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A COMBINED (SPLINE-)  INTERPOLATION AND SMOOTHING 

METHOD FOR THE DETERMINATION OF THE EXTERNAL 

GRAVITATIONAL POTENTIAL FROM HETEROGENEOUS DATA 

Abstract 

The mathematical framework for a spline method combining interpolation and 

smoothing o f  heterogeneous data is presented. The method is demonstrated for a 

spherical earth model. A spline approximation for the gravitational field is obtained by 

using a Hilbert space with topology induced by the (Laplace-) Beltrami operator o f  the 

sphere. 

1. Introduction 

In connection with the determination of the earth's gravitational potential there 
exists the problem that terrestrial methods and space techniques are providing us with 
data of very heterogeneous character and non-uniform distribution. Besides that these 
data sets are of different accuracies and partially affected with irregularities. Metiqods to 
handle these problems are well-known, for instance, least squares collocation, least 
squares adjustment, combinations and modifications of both (cf., e.g., Kramp (1969), 
Moritz (1972/73), Meissl (1976)). 

Recently Freeden (1981b) presented a new approach by interpreting such least 
squares techniques as special transcriptions of spline procedures (cf. Anselone-Laurent 
(1968}) into the geodetic nomenclature. In this concept both least squares collocation 
and adjustment can be recognized by considerations given in parallel to the classical 
(one--dimensional) results (cf., e.g., Schoenberg (1964), Greville (1969)) as particular 
kinds of interpolation and smoothing by splines respectively. Interpolating and smoothing 
spline functions are characterized by "energy" minimum properties in the framework of a 
(semi--) Hilbert space. 

The purpose of this paper is to supplement these investigations by a method 
combining spline interpolation and smoothing. As usual we introduce a reproducing 
Hilbert space ;~ of functions harmonic in the exterior of the earth. We assume that the 
gravitational potential V of the earth is an element of ~t(' The total i ty of bounded 
linear functionals defined on ~(" forms a linear space called the dual space , ' j { * .  Linear 

functionals which give mappings from ~ to the real numbers ~ are of great importance 
in geodetic approximation problems, because an observed quantity can be interpreted as 
the value of a linear functional applied on an element of the Hilbert space ;~{'. Let us 
suppose that as a result of observation or experience we have obtained the set of real 
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numbers M i V  = # i '  i = 1 . . . . .  p ;  N j V  = u j ; j  = 1 . . . . .  q ,  corresponding to a 

system of ( p + q ) -  functionals M I  . . . . .  M p ,  N1 . . . .  , Nq of ; ~ * .  Amethod  is 

presented giving as approximation to V a function S c;~{' "smooth" with respect to a 
predefined "energy" -  norm in ~ and satisfying the following properties 

(i) M iS is "near" M i V  = # i ,  i = 1 , . . . , p  

(ii) N jS  is equal to N j V  = u j ,  j = 1 , . . . , q o  

Therefore this approximation procedure can be regarded as a spline' method 
combining interpolation and smoothing to get an approximating function S to the 
gravitational potential V without large oscillations and undulations. 

As in the paper by Freeden (1981b) the treatment is again intended to be 
elementary in the sense that classical developments given in the one-dimensional spline 
theory (cf. in particular Greville (1969, Chapt. 14) ) are adapted to geodetic requirements. 
From a numerical point of view this seems to be most important, because we are now 
immediately able to extend a great number of computational procedures available and 
well-proved for one--dimensional splines to the geodetic case. 

2. Approximation Method 

The set of functions defined and harmonic in the earth's exterior E and regular 
at infinity constitutes a linear space. As is well--known, a subset of this class may become 
a separable Hilbert space ~ with reproducing kernel K ( . ,  . )  by the introduction of a 
suitable scalar product ( . , . ) .  

Let the gravitational potential V of the earth be considered as an element of 
the space ;~, 

In the Hilbert space ( : ~ , ( . , , ) )  any element F ,  especially the earth's 
gravitational potential V ,  may be represented by its expansion with respect to a complete, 

orthonormal system �9 ~ | Y n  ~ n=O,1,2... ' i .e, '  

F = ~ ( F , Y n ) Y  n (2.1) 
n=O 

in the sense of convergence in the Hilbert space topology, According to Parseval's identity 
we have 

oo 

(F~ ,F2 )  = ~ ( F , ,  Yn) (F2 , Yn) (2.2] 
n=O 

for all Fx F2 e ;~.  

Let h m 

{Yn} n=O . . . . .  m 

be the (m+ 1 ) -  dimensional linear space spanned by the functions 

h m = s p a n  { Y o , . . . , Y m } .  
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The linear space h m is a Hilbert space with scalar product ( " ' - )h in  defined by 

i n  

= 

(F1 , F2)hm n=O (F1 ' Yn) ( F 2 '  Yn) (2.3) 

and reproducing kernel 

i n  

k m ( x , y  ) = E Y ( x ) Y n ( y  ) .  
n = 0  n 

Let h a. be the orthogonal complement of h 
rn  In  

a Hilbert space with scalar product ( . , . ) h  J" defined by 
m 

o o  

(F 1 , F 2 ) h a - =  ]~ (F 1 ,Yn) (F= ,Yn)  
In n = m  + 1 

(2.4) 

in 3{'. The linear space h a- is 
m 

(2.5) 

and reproducing kernel 
oo 

k -L ( x , y )  = 2~ 
in n=m +1 

Yn (x) Yn (y)  " (2.6) 

Hence, ~ is the orthogonal direct sum of h 
m 

(F,  , F2) = (F,  , F2)hm+ (F,  , F2)h_~m 

and hmJ-- with scalar product 

(2.7) 

and reproducing kernel 

1 x ,  K ( x , y )  = k m ( x , y ) + k  m ( y ) -  (2.8) 

Our approximation method now will be formulated for the linear space ;Jr 
equipped with the semi--inner product (.,.)hm_L. defined by (2.5), i.e., for the semi-- 
inner product space ( ~  (.,.)h_~m). 

2 Theorem ] " Suppose that 6 and ~12 , . . . ,  ~p are prescribed positive weights. Let 

IVIi , . . . ,  Mp and N1 , . .  �9 Nq be systems o f  bounded linear functionals on ~ such 

that the ( ( m +  1 ) + ( p + q ) ) x ( ( m +  1)+(p+q))-matrix 

~' ~" O 

is non--singular, where the matrices a ,  13,3', ~ , ~ are given as fol lows 

a = ( M i M j  k 'L ( ' ' ' )+m ~/~i~}i j) i = l , . . . , p  (~i j  :KrOneckersVmbOI) 

j=l  , . . .  ,p 

(2.9) 
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~ = ( M i N j k m ~ ' ( ' , ' ) ) i = l  . . . . .  p 

j=l  . . . .  ,q 

=~ i N j k m ( . , . ) j i =  I ( N  "L "~ . . . . .  q 3' 

j= l  , . . .  ,q 

l l = o ~ . . . ~ m  

= ( N j Y n )  j= l  . . . . .  q 

1"1~O , . . . ,  r n  

Suppose that ,u E (~P ' �9 , = ( v ]  , . . . ,  Vq) , /2 = ( # 1  . . . . .  / .~p) ,  I , ' E ( ~  q v '  

are given vectors, then the function S of the form 

p q m 
S(x )  = • a . M . k ' a - ( . , x ) +  E b j N j k - L ( ,  x ) +  • c Yn(X) 

i = l  1 a m j = l  m ' n = O  n 
(2.10) 

with coefficients 

, . ; , = . b q  " , = (Co . . . .  , C m )  a E ~  p a' = ( a l  . . . .  ap) b E ~  q b'  ( b l , . .  , ) , c E ~  m + l  c' 

uniquely determined by the linear equations 

M i S + S J 3 i 2 a i = , u i  , i = 1 . . . . .  p (2.11) 

Nj S = vj , j = 1 , . . . ,  q (2.12) 

p q 

aiMiY n + ~ b j N j Y  n = 0 , n = o , . . . , m  (2.13) 
i=l j= l  

representsthe only element of ~rC satisfying 

P ( M i S - / ~ i ~  2 P ( M i F - # ~ 2  
+ (s, S)h  -< 

i=1 ~ 13 i ] i=l ~ [ - /  

for all F E ~ wi th  N j F  = vj ,  j = 1 . . . . .  q .  

Proo f  �9 

+ s (F, F)h# 

Inserting the representation (2.10) into the equations (2.11--13) results in a 
linear system for  the coefficients a i ,  b j ,  c n , whose matr ix is (2.9). Because themat r ix  

(2.9) is assumed non-singular, the coefficients are uniquely determined. 

Our purpose is to show that the funct ion S such determined satisfies the 
property stated in Theorem 1. 
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For any funct ion F E ~ satis~ing Nj  F = vj , j = 1 . . . . .  q ,  i t  is easy to see 

that 

(S, F)hm~ 
p q 

= Z a i M i F + ~ bj/~j . 
i=l j=t 

(2.14) 

Solving (2.11) for a i , m u l t i p l y i n g b y  M i F ,  and summing over i = 1 , . . . , p  
gives 

P 1 p (/zi?~Mi S ) 
aiMiF =- -  ~ MiF . i=l ~ i=l 

(2.15) 

Combining w i th  (2.14) yields 

8 (S F)hm& " = ~ MiF .#i ' i=1 fl--i ~ + 8 j= l  ~ bj v j .  (2.16) 

Now an elementary calculation gives 

P ( M i F - / l i ) 2  
+ 8 ( F , F ) h ~  m (2.17) 

i=1 fli 

( )2 
P M i S --/.z i (S S)hmj_ + 6  , 

i=l /3 i 

2 

(M ) P (MiF MiS)(MiS #i ) P F - M i  S - - 
i=l ~ + 2  ~ 2 i=1 ~i 

+ ~ ( F - S ,  F-S)h.L+ 2 8 (S,F-S)h_t_ 
m m 

for every F E ~tC. 

According to (2.16) i t  fol lows that 

p (M~ F-M~ s ) ( ~  s -~q)  
i=1  

+ 2 5  ( S , F - S ) h . . L  = 0 
n l  

(2.18) 

provided that Nj  F = v j ,  j = 1 . . . . .  q . 

Therefore, 

P ( M i F - # i ~ )  2 
+ ~ (F ~F)h.L 

i=l ~i m 
(2.19) 
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= ~P ( M i S - / / i ~  2 + 8 ( S  
S )h -L  

i= l  ~k "~; / m 

2 

P ( M i F - M i S )  
+ ~ , + 5 (F - S ,  F - S)h_L. 

i=l  fli m 

for all F E ~ f  w i th  N j F  = Pj ,  j = . l , . . . , q  . 

But this implies that 

2 

i=l  fli m 

2 p(Mi ) ~< X F - / l i  + ~ ( F , F ) h _ I -  
i= l  fli m 

for all F E ~{' satisfying the interpolating constraints 

NjF  = v j ,  j = 1 . . . . .  q .  

Equali ty in (2.20) holds if and only i f  

2 p (MiF  is) 
+ 5 ( F - S , F - S ) h _ L =  0 ,  

i=1 m 

i.e. " F - S E h  m with M i ( F - S )  = 0 ,  i = 1 . . . . .  p ,  and 

N j ( F - S )  = O, j = 1 . . . .  , q .  

As a funct ion of the space h m , F - S has the representation 

m 

F - S = ~  d Y  
n=0 n n 

where the coefficients d E  (~::~m+l d '  = (d  o , d in )  

satisfy the linear equation system 

(2.20) 

(2.21) 

(2.22) 

(o) (o) 
f l '  ~ ~ o = o 

~' ~-' o d o 

Since the matr ix (2.9) is invertible it is obvious that 

(2.23) 
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d o . . . .  = d m = O .  

Therefore we have F = S. The element S E ; ~  is the only function in ~:~ 
having the minimal property (2.20) and satisfying interpolating constraints. Our 
approximation method can be regarded as a compromise between interpolating and 
smoothing. These two concepts were considered separately in Freeden (1981b). 

Thevalues Pl  ,- �9 �9 /.tp, v I , . . , ,  Vq arethe observed quantities. In Theorem 

1 we have shown that there is a unique function S (5 ~ '  satisfying 

M iS be "near" M i V =  /~i '  i = l , . . , , p  

and 

Nj S be equal to Nj V = vj , j = 1 , . . . ,  q .  

The "nearness" of the values MiS  to P i '  i =  1 , . . . ,  q ,  can be controlled by 

choosing the constant ~ in a suitable way. A small value of 8 emphasizes fidelity to the 
observed data at the expense of smoothness, while a large value does the opposite. 

Taking ~ = 0 yields M iS  = /l i ,  i = l , . . . , p ,  i.e., the combined smoothing 

and interpolation procedure leads back to strict interpolation. 

For numerical purposes it is advantageous to adapt the quantities /3 ~ . . . . .  /3; 
to the standard deviations of the measured values. 

Our investigations have been formulated under pre--defined Hilbert space 
topology. As in collocational theory (cf., e.g., Eeg-Kramp (1975), SjBberg (1975) 
Tscheming (1977)), it remains a challenge in both theory and practice to select Hilbert 
spaces of simple nature and practical value. Physical interpretations of the (semi--) 
topology induced by ( . ,  .)h-L in ~{~ as mentioned in the following example might givea 

[11 

deeper insight into this problem. 

Similar methods have been proposed by Moritz (1973), Tschernmg (1974), 
T s c b e r n i n g - R a p p  (1974). 

3. A simple example for a spherical earth model 

Let E be the "outer space" of the unit sphere ~2 in Euclidean space 6:{3 . As 
usual, denote by Sn, 1 , . . . ,  S n , 2 n + t  a (maximal) system of spherical harmonics of 

order n orthonormalized in the sense of the metric of the Hilbert space L 2 (~Q) of 
square-integrable functions. We set 

H n , j ( x ) :  = I x t  - ( n + l )  S n , j ( z ) ,  x = I x l  z ,  z E ~  (3 .1)  

( n  = 0 , 1  . . . .  , j = 1 . . . . .  2 n + 1 ) .  

Let us construct a Hilbert space :~' by choosing the scalar product 

(3.2) 

where 
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( F i , F 2 ) h o  = 

and 

(F,, = 

f F I ( x ) H o ,  1 (x) do~ f F2(x)  Ho, 1 (x) do~ 

~o 2n+l  
Z [n(n+l)]2f Fl(X) H n , j ( x ) d ~  x 

n=t j=l 
~2 

x : F2 (X) Hn, j ( x )  dco. (d co " surface-element) 

~2 

Since the spherical harmonics are the eigenfunctions of the Bettrami operator 
A *  with respect to the eigenvalues Xn = n (n + 1) it follows that 

- n ( n + l )  f Fi(X) Hn, j (x) d ~  = f Fi.(x)[A*x Hn , j (x ) ]d r  

holds for i =1 , 2 .  

(3.3) 

By Green's surface identity we obtain 

f F i ( x ) [ A ;  Hn, j (x) ]d~ = f [ A : F i ( x ) ] H n , j ( x ) d c ~  
~2 ~2 

According to Parseval ' s identity in L 2 (~2) we find 

(3.4) 

(F,,F2)h#= f 
~2 

It should be noted that 

(3.5) 

( F , F ) h  ~ = f [ A * F ( x ) ]  = dw (3.6) 

~2 
may be physically interpreted (at least under some simplifying assumptions) as the 
bending energy of a thin membrane spanned wholly over the (unit) sphere, F denoting 
the deflection normal to the rest position supposed of course to be spherical. 

This model is obviously suggested by the interpretation of the integral over the 
square of the (linearized) curvature as the potential energy of a statically deflected thin 
beam. 

In [}tC the functions 

Y . . ~ .  

n,J 

H n,j for n = o , j  = 1 

n ( n + l )  
H n,j for n > o , j  = 1 . . . . .  2 n + 1  

constitute a Hilbert-basis (cf. Meissl (1976) , chapt. 11) . 
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The reproducing kernel has the representation 

K ( x , y )  = 
. 2 n + l  

E E Y (x )  Yn (Y) 
n=0 j = l  n ,j ,j 

(3.7) 

i .e. �9 

K ( x , y )  = k o ( x , y )  + k o a - ( x , y )  , 

where 

(3.8) 

ko ( x , y )  - 
4~r I x l  l y l  

(3.9) 

and 

e~ 2 n + l  
1 

k f ( x , y )  = E n = l  j = l  [ n ( n + l ) ]  2 H n ' j - X - H n ' J - Y ' ' ( " )  ( " )  (3.10) 

For elements x ,  y E , Q ,  the kernel ko -L ( •  the first iterated Green 
function of the unit sphere with respect to the Laplace-Beltrami operator A*  on I2 
and the eigenvalue X0 = 0 (cf. Freeden (1979/1980) ) ,  

Using the terminology given above our results can be summarized as follows : 
Let MI , . . . ,  Mp and N1 , . . . , N q  be systems of bounded linear functionalson 

satisfying the assumptions of Theorem 1 . 

Then there exists a unique function S E ~C which minimizes 

E .M i 
i= t  ~ii + ~ [ A x F ( X  ) d ~  

subject to the constraints 

(3.11) 

N j F  = vj , j = 1 . . . . .  q .  

0 0 
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