 2 to 5 slots,

for third telescope tilt - on the farther western side - with N° 8 to 11 slots.

A following order of observations was composed:

- 1. By revolving the setting screw placed in the direction of level tube axis a tilt of about 5 intervals from the level tube centre is caused; the level bubble shall be of normal length about 40 intervals.
 - 2. Both bubble ends are read out.
- 3. Extreme four eastern slots are destined for a choice of appropriate strength of light which comes from the star to the photoelectric cell and which depends from the star size, spectrum type, atmosphere transparency and extinction and following four slots (N° 5 to 8) serve to record the star transit on the printing chronograph of Belin.
- 4. During the transit of the star in front of N° 9 and 10 slots the level tube bubble centre is moved in the opposite direction to the tilt, which was made previously, so that its centre is distant about 5 intervals from the level tube centre. This movement is made by revolving the setting screw (and reading out a scale on the screw head). The recording of star transits is continued all the time without interruptions.
- 5. After the star transit in front of the N° 11 to 14 slots is recorded, the registering device is put off.
 - 6. Both bubble ends are read out.
- 7. The registering device is put on and western N° 2 to 5 slots are observed. The position of instrument and of level tube does not change.
- 8. While the star passes in front of N° 6 and 7 slots, the level bubble is moved to its initial position (see para. 1).
- 9. The star transit in front of N° 8 to 11 slots is recorded, then the registering device is put off and both bubble ends are read out.
- 10. The instrument position shall be changed before the observations of a next star will start.

Below are shown the results of transit recording of the star 1638 W/E in front of slots while the value of one interval of a suspended level tube graduation of a Zeiss transit instrument was determined; to each slot correspond two impulses: the first one signals the moment of apparition of the star in the slot, the second one - the moment of disappearance.

DETERMINATION OF THE ANGULAR VALUE

```
34<sup>m</sup> 12<sup>s</sup>, 306
 Eastern slots
                            34
                                 15,936
                                 19 , 497
                            34
 Level tube readings:
                            34
                                 23 , 174
                                               First group of four slots
E: 6,4 W: 44,7
                            34
                                 26 , 728
                                               for first tilt
                                 30 , 209
                            34
                                 33 , 881
                            34
                         8
                                 37,408
                            34
                                 40 , 929
                            34
                         9
                            34
                                 43 , 316
                                               Movement of the
                                                                    level
                                 46 , 857
                            34
                        10
                                               bubble
                            34
                                 50 , 389
                                 54 , 022
                            34
                        11
                            34
                                 57 , 644
                            35
                                 01 , 154
                        12
E: 16,1
           W: 44,4
                            35
                                 04 , 787
                                               Second group of four slots
                            35
                                 08, 206
                                               for second tilt
                        13
                            35
                                 11 , 914
                            35
                                 15 , 354
                        14
                                 19 , 033
                            35
                                 22 , 483
                            35
                        15
                                 26 , 024
                            35
                            35
                                 39 , 843
                                           1 Western slots
                                 43 , 351
                            35
                            36
                                 46 , 870
                            36
                                 50 , 516
                            36
                                 54 , 036
E: 16,1 W: 54,4
                            36
                                 57 , 586
                                              Third group of four slots
                            37
                                 01 , 144
                                              for second tilt
                            37
                                 04,811
                            37
                                 08, 231
                                           5
                            37
                                 11 , 896
                            37
                                 15 , 455
                            37
                                 20 , 181
                                              Movement of the level
                            37
                                 23 , 729
                                              bubble
                            37
                                27 , 217
                            37
                                30 , 753
                            37
                                34 , 224
                                37 , 840
                            37
                            37
                                41 , 409
                            37
                                45 , 027
                                              Fourth group of four slots
E: 8,2 W: 46,6
                            37
                                48 , 521
                                              for third tilt
                                52 , 151
55 , 701
                            37
                            37
```

B. DULIAN

Computation of observations

Let designate: S_1 , S_2 , S_3 and S_4 - the mean values of the moments of star passage in front of the slots of N° 1, 2, 3 and 4 groups;

δ : declination of a star;

Δt : time changes due to the tilt changes;

 Δp : movements of the level tube bubble centre due to the

revolutions of the setting screw;

I : tilt coefficient of the Mayer's formula :

$$I = \frac{\cos (\varphi - \delta)}{\cos \delta}$$

then we shall obtain :

$$S_{2} - S_{1} = d_{E} \sec \delta + t_{E}$$
 $t_{E} = (S_{2} - S_{1}) - d_{E} \sec \delta$
 $S_{4} - S_{3} = d_{W} \sec \delta + t_{W}$ $t_{W} = (S_{4} - S_{3}) - d_{W} \sec \delta$

and the value of one level tube interval shall be :

$$\tau = \frac{\Delta t_{E}}{\Delta p_{E} \cdot I} = \frac{\Delta t_{W}}{\Delta p_{W} \cdot I}$$

or

$$\frac{\frac{S_{1} + S_{4}}{2} - \frac{S_{2} + S_{3}}{2} \pm \frac{d_{W} - d_{E}}{2} \sec \delta}{\frac{\Delta p_{E} + \Delta p_{W}}{2}} \cdot I$$

We see that in course of using the observations with transporting of telescope in its sockets in midway of observations the last term in the numerator will disappear, because it shall get following value:

DETERMINATION OF THE ANGULAR VALUE

In the example showed below following values for <u>d</u> were admitted; they were received from a greater number of normal observations for determination of a time correction.

$$d_E = 24^S, 4585$$
 $d_W = 24^S, 4628$

v

<u>Final remarks</u>. As can be seen from the example - precision of results obtained by this way are not worse than the precision, which can be obtained with most precise level triers; besides, the results are free from the systematic errors due to the trier constants and factors mentioned above.

B. DULIAN

1963

13

Computation example

4, Ap. I 0,01775 0,01675 0,01768 0,01715 0,01705 0,01682 0,01726 0,01830 0,01733 0,01686 0,01819 0,01812 0,01757 0,01671 0,01771 0,01791 0,01741 34,7648 29,8818 30,5478 27,1375 45,1584 34,7222 31,0020 27,4656 31,4817 28,6500 28,1819 27,0929 25,4992 28,7236 29,6972 31,8500 29,5430 31,0817 33,9384 24,9781 2. Ap. Observations from May, 1,5387 1,6228 1,7920 1,7494 1,5324 1,5937 1,6250 1,5501 1,6657 1,6971 $\Delta\,\mathbf{p}$ 18,9 19,5 17,0 25,2 22,4 18,0 19,6 19,2 20,0 19,4 15,7 17,2 16,3 16,6 16,0 18,3 16,7 20,2 s 5395 1, 1436 1, 1179 Mean result $\frac{1}{4} \tau^S = 0.01740 \pm 0.00012$ 1,1683 0,9771 0,8880 1,1265 1,0238 1,0479 1,0360 1,2125 1,0498 0,8624 1,0093 1,0409 0,9950 0,9306 0,9753 1, 1151 0,9857 Δt 42, 3806 5278 38, 7311 39,6350 45,0714 36, 7931 38,9907 41,6217 43,8170 36,6090 5300 38,0060 39,8866 38,6598 40,6887 38,6210 40,6851 36,6660 41,7201 40,4101 d. sec 42, 38, 43,9201 39,7545 37,6898 37,6832 43,9278 42,8342 37,6588 39,7475 37,9614 37,9547 42,8417 40,7430 37,6654 41,5280 38,9917 38,9986 39,6937 Ø 40,7501 11,5207 39,7007 sec ٠; 1,6976 1,5407 1,5518 1,7513 1,6658 1,6229 1,5942 1,5397 1,7957 1,6251 ω 06,45 10,82 29,84 54,60 08,95 57,73 31,73 +56°09;62 52,57 01,27 +55 +52 +49 +49 +53 +49 +53 +51 +51 483 W 509 W 1700 W 531 W 1638 W 1665 王 1688 E 1750 区 1630 圧 Š