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Abstract~Although variability of anthropometric measures within a population is a well 
established phenomenon, most biomechanical models are based on average parameter 
values. For example, optimisation models for predicting muscle forces from net joint 
reaction moments typically use average muscle moment arms. However, understanding 
the distribution of musculosketetal morbidity within a population requires information about 
the variation of tissue loads within the population. This study investigated the use of Monte 
Carlo simulation techniques to predict the statistical distribution of deltoid and rotator cuff 
muscle forces during static arm elevation. Muscle moment arms were modelled either as 
independent random variables or jointly distributed random variables. Moment arm data 
was collected on 22 cadaver specimens. The results demonstrated the use of Monte Carlo 
techniques to describe the statistical distribution of muscle forces. Although assuming 
statistically independent moment arms did affect the statistical distribution shape, that 
assumption did not affect the median predicted forces. The standard deviations of muscle 
forces predicted using Monte Carlo techniques were similar to the standard deviation of 
muscle force predictions using the whole sample of specimens. It is concluded that Monte 
Carlo simulation techniques are a useful too/ to analyse the interindividual variability of 
rotator cuff muscle forces. 
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1 Introduction 

ESTIMATES OF mechanical loads on muscle, tendons, liga- 
ments, cartilage and bone are necessary for understanding 
the aetiology of musculoskeletal diseases and developing 
improved medical devices and treatments for upper extremity 
disorders. Many models have been developed for predicting 
internal joint loads from external forces acting on the body. 
These models are based on simple mechanical analyses of the 
body segments of interest, including the external forces acting 
on the body (contact forces and gravitational forces) and 
internal forces generated by active elements (muscles) and 
sometimes passive ones (ligaments and cartilage contact). 
Critical inputs to the models include parameters describing 
muscle physiology (physiological cross-sectional area) and 
muscutoskeletal geometry (moment arms). Detailed models 
of upper extremity joints are typically statically indeterminate, 
and numerical optimisatioa is a popular method of selecting a 
single set o f  muscle forces for a given external loading 
condition (HOGFORS et  al., 1995; VAN DF-R HELM, 1994; AN 
et  al., 1984a, 1989; BROOK et  al., 1995; COLLINS, 1995; 
CHOLEWlCYd et  aL, 1995; HERZOG, 1996). It is generally 
said that these models solve the 'general distribution problem' 
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of partitioning net joint moment between individual muscles. 
These models use single estimates of parameters--qypically 
the sample mean----in their computations. 

However, there is great variability in anthropometric mea- 
sures such as height and weight within the general population 
(SANDERS and McCORMICK, 1987). Geometric and physiolo- 
gical parameters used in muscle force prediction models also 
vary widely within the population. For example, BASSE'rI" et 
a l (I 990) reported that the standard deviation of supraspinatus 
muscle moment arm measurements was 32°,4 of the mean. 
Since moment ann magnitudes are critical to muscle force 
predictions, variability in moment arms leads to variability in 
muscle force estimates. 

Knowing the distribution of muscle forces within a popula- 
tion is critical in understanding the range of biomechanical 
and biological responses to external loading of the body. 
Orthopaedic surgeons, for example, want to know why some 
total shoulder arthroplasties fail sooner in some people than in 
others. In terms of prevention, it is unclear why some people 
develop rotator cuff tendinitis while performing a physically 
demanding job and other people, who carry out exactly the 
same job, do not. It is unlikely that answers to these questions 
will come from analyses of avenge model parameter data: 
stochastic biomechanieal models will be needed to investigate 
the well known variability in musculoskeletal morbidity 
within a population. 

One approach to analysing the effect of variability on model 
predictions is to solve the biomechanical model for an entire 
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sample of  model parameters. This can be done when model 
parameters have been measured on a sample of  cadaver 
specimens or live subjects and this data available to the 
modeller. However, often only summary statistics (typically, 
mean and stand',mt deviation) are available when formulating 
a biomechanical model. Therefore, there is a need for a 
method to simulate the effect of  population variability on 
model results when only descriptive statistics of  model param- 
eters are available in the literature. Monte Carlo methods 
(RUBENSTEIN, 1981) have been used to simulate stochastic 
processes in many fields, and would seem to be a logical 
method for analysing biomechanical models having random 
parameters. However, Monte Carlo techniques have been 
limited to modelling electrophysiological signals (MIRKA 
and M/~RgAS, 1993) in force prediction models. 

The purpose of  this study was to evaluate the use o f  Monte 
Carlo methods to model muscle moment arms as random 
variables in a planar analysis of  the glenohumeral joint. The 
glenohumeral joint was selected because of  the significant 
morbidity associated with rotator cuffpathology. A secondary 
objective was to compare the effect of modelling the muscle 
moment arms as multivariate random variables to that of  
modelling each as an independent univariate normal random 
variable. 

2 Methods 

2. l Mechanical model 

A static planar model of  the shoulder was selected as the 
basis for analysis. Fig. I shows a free body diagram of  the 
planar analysis of  an arm elevated 60 ° in the plane of  the 
scapula from the neutral hanging position. Gravity acts on the 
mass of  the arm to generate a clockwise (adduction) moment. 
The arm is elevated by six muscles (anterior deltoid, middle 
deltoid, posterior deltoid, infraspinatus, subscapularis, and 
supraspinatus) in the model. The mechanical functions o f  
these muscles are described by their elevation moment arms. 

Let R be a six-dimensional vector containing the elevation 
moment arms of  the six muscles, R = ( R x . . . R t ) ,  and F be a 
corresponding six-dimensional vector of  muscle force magni- 
tudes, F = (F~. . .  Ft), Note that the actual force vector acting 
along the muscle's line o f  action isle, so that F f =  Ifl{. Then 

%../ 

Fig. 1 Free body diagram of  the arm in an elevated posture. 0 is 
the angle from vertical, rna~ is the mass of  the arm, i¢~ is the 
distance from the glenohumeraljoint center to the center of  
mass o f  the arm, g is the acceleration due to gravity 
(9.8 mace-z), f~ and fy are the intersegmental reaction 

force~, M is the net intersegmentat moment, and fl is the 
force vector o f  muscle i (note Fi = ~D. 

Med'~al & Biological Engineering & Computing 

the moment equilibrium condition required to maintain 
moment equilibrium is 

marmglcmsin(® ) + ~_Ffi~ = 0 (1) 
i=1 

where g is the acceleration of  gravity, m~,, is the mass of  
the arm, l,~,is the distance from the glenohumeral joint to 
the centre of  mass of  the arm, and O is the elevation angle 
(from the vertical). Note that all muscle magnitudes must be 
non-negative, so the following inequalities are added to the 
model: 

F~ >__ 0 (2) 

The mechanical system is statically indeterminate ifn > 1, e.g. 
there are an infinite number of muscle force combinations that 
satisfy eqns. 1 and 2 if there is more than one muscle. A 
standard method for rationally selecting one set of  muscle 
forces is to assume that the central nervous system activates 
muscles to optimise some well-defined criterion function, 
~(F).  A commonly used criterion for the shoulder (KARLSSON 
and PETERSON, 1992; VAN DER HELM, 1994) is the sum of 
squared muscles stresses, e.g. 

minimise ~(F) = (3) 

where ai is the physiological cross-sectional area of  the ith 
muscle. Then numerical optimisation routines can be used to 
solve the mathematical programming problem of choosing 
muscle force magnitudes to minimise eqn. 3 subject to the 
constraints of  eqns. 1 and 2. 

The anthropometry used in this study was that of  a 63 kg 
person of  167 cm stature. Body segment masses and locations 
were scaled from total body mass and stature (CHAFFIN 
and ANDERSSON, 1984) to determine that the total shoulder 
adduction moment generated by the mass of  the arm, 
m,,,~glc,,sin(®), was 8.1 Nm at an arm elevation angle of  60 °. 

The results presented here are based on moment arm data 
collected from two studies that used the same protocol for 
measuring elevation moment arms of  shoulder muscles 
(KUECHLE, 1994; LtU et al., 1997). Combined, moment arms 
from 22 specimens were measured using the principle of  
virtual work (AN et at., 1984b), where the tendon excursion- 
joint angle relationship was differentiated to obtain the 
moment arm about the instantaneous centre of  rotation 
throughout the range of  motion. Moment arms were selected 
for a glenohumeral angle of  40 °, which corresponds to an arm 
elevation angle of  60 ° (MORREY and AN, 1990). Physiological 
cross-sectional areas of  the subscapularis, infraspinatus, 
supraspinatus, anterior deltoid, middle deltoid, and posterior 
deltoid muscles were 13.51, 9.51, 5.21, 7.34, 9.63, and 
8.92 em 2, respectively (VEEGER e t  al., 1991; KARLSSON and 
PETER.SON, 1992). Table 1 summarises the moment arm values 
used. Table 2 gives the covariance matrix o f  the moment arms. 

2.2 Monte Carlo simulation 

In reality, muscle moment arms are typically measured on a 
collection of  cadaveric specimens or medical images (CT and 
MILI scans), and the problem to be addressed in this paper is 
how to model the effect of  the natural variability of  these 
parameters on muscle force predictions. If  there are measure- 
merits o f  moment arms on n human subjects are available, 
denote the vector of  moment arms for the kth specimen as 
R e = (Rf.../~6)- Likewise, denote the corresponding vector of  
muscle force magnitudes as F k = (F~. . .  F~). Consider four 
methods of  computing muscle forces from the collection of  
moment arms R l . . . / P  (for this data set, n = 22): 
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Table 1 Means and standard deviations of  muscte moment arms 

Muscle Mean, em Standard deviation, cm 

Subscapularis - 0.32 1.25 
Infraspinatus - 0.58 0.78 
Supraspinatus - 2.07 1.07 
Ant. deltoid - 1.66 0.77 
Mid. deltoid -2.46 0.56 
Post. deltoid 0.97 1.38 

Negative values represent abduction function; positive represent 
adduction. These values were computed from 22 shoulders harvested 
from cadavers obtained through anatomic donation programs in the 
upper midwest of the United States (mean age at death was 63, range 
33-89) 

Method 1: The 'average moment arm' method consists of  two 
steps: (a) compute a vector o f  average moment arms from the 
n specimens, R = (ZRt ) /n  and (b) solve the muscle force 
prediction model of  minimising eqns. 3 subject to eqns. 1 and 
2 using R. This is the traditional method of  solving the muscle 
force prediction problem using optimisation techniques. 

Method 2: The 'whole sample' method consists of  two steps: 
(a) solve the muscle force prediction model of  minimising 
eqn. 3 subject to eqns. 1 and 2 for each R 1 . . .  R" separately 
and (b) average the resulting force vectors/~ = (ZFk)/n .  

Often complete data on a whole sample is unavailable to 
modellers; published reports o f  muscle moment arms provide 
means and standard deviations rather than tables of  measure- 
ments on each specimen. Therefore, a method for estimating 
muscle force distributions using only summary information 
would be more practical than method 2. 

Method 3: The 'univariate Monte Carlo' method has five 
steps: (a) compute the mean, R = (ZRk)/n, and standard 
deviation, S = Z(R ~ - R)Z/(n - 1), of  muscle moment arms; 
(b) model the moment arm of  each of  the six muscles as 
a normally distributed random variable, e.g. U~ ~ N(R i, Si) 
(c) sample m samples from the normal distributions using a 
random number generator (JO~SON, 1987) to obtain 
(U~ . . .  U~) . . .  (U~' . . .  U~'); (d) solve the muscle force predic- 
tion model of  minirnising eqn. 3 subject to 1 and 2 for each 
vector (U~. . .  U~) by substituting for R; and (e) compute the 
mean and statistical distribution of  the resulting muscle force 
predictions, F ~ . . .  F ' .  

Method 3 assumes that moment arms of  the muscles are 
uncorrelated. However, it is intuitively reasonable that speci- 
mens having a larger moment arm of one muscle may tend to 
have larger moment arms for other muscles. Thus, associations 
between model parameters should be included in the model. 

Method 4: The 'multivariate Monte Carlo' method has five 
steps: (a) compute the means and covariance matrix o f  muscle 
moment arms; (b) jointly model the moment arms of  the six- 
muscles as a six dimensional random vector, (U~;... U~), that 
has a multivariate normal distribution described by the mean 
and covariance matrix determined in the first step; (c) sample 
m samples from the multivariate normal distribution using a 

random number generator (JohNsoN, 1987) to obtain 
(U~ . . .  U~). . .  (U~' . . .  Ut=); (d) solve the muscle force predic- 
tion model of minimising eqn. 3 subject to eqns. I and 2 for 
each (U~. . .  U~) by substituting for R; and (e) compute the 
mean and statistical distribution o f  the resulting muscle force 
predictions, F l . . .  F" .  

The four solution methods were implemented in FORTRAN 
using the Numerical Algorithms Group software* for generat- 
ing the random variables and solving the muscle force pre- 
diction model. Procedures E04NAF, G05DDF, and GOSEZF 
were used to solve the muscle force prediction optimisation 
model, sample from univariate normal distributions for 
Method 3, and sample from multivariate normal distributions 
for Method 4, respectively. Computations were performed on 
a VAX 8800 computer. Simulation of  methods 3 and 4 used 
I000 random vectors of  muscle moment arms. 

2.3 Statistical analysis 

Wilcoxon signed rank non-parametric tests were used to 
determine whether the median predicted forces differed 
between models 2 to 4, because the predicted forces were 
not normally distributed. Chi-square goodness-of-fit tests were 
used to test the hypothesis that the cumulative distributions of  
the predictions from methods 2-4 were different. The number 
of  degrees of  freedom were reduced to account for tests of  the 
means and variances. The muscle forces predicted by method I 
were compared to the 5th and 95th percentiles of  the distribu- 
tions predicted by methods 2 to 4. Statistical analyses were 
performed using SASt. 

3 Results 

The primary advantage of  methods 2-4 over the traditional 
method 1 is that they provide information about the statistical 
distribution of  predicted muscle tensions. Fig. 2 shows the 
relative cumulative frequency distributions for methods 2-4  
(the ordinate of  the cumulative frequency distribution is the 
fraction of predicted forces that are less than or equal to each 
value on the abscissa). The infraspinatus, subscapularis, and 
posterior deltoid muscles all had a substantial cumulative 
relative frequency at 0 N of  force, which indicates that those 
muscles were predicted to be inactive in many of  the samples. 
All three of  these muscles were anterior or posterior to the 
glenohumeral joint, and their moment arms were distributed 
over both abduction and adduction functions. The predictions 
o f  no activity in these muscles corresponded to samples in 
which the muscles had adduction moment arms, e.g. acting as 
antagonists to arm elevation. 

The Chi-squared goodness-of-fit, tests indicated that the 
statistical distributions of forces determined by methods 3 and 
4 were different at thep < 0.05 level o f  significance for all six 
muscles. Although the distributions differed between methods, 

*Nag Inc., Downers Grove, Illinois, USA 
tSAS Institute Inc.. Can/, North Carolina, USA 

Table 2 Covariance matrix o f  muscle moment arms used in method 4. The covariance matrix describes the associations of  muscle moment arm 
magnitudes between muscles, and is necessary for specif~'ng a multivariate normal distribulion 

Subscapularis Infraspinatus Supraspinatus Ant. deltoid Mid. deltoid Post. deltoid 

Subscapularis 1.55 - 0.03 0.24 0.04 0.09 - 0.64 
Infraspinatus - 0.03 0.62 0.53 - 0.19 0.09 - 0.25 
Supraspinatus 0.24 0.53 1.14 - 0.55 0.21 - 0.98 
Ant. deltoid 0.04 - 0. l 9 - 0.55 0.59 - 0.21 0.57 
Mid. deltoid 0.09 0.08 0.21 -0.21 0.32 -0.12 
Post. deltoid - 0.64 - 0.25 - 0.98 0.57 - 0.12 192 
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Fig. 2 Cumulative relative frequency distributions of  the predicted 
muscle forces for the six muscles in the model: (a) infra- 
spinatus. (b) supraspinatus, (c) subscapularis, (d) anterior 
deltoid, (e) middle deltoid, and (f)  posterior deltoid. 

the median predicted muscle forces for each muscle using 
methods 3 through 4 were not statistically different at the 
p < 0.05 level of significance. The muscle forces predicted by 
method 1 were within the middle 95% of the sample distribu- 
tions of methods 2 to 4. Moreover, the standard deviations of 
methods 2--4 predictions were also similar (Fig. 3 gives the 
means and standard deviations of the predicted forces). The 
coefficients of variation (standard deviation represented as a 
percentage of the mean) of the supraspinatus were 55, 59, and 
52% for methods 2--4, respectively. The largest coefficients of 

= 

) 

m method I 
mmm method II 

[ ]  method IV 

Fig, 3 Mean predicted muscle forces using methods 1 through 4. 
Bars represent one standard deviation. Method 1 predicts 
zero posterior deltoid muscle force because the average 
moment arm for  that muscle is positive, which represents an 
adduction fimction. 
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variation were for the posterior deltoid: 233, 238, and 234% 
for methods 3--4, respectively. Note that method 1 predicted 
zero posterior deltoid force. 

4 Discussion 

This study has demonstrated the utility of Monte Carlo 
simulation techniques in estimating the variability of biome- 
chanical model outputs from variability in model input para- 
meters. The statistical distributions of Monte Carlo predictions 
appeared similar to the statistical distribution of forces pre- 
dicted by analysing the whole sample of anatomic specimens, 
although there was an insufficient number of specimens to test 
for differences in distributions. The simulations also illustrated 
that correlations between moment arms of different muscles 
did affect the statistical distributions of muscle force predic- 
tions. However, median predicted forces were not found to be 
affected. Modelling muscle moment arms as tmivariate normal 
distributions appeared to be sufficient for estimating the 
median and standard deviation of muscle forces, but the 
covariance of model parameters was needed for a full descrip- 
tion of the statistical distribution of predicted forces. The 
results of these simulations are important, because they 
demonstrate that Monte Carlo techniques can be used to 
generate the statistical distributions of muscle forces without 
having to store and analyse the data of all anatomic specimens 
separately. 

This initial effort to characterise variability in biomechani- 
cal model predictions suffer from four limitations common to 
analyses of the shoulder: it is only a static planar model of a 
three-dimensional system; the optimisation of model eqns. I-3 
assumes a specific central nervous system strategy of muscle 
activation; each muscle (or portion of the deltoid muscle) is 
modelled as a single force generating element with a single 
moment arm; and the sample of specimens used to measure 
moment arms may not have reflected a clinically relevant 
population. However, Monte Carlo techniques do not neces- 
sarily require any of these assumptions: the technique could be 
used to analyse the statistical distribution of forces from more 
sophisticated mechanical models such as those ofNIEMINEN et 
al. (1995), VAN DER HELM (1994), and HOGFORS et el. (1995). 
Likewise, the technique could be used to model the variation 
of moment arms in electromyograph (EMG)-driven models 
such as that of POPPEN and WALKER (1978). A simple model 
was selected for analysis to emphasise the stochastic aspects 
of the model. 

Assumptions were also made about the stochastic properties 
of the model parameters. Specifically, it was assumed that 
only the muscle moment arms were random variables. In fact, 
there was variability in arm mass and arm length, which also 
affected net joint moment. There may be correlations between 
gross arm anthropometry and internal muscle moment arms. 
Moment arms and physiological cross-sectional areas may 
also be correlated. These correlations may be very important, 
but there is no published data available on correlation between 
shoulder muscle moment arms and other anatomic parameters. 

Muscle moment arms were modelled using tmivariate 
(method 3) and multivariate (method 4) normal distributions. 
The small number of real samples of real moment arm data 
made it difficult to rigorously determine which distribution to 
use. Methods of distribution determination such as the John- 
son's Translation System (JOHNSON, 1987) could be used if 
more data were available. The normal distribution assumption 
is most problematic for the supraspinatus and middle deltoid, 
because the normal distribution has a tail that stretches into 
negative values (e.g. adduction function). However, modelling 
the subscaptdaris, infraspinatus and posterior deltoid as a 
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normally distributed random variable works well, because the 
moment arm measurements on eadaveric specimens did pro- 
duce both abduction and adduction values for these muscles. 
More research is needed to determine which probabilistic 
distributions are most appropriate Ibr each muscle, and such 
investigations will require many more specimen measure- 
ments. 

More research is needed on the application of Monte Carlo 
techniques to three-dimensional models, developing a large 
database o f  representative moment arm measurements, analys- 
hag the eovariance structure of  biomechanical parameters, and 
determining what analytical probability distributions best 
represent model parameters. 

The predicted muscle forces were larger than those pre- 
dicted by the three-dimensional finite element model of  VAN 
DER HELM (1994). This difference may be due to different 
muscle moment arms used in the two models and different 
numbers of  muscles in the models. In a paper describing 
model parameters, VAN DER HELM et al. (1992) question 
whether their finite element model should be based on average 
model parameters (such as method 1 here) or on every 
individual specimen's data (such as method 2). Data for a 
single 'median' cadaver is presented in VAN DER HELM et al. 
(t992), and appears to be the data used for generating the 
predictions in VAN DER HELM (1994). Thus, no comparisons of  
variability can be made between that study and results from 
this study. 

Comparison of  the predicted results with published electro- 
myographic (EMG) studies shows patterns similar to these 
results. MCCANN et al. (1993) reported coefficients of  varia- 
bility o f  normalised EMG recordings during abduction for the 
supraspinatus and posterior deltoid to be 83 and 146%, 
respectively. Although some of  the variability in the EMG 
data is due to noise in the signal, some is due to inter-subject 
differences. Note that the reported standard deviation was 
greater than the mean EMG for the posterior deltoid, which is 
consistent with the predictions of  methods 2-4. However, 
method 1 predicted zero posterior deltoid force, which is 
inconsistent with EMG measurements (MCCANN et al. 1993; 
KRONBERG et al., 1990). 

In conclusion, this study illustrates a method for incorpor- 
ating population variability into biomechanical modelling. The 
effect o f  correlation of  model parameters with results indicates 
a need for experimental biomeehanists to report data on the 
covariance o f  measured quantities in addition to the traditional 
mean and standard deviations. The availability of such data is 
necessary to model the population variability of  tissue load- 
ings derived from biomechanical models. 
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