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ABSTRACT 

Recently much work has been done concerning the behavior of the 
truncation errors of the integral formulas of Stokes and Vening Meinesz. In our 
paper we examine the theoretical foundations of truncation error behavior. 

In reference [1] (de Witte 1967), de Witte uses a technique which he 
attributes to Molodenskii to analyze the truncation errors of the integral formulae 
of Stokes (for geoidal height) and Ven!ng Meinesz (for deflections of the vertical). 
The method of Molodenskii can be generally described as follows. 

Suppose we have a complete set of orthonormal functions l ~ n  (x)} 
together with a weight function w(x) on the interval [ a, b ] .  Let 

o o  

f(x) = ~ a n ~n(x) (1) 
n = l  

and let K(x) be an arbitrary continuous kernel function. Now we wish to evaluate 
the integral 

J(l"/) = K(x)  f(x)  w(x) dx 
a 

(2) 

for various values of 1"/between a and b, i.e., a < r/ <__ b. We define the truncated 
kernel K (x) as follows �9 

/ 
-- ~ K(x) for a < x < r/ 

K(x) = t (3) 
0 for r/ < x < b 

The truncated kernel is now expanded in an orthogonal series (generalized Fourier 
series) 
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~ o  

(x) = 2; cn Cn (x) (4) 
n = l  

The integral (2) is now evaluated in the following manner " 

J ('r/) = 

b 
f K ( x ) f ( x ) w ( x )  dx = / K'(x) f ( x ) w ( x ) d x  

a a 

= ;S c n Cn (x) ;S a~ r (x) w ( x )  dx 

(5) 

If we formally integrate term by term and apply the orthogonality properties of the 
~>n ' s, (5) reduces to 

J(/'/) = ~ c n a n (6) 
n = l  

We see immediately that the method of Molodenskii is not rigorously valid since in 
general K(x) is discontinuous at the truncation point ~?, thus the series (4) is only 
pointwise convergent, hence the term by term integration in (5) is not justified. 
However, in practice, the series (1) and (4) are both truncated after a finite number 
of terms and hence the resulting Molodenskii approximation (6) is indeed valid. 

Since the gravity anomaly Ag is required over the entire earth for the 
integral formulae mentioned above, de Witte applied the Molodenskii analysis to 
the respective kernels in hopes of finding a practical truncation logic for each of the 
integrals. After generating graphs of the Fourier coefficients I c n } in (4) as a function 
of truncation angle, he noted that all of the coefficients (except a few of lowest 
order) damp very nearly to zero at the zeros of the Stokes and Vening Meinesz 
kernels. He therefore recommends adoption of a high order reference model (in the 
third order - seventh order range) to eliminate the few significant low order 
coefficients, truncate the Stokes integration at the first zero of the Stokes kernel 
(approximately 39~ and compute the deflections of the vertical by differencing 
two Stokes integrations since the first zero of the Vening Meinesz kernel is 
significantly more remote than that of Stokes. 

The main purpose of this note is to point out that de Witte's results could 
have been predicted by the theory of Legendre series expansions and to provide a 
complete theory of truncation error models. 

Let S(x) be the Stokes kernel and V(x) be the Vening Meinesz kernel ; let 
S(x) and V(x) be the respective truncated kernels. The approximating functions 
for S(x) are the { Pn (x) }, the Legendre polynomials ~ the approximating functions 

for V(x) are the { PZ n (x)}, the associated Legendre functions of degree one. 

Thus 
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S(x) = ~ a'n Qn Pn (x) ,  (7) 
n = O  

V ( x )  = ~ /3n qn Pin (x) ,  (8) 
n = 0  

where {Qn I , {qn } are the Fourier coefficients and l a, n }, {/3nl are the required 
normalizing factors, 

b 
2n+1 2n+1 

a, n - , /3 n - (9) 
2 2 n ( n + l )  

The theory states that if S(x) (or V(x) ) is continuous and of bounded 
variation over the interval of interest, and differentiable at the endpoints, that the 
associated series (7) (or (8))  converges absolutely and uniformly on the interval. 
Thus, assuming continuity, one would expect the coefficients Qn (or qn) to damp 
rapidly and uniformly to zero with increasing order. (For the case of classical 
Fourier series (see (Courant 1963) ), the associated series of amplitudes is majorized 

by a series of the form M ~ 1__ n=, where M is a constant and n is the order. Thus it is 

clear that classical Fourier coefficients decrease extremely rapidly with increasing 
order).We note that S(x) and V(x)  are continuous only in case the respective 
functions are truncated at a zero. In general the truncated kernels are discontinuous 
at the truncation point so that the convergence of the associated series is only 
pointwise and thus it is impossible to predict any local uniform behavior of the 
Fourier coefficients. 

Another interesting observation derives from the fact that 

V(x)  = S' (x) dx (10) 

where (10) is assumed valid only at points where the differentiation makes sense 
(i.e., at points other than the truncation point). Since the zeros of $(x) and V(x) 
occur at different points, the series (7) and (8) satisfy the conditions of the 
classical theorem on differentiation of series (see (Courant 1963) ) only at the 
endpoints. Thus 

qn (1) = - n ( n + l ) Q n  (1) 

at the surface of the sphere �9 and 

(11) 

qn ( - 1 )  = Qn ( - 1 )  = 0. (12) 

On the interior of the interval [--1, 1 ]cfifferentiation of (7) to obtain (8) is invalid 
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and hence no relations such as (11) and (12) exist. 

Our final comment deals with use of Stokes formula in a finite difference 
approximation for the deflections of the vertical. The curves displayed in de Witte's 
paper which give the truncation error of the Molodenskii geoidal slope calculation 
and usual Vening Meinesz formulae are clearly not the same. The cause of this 
discrepancy will now be discussed and a complete theory of truncation error models 
given. 

Let (q~, X) be ordinary geographic latitude and longitude and (a, 5) a 
coordinate system centered at the nadir point (~bo, Xo)where a is an azimuth and 

a spherical range angle (colatitude). Define N Q to be the height of the geoid at a 

point P on the reference surface (determined by Stokes) calculated in an (a, 5) 
coordinate system centered at Q. We now define two different types of Stokes 
differences : 

= A ; k  a c o s  r 

($1) 

r / =  

p § 1 6 2  -- Np 

Ar 

, ) Np+ ,~ 

X ac~s r 

(S2) 

where a is the radius of spherical reference surface S, and where ~, r/as usual denote 
the prime and meridional deflections of the vertical. The method ($1) is equivalent 
to performing Stokes at two neighboring points and differencing, the integration in 
each case being about the same point (i.e., the integrating coordinate system is fixed 
at one of the points rather than varying with the nadir point). This means that the 
spherical truncation caps over which the integrations are performed are identical 
for identical truncation angles, The method ($2) is equivalent to performing Stokes 
at two neighboring points and differencing, the integration in each case being about 
the respective nadir point, This means that the spherical truncation caps are slightly 
different for truncation angles of less than 180 ~ 

We now review the results of Vening Meinesz (Vening Meinesz 1928). The 
first technique of Vening Meinesz (the one which bears his name) obtains the 
deflections of the vertical as follows : 
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1 .~sV(6) Ag(oL,~)cosadS (VM1) 
~= 2 ~ f  

1 ~S V (6) Z~ g (eL, 6) sin adS rt = 2~.,, / 

where V(~)  is the Vening Meinesz kernel and 3, is average gravity. Vening Meinesz' 
second method for obtaining the deflections is the following �9 

1 f S(6)  a Ag dS 
- 2Tr-),  Js a~o  

1 f S(~) aAg dS 
= ]s axe 

where S(8) is the Stokes kernel. 

We now define two truncation error models for the deflections of the 
vertical. The first model, due to Cook (Cook 1950) and then de Witte, is given by �9 

1 KM ~ (n_ l )  Cn q n 
"~'~ - 23' a~ n=~0 

A'rt = KM cos~ ~ T-, (n - - l )  S n qr{ 
2 '7 a2 n=0 

(M1 

where the { Cln } , { Sin } are the spherical harmonic coefficients. The second model 
due to Molodenskii, is given by �9 

1 ~ a ~gn 
,~  _ Qn 2'7 r~::2 ~(~ 

(~o , Xo) 
(U2) 

oo aZ~gn I Ar/ = 1 ~ Qn 
2 "),cos ~o n=2 a $ (<~0 , Xo) 

where Ag n is the nth spherical harmonic component of Ag. 

We will now show that ($1) ,~=~(VM1 )~==~(M1 ), where the doubleheaded 
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arrow symbol ical ly indicates equivalent processes. The equivalence (VM 1 ) 4==~ (M 1 ) 
was shown by de Witte. The equivalence ($1)4==~ (VM1) is shown in Figures 1 and 
2. (For conciseness we limit ourselves to the meridional deflection, utilizing the 
same gravity model and nadir point used by de Witte). These two curves are 
identical up to numerical approximation. 

We further demonstrate that (S2)~==~(VM2)~==~(M2). The equivalence 
($2)r (VM2) is given in Figures 3 and 4, which coincide up to the accuracy of the 
computer program. The equivalence (VM2),==~(M2) was conjectured by de Witte* 
and is demonstrated by Figure 5, which is a percentage error plot of Figure 4 and 
seen to be identical with the corresponding plot for (M2) which appears in de 
Witte's paper. 

We have thus clarified de Witte's recommendation for obtaining def lec- 
tions of the vertical by Stokes differences ; method ($2) must be used to obtain the 
truncation error behavior of Stokes formula. This author, however, recommends 
instead the process (VM2). The integration required, truncation behavior, and 
numerics are identical to a single Stokes integration rather than the two Stokes 
integrations required for ($2). The only additional work required is the differential 
filtering of the gravimetric data Ag, which only needs to be done once. 
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