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Abstract--Multivariate spectral estimation based on parametric modelling has been 
applied to epileptic surface EEG in order to detect EEG changes that occur prior to the 
clinical outbreak of the seizure. A better time~frequency resolution has been achieved 
using residual energy ratios (Dickinson's method). Prediction of oncoming seizures was 
based on detection of increased preictal synchronisation by calculation of coherence and 
pole trajectories. The method has been tested on simulated EEG data and on real EEG 
data from patients with primary generalised epilepsy. Prediction times of 1-6 s have been 
found in several seizures from five patients. 
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1 Introduction 

MOST PATIENTS with epilepsy, whether of focal origin or 
generalised, benefit from medical treatment and can, with 
the help of proper medication, lead a normal life. There is, 
however, a smaller subgroup of these patients where seizure 
frequency and severity cannot be properly controlled by 
medication and/or where the combinations and dosage of 
the various anti-epileptic drugs cause intolerable side 
effects. If  the presence of a clear ictal focus cannot be 
confirmed and surgical treatment is thus excluded, these 
patients might be candidates for an alternative treatment, 
such as biofeedback (KAPLAN, 1975; KUHLMAN and ALLI- 
SON, 1977) or electrical stimulation (IsHIJIMA et  al., 1975; 
VELASCO et al., 1987; PENRY and DEAN, 1990; GEORGE and 
MICHAEL, 1991) in order to reduce the frequency of the 
seizures. 

Stimulation of intracerebral structures (VELASCO et al., 
1987) as a form of anti-epileptic treatment has been carried 
out in a continuous mode, and the average reduction in 
seizure frequency assessed statistically. Similarly, the mode 
of stimulation used by PENRY and DEAN (1990) and 
GEORGE and MICHAEL (1991) is continuous, with several 
seconds of stimulation "of the vagal nerve every few 
minutes. However, a better mode of operation would be 
the detection of the EEG changes that occur pr ior  to the 
clinical outbreak of the seizure, and prophylactic stimulation 
time-locked to these EEG changes. Hence, prediction of the 
occurrence of seizures from the preictal scalp EEG should 
be the first step in seizure reduction carried out either by 
conditioning (biofeedback) or by electrical stimulation. 
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Single channel scalp EEG processing, using AR model- 
ling, in order to predict the occurrence of convulsive 
episodes has been carried out in a small number of patients 
with absences (ROGOWSKI et al., 1981). Prediction time in 
the range of 0.6-6s was confirmed in 10 out of 12 patients. 
In five patients with absence seizures, SIEGEL et al. (1982) 
compared the power spectra (using the Fast Fourier trans- 
form (FFT)) of 20 s preictal LEG epochs with those of LEG 
epochs 1 min remote from the spike-wave bursts, and found 
correct classification in 64% of the cases. 

One of the major traits of epileptic LEG is its tendency 
to have 'over synchronisation' of the signal, from 
various channels. GATH et al. (1992) found that synchronisation 
between depth EEG signals, recorded from the amygdala and 
hippocampus on both sides, increased during the seizure and 
reached a peak value greater than 0.9. Thus, multivariate (multi- 
channel) processing of the preictal LEG, instead of processing of 
a single channel, might increase the chances for prediction of an 
oncoming seizure. 

Spectral analysis of the EEG, whether univariate or 
multivariate, has been most often carried out using the 
FFT (BRAZIER, 1973; SIEGEL et al., 1982; GOTMAN, 1983, 
1987). However, calculation of power spectra using the FFT 
requires averaging of several signal segments, a process 
which leads to smearing of the changes that occur prior to, 
and at the onset of the epileptic seizure (GATH et al., 1992). 
A better time/frequency resolution of the events around the 
onset of the electrical seizure could be obtained by multi- 
variate AR (autoregressive) modelling of the EEG (GERSCH, 
1987; GATH et al., 1992). Thus, the aim of the present 
study is to investigate a method for high time/frequency 
resolution of seizure LEG, based on multichannel para- 
metric modelling of the signal, in order to devise means 
for the prediction of seizure episodes. 

The second section of the paper outlines the method of 
high resolution multivariate parametric modelling of the 
epileptic LEG, and the method of prediction of oncoming 
seizures using calculations of pole trajectories and coher- 
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ence. Results of  the processing of multichannel EEG from 
several patients with absence seizures (primary generalised) 
are given in section 3, and are discussed in section 4. 

2 Material and methods 

2.1 Patient material 

Five patients 8-38 years old with absence seizures partici- 
pated in the study. These patients were selected from a large 
group of epileptic patients screened by long-time scalp and 
depth EEG monitoring for surgical treatment, and in whom no 
signs of  focal origin could be confirmed. Fourteen channels of  
scalp EEG (26 in patient E) were recorded by radio telemetry 
using silver-silver chloride cup electrodes. Eight sections of  
seizure EEG were identified in the five patients, four seizures 
in patient A and one seizure in each of the other four patients. 
Each section, 30 s long and of which 20 s consisted of the 
preictal period was sampled at 128 Hz for further processing. 
In patient E the EEG section was 475 s long of which 326 s 
were preictal. 

2.2 Multichannel parametric modelling of  the EEG signal 

A method of multichannel autoregressive modelling was 
applied for estimation of the EEG power spectra. The non- 
stationary seizure EEG signal can be divided into quasi- 
stationary signal segments 1-2 s long. Computation of power 
spectra through multichannel autoregressive modelling was 
based on using a sliding window of 1.6 s length with about 
90% overlapping. 

Let y(l) be the vector representing the observed m-chan- 
nelled process and denote the forward prediction of y(/) by 

k 

= - A f ) y ( l - j )  (1) 
j = I  

where A f j  are the forward autoregressive coefficient matrices 
of  the kth order model. The prediction error is given by 

e(l) = e f  (l) = y(l)  - ~ f  (l) (2) 

This equation could be written in the frequency domain as 

~r + A r(z)  = E(z) (3) 

where Y(z) and E(z) are the z transform of y(l) and e(1) 
respectively. The expression (I + Y'];=l Af jz -J )  -~ is the trans- 
fer function H(z) between the innovation 'and y(1). 

Similarly to the forward prediction (eqn. 1), the backward 
prediction is given by: 

k 

~ ( l  - k - 1) = - E A ~ , j y ( l  + j )  (4) 
j = l  

b where A ~ ~ are the backward AR coefficient matrices of  the kth 
order model. The backward prediction error is given by 

eb(l) =y ( l  - k - 1) - - )b ( l  -- k - 1) (5) 

The commonly used covariance method, applying the vector- 
ial version of  the Levinson algorithm to solve the Yule-  
Walker equations (WHITTLE, 1963; WIGGINS and ROBINSON, 
1965) is based on the the forward and backward prediction. 
However, owing to the limitation of short signal segments and 
the need for a high resolution estimator, the performance of 
these algorithms is not good enough (PHAM and TONG, 1990). 
The Dickinson method (DICKINSON, 1978, 1979) based on 
residual energy ratios was shown to provide better results 
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when used for the spectral estimation of epileptic EEG (GATH 
et al., 1992). The method estimates directly the partial 
correlation matrices and then uses the vectorial version of 
the Levinson algorithm to compute the autoregressive para- 
meters. 

The normalised partial correlation matrix of  order k is given 
by (DrCKINSON, 1979): 

- 1 / 2  f b T v - l ~ 2  T P~ = Uk-I E[e , - t ( l )ek- l ( l )  ]( k-1 ) (6) 

where U~ I/2 and V~ 1/2 are the inverted Cholesky factors of  
the covariance matrices U~ and V, of  e{(l) and ~( l )  , 
respectively. 

The predictor coefficients can be derived from eqn. 6 given 
the recursive relations detailed in MORF et al. (1978). 

Let Lp be the Cholesky factor of  the mp by mp matrix Yp Y[, 
where 

I 
y(p)  . . .  y ( n -  1)]  

Yp = ' (7) 

[_y('l) . . .  y ( n - p )  

p is the model order and n is the length of the time series. 
The least square normal equations can be written as 

(ql . . . . .  qp)Lrp = - ( y ( p  + 1) . . . . .  y(n))yrp (8) 

where qk = Ap,kLp. 
It can be shown (DICKINSON, 1979) that the estimators for 

U k and Pk can be written as 

(Jk = (Jk-i _ q k q r  k = 1 . . . . .  p (9) 

with 

s = s Y(I)y(I) r (I0) 
l=p+ I 

and 

~ = ~j~.~(2q~ k = 1 . . . . .  p (11) 

From the above estimated partial correlation matrices, the 
forward and backward autoregressive coefficient matrices can 
be computed using the vectorial version of the Levinson 
algorithm. Estimating the forward autoregressive coefficient 

Y matrix and the covariance matrix of  eh (l) provides the 
estimation of the power spectral density: 

~S~(f) = f-I(f)(J[-II4 ( f )  (12) 

where H H ( f )  is the Hermitian of H ( f ) .  

2.3 Prediction of  epileptic seizures 

The EEG signal is considered piecewise stationary and the 
time varying character of  the model emulates changes occur- 
ring in the signal generating system, the brain. The AR 
parameters are estimated using a short sliding window with 
high overlapping. The high overlapping results in a gradual 
change of  the estimated parameters over two consecutive time 
slots, and thus, enables better tracking of the changes that 
occur in the model parameters. 

Two methods were tested in order to predict an oncoming 
epileptic seizure: 

(1) The movement of  the poles of  the transfer function H(z), 
eqn. 3, towards the unit circle, indicating a tendency 
towards instability. 

(2) Tracking of  changes in the coherence function. A sharp 
rise in coherence indicates increased synchronisation. 
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Prediction using pole trajectories. The transfer function 
H(z) is given by ( I +  ~-~.~p=LA./..p,j_._j~-=, . The poles of  this 
transfer function are determined by the roots of  the determi- 
nant: 

( '  / det I + ~ A f j z  -j (13) 
j=l / 

The autoregressive coefficient matrices are estimated using the 
Dickinson method, and provide us with a set of  ( m .  p) poles 
at each iteration. After moving the time window another set of  
poles is recalculated. Owing to the gradual change that occurs 
in the location of  the poles at each time step, it is possible to 
relate each pole from a current set of poles to an adjacent pole 
in the consecutive set. In this way a plot of  the movement of  
the poles of  the transfer function in the z plane as a function of  
time is achieved. 

The criterion for matching two poles was as follows 

Pj )) (14) (~Dli, pj^/+l) = arg (min. minj d(pl ' t+l 

where 

PI 1 ~ < i ~ < ( m , p )  is a group of  ( m , p )  poles 
calculated for the window at time 1; 

pj(+l l <~j <~ (re .p)  is a group of ( m , p )  poles 
calculated for the window at time 1+1; 

d(pl ' I+l P~. ) is the distance between the pole PI of  the first 
set and the pole p~+l of  the next set, and arg 
gives the indices of  the two closest poles from 
the two sets of  poles (current and previous 
windows). 

When a match between two poles is obtained, the criterion 
is retested on two other poles from the remaining poles, and so 
on, until complete matching between two consecutive sets of 
poles is achieved, and a complete pole trajectory is obtained. 

The Dickinson algorithm provides a stable filter. Movement 
of  the poles towards the unit circle, in particular at an angle 
corresponding to the seizure frequency, indicates a tendency 
towards instability. The pole pair whose trajectory exhibits the 
most significant shift towards the unit circle (and usually at an 
angle equivalent to the seizure frequency) is termed 'the 
dominant pole'. 

Prediction using the coherence fimction. Synchronised 
activity between channels is typical for epileptic seizures. 
The coherence function provides us with a measure of  the 
correlation between two channels in the frequency domain; a 
sharp rise in coherence indicates increased synchronisation. 
The squared magnitude coherence function is given by 

$22(f) (15) 
y2(f) _ Sll( f )S22(f)  

where S l l ( f  ) and $22(f ) are the respective autospectra, and 
$12(f) the cross-spectrum. 

For seizure prediction the following criterion was tested: A6,1[1, 
A sharp rise in coherence values after a period of  low values A6,1[1, 
of  coherencies might indicate an oncoming epileptic A6,112, 
seizure. A6,1 [2, 

A6,2[1, 
During normal EEG activity the correlation between distant A6,2[1, 
channels is less pronounced than between close channels, A6.212, 
while during a typical absence seizure all channels are fully A6,212, 
synchronised. Thus, testing pairs of  distant channels is more A6, 3[1' 
meaningful for the detection of  increasing coherence. In the A6,3[1' 
scalar case, the use of  AR modelling for the estimation of  the A6,312' 
coherence function has been shown (ROGOWSKI et al., 1981; A6'312' 
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GATH et al., 1992) to give better results than when using FFT 
methods. The number of  degrees of freedom of the AR model 
is given by NIP where N is the number of signal samples and 
P is the model order. The asymptotic variance of the AR 
spectral estimate is similar to that of the smoothed period- 
ogram with the same number of  degrees of  freedom (BERK, 
1974). 

3 Results 

3.1 Simulations 

A simulation experiment demonstrating the performance of  
the Dickinson estimator was held on a two channel autore- 
gressive signal, produced artificially. A model order of  6 was 
selected. The six autoregressive coefficient matrices were 
chosen to produce filter poles at typical locations of  the 
epileptic EEG signal. Two poles were located close to the 
unit circle at an angle corresponding to a typical seizure 
frequency. The estimator's bias and variance were estimated 
by Monte Carlo simulations using short signal segments. A 
dual channel Gaussian white noise (uncorrelated) with zero 
mean and variance-= 1 was used as input. The number of  
samples in each segment was N-----200. The selected coeffi- 
cient matrices were: 

A6,1 A6,2 

[ - 1 . 6 0  - 0 . 6 7 1 I  0.49 - 0 . 6 4 "  

-0 .67  -0.83_1 [_-0.64 1.23 

A6,3 

[1.27 1161 
.16 -0.07_1 

A6.4 A6,5 A6.6 

E03  0,7;[044 0,, 0031 
-0 .87  0.65 -0 .11 -0 .30  -0 .03 0.37_[ 

The corresponding filter poles were: 0.89 4- 0.31i, 
0.82 + 0.27i, 0.54 + 0.66i, -0 .10  + 0.87i, -0.71 + 0.10i, 
-0 .21 + 0.80i. 

Table 1 shows the estimated normalised bias error and 
coefficient of variation of  the first three coefficient matrices 
elements, using a Monte Carlo method on 1000 independent 
segments of  autoregressive signal. The coefficient of  variation 
of  elements greater than one was bounded by a value of  the 
order of  magnitude 0.1, and their maximum normalised bias 
error was approximately 1.5%. Fig. 1 shows the normalised 
bias error and coefficient of  variation of  the two largest 
elements A6A(1, 1) = --1.60, A6.3(1, 1) = 1.27, calculated for 
increasing number of  averages. 

Table 1. Estimated normalised bias error and coefficient of variation 
for the first three coefficient matrices 

Normalized bias error Coef. of variation 

1] = - 1.60 0.0092 0.04 
2] = -0.67 0.0074 0,10 
1] = -0.67 -0.0057 0.10 
2] = -0.83 0.0134 0.08 
1] = 0.49 0.0433 0.28 
2] = -0.64 -0.0166 0.15 
1] = -0.64 0.0043 0.22 
2] = 1.23 0.0020 0.08 
1] -- 1.27 -0.0004 0.10 
2] ----- 1.16 0.0082 0.10 
1] ---- 1.16 0.0152 0.11 
2] = 0.07 0.1754 1.69 
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Estimation of  bias error and coefficient of  variation for the two largest elements of  the coefficient matrices, A6, t [1 ,  1] = - 1 . 6 0  (a, b) 
and A6,3 [1 ,  1] = 1 . 2 7  (c, d). Simulation experiment, for further details see text. L-number o f  averages 

3.2 Epileptic EEG 

The EEG signals of  patients A,C,D and E were recorded 
using a monopolar electrode configuration, and the EEG signal 
of  patient B was recorded using a bipolar configuration. In all 
cases except for patient B two channels relatively distant from 
each other (F3 and 02 or F4 and O1) were selected for 
calculation of  the coherence and pole trajectories. The rela- 
tively low correlation between two distant channels during 
inter-ictal periods enables better detection of increasing syn- 
chronisation, which characterizes an oncoming seizure. In 
Patient B the combination P4-O2 and O2-T6 (bipolar) was 
examined. Although both derivations contain the electrode 02 
this had little bearing on the significance of the coherence 
findings. The reason is that prediction was based on a preictal 
increase in coherence value compared to its background level. 

A highpass filter with a cutoff frequency of  1.5 Hz was 
applied to the recorded EEG to remove low frequency noise. 
The sliding time window length was N =  200 samples (1.6 s 
approximately). A model order P = 8  was chosen, using 
Akaike criterion. The model order was determined from 
multiple preictal EEG segments. 

Prediction time was estimated using the two methods 
described above for tracking changes in the coherence func- 
tion and pole trajectory. The sliding time window was shifted 
with high overlapping of  more than 90% . Pole trajectories 
were smoothed using weighted running average: 

/3 i = 0.25 * Pi+L + 0.5 �9 Pi + 0.25 �9 Pi-i (16) 

where Pi is the location of  a pole at the discrete time i. 
The smoothed coherence was calculated from 

1 2 
~2(f) = 5 ~ [.7i-j(f) [2 (17) 

j=--2 

where ~2(f) is the squared magnitude coherence function at 
the discrete time i and frequency f 

A sharp rise in coherence in the preictal EEG was empiri- 
cally defined as a change in the magnitude squared coherence 
from a background level not exceeding 0.5 to a level of  at least 
0.7. Movement of  the poles towards the unit circle has been 
defined empirically as traversing the circle with a radius of  
0.95 by the 'dominant pole'. Table 2 shows prediction times 
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for the various patients and seizures. In patient A a prediction 
time of  4-6 s was determined by both methods. In patients B 
and E prediction times of  1 and 1.6s, respectively, were 
calculated by both methods. In patients C and D prediction 
times of  1 s were computed but only by the method of  pole 
trajectory. 

3.2.1 Detailed description of  the major results 

Patient A: Two channels (F3 and O2), with the longest inter- 
electrode distance were selected in all four seizures of  this 
patient. Similar prediction patterns were discerned in all four 
seizures. A sharp rise in the coherence function was detected 
4-6  s prior to the seizure outburst, in parallel with a movement 
of  one of  the pole pairs towards the unit circle at an angle 
corresponding to the seizure frequency. In Figs. 2 and 3 the 
rise in coherence before the outbreak of  the seizures can be 
seen in two different seizures of  this patient. The seizure 
frequency was about 3.5 Hz. A coherence contour map of  the 
first seizure is demonstrated in Fig. 4. The dominant frequency 
of  maximal coherence reduces from a value of  10 Hz until it 
reaches the seizure frequency of  3.5 Hz, 6 s before the seizure 
erupts. Fig. 5 shows pole trajectories for the first seizure. Pole 
movement towards the unit circle at an angle corresponding to 
the seizure frequency was traced as early as 6 s before clear 
seizure activity was present. 

Table 2. Seizure prediction time for the five patients. Magnitude 
squared coherence (MSC) 

Prediction by pole Prediction by 
trajectory (s) MSC (s) 

patient A, seizure no.1 4.5 4.5 
seizure no.2 6 6 
seizure no.3 4 4 
seizure no.4 6 6 
patient B 1 1 
patient C 1 - 
patient D 1 - 
patient E 1.6 1.6 
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Fig. 2 Seizure prediction by magnitude squared coherence (MSC). Patient A, seizure No. 1. (a) EEG channels F3 and 02. (b, e) Power 
spectral densi~ of  the two channels during seizure. The magnitude is in arbitrary units. (d) MSC for 3.5 Hz. The arrow depicts the 
beginning of  the seizure 

Fig. 3 Seizure prediction by MSC Patient A, seizure No. 2. All other details are as in Fig. 2 

Fig. 4 Coherence contour map for maximal coherence (at 3.5 Hz). Patient A, seizure No. 1. The arrow denotes the beginning of the seizure 
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Patients C and D: In both patients a prediction time of  1 s was 
calculated by the method of  pole trajectory only. In patient C it 
is possible that a pole 15air located close to the unit circle at an 
angle corresponding to 8-10 Hz had a screening eff+ct on the 
tracking of  the dominant pole relative to the seizure. Fig. 8 
shows the movement of the dominant pole towards the unit 
circle as the epileptic seizure comes nearer. 

Patient E: Prediction times of  1.6 s were calculated using both 
pole trajectory and coherence methods. Fluctuations in the 
value of  the coherence function during 324 s of  preictal EEG 
could be discerned (Fig. 9a-c), but coherence never exceeded 
the value 0.45. A sharp rise in coherence was detected (Fig. 
9d) approximately 1.6 s prior to the seizure outbreak. 

Fig. 5 Seizure prediction using pole trajectory. Patient A, seizure 1. 
(a) Movement offour poles in the upper right quadrant of  the 
utiit circle, stretched into half circle, during the time 12-15s 
of  the EEG signal in Fig. 2. (b) magnification of  the move- 
ment of  pole No. 1 during the time 18-21 s of the EEG signal 
in Fig. 2. Instead of  degrees the corresponding frequencies 
are denoted. Seizure starts at 19s. The arrows denote 
progression in time 

Fig. 6 demonstrates the disadvantage of  choosing two 
neighbouring channels. Coherence between the two channels 
is typically higher than for two distant channels, which limits 
the ability to detect any further preictal rise in coherence. 

Patient B: The EEG signal was recorded using a bipolar 
electrode derivation. The channels selected were P4-O2 and 
O2-T6. A prediction time of  1 s was produced by both 
methods. Fig. 7 shows the movement of the dominant pole 
pair for a signal stretch of  6 s, starting at a time point 4 s prior 
to the seizure outburst (and including 2 s of  seizure activity). 

4 C o n c l u s i o n s  

Electrical stimulation of  intracerebral structures in order to 
reduce the frequency of epileptic seizures was conducted by 
VELASKO et al. (1987) in a continuous random mode (pulse 
trains of  1 min every 5 min for 2 hours each day) with no 
direct time relation to seizure build up. This alternative 
approach to seizure suppression is invasive and carries some 
risk of  operative complications, bleeding and infection (OJE- 
MANN and ENGEL, 1987). Vagal nerve stimulation in a con- 
tinuous mode has also been carried out for the purpose of  
reducing seizure frequency (PENRY and DEAN, 1990; GEORGE 
and MICHAEL, 1991). Other potential forms of  non-medical 
non-invasive anti-epileptic treatment include conditioning and 
biofeedback (KAPLAN, 1975; KUHLMAN and ALLISON, 1977). 

A necessary prerequisite for any rational form of alternative 
treatment of  epilepsy such as biofeedback and electrical 
stimulation, is prediction of  the EEG changes that occur 
prior to the outburst of  the clinical seizure, and time locking 
of  the therapeutic manoeuvre to these seizure waming signs. 

Prediction of  oncoming seizures should be based on scalp 
EEG recordings if complications due to intracerebral record- 
ings and invasive modes of  treatment are to be avoided. 
However, scalp EEG changes that might announce an oncom- 
ing primary generalised seizure are usually not obvious during 
visual interpretation of  the EEG recording, and signal proces- 
sing is needed to recover such warning signs. Processing of the 
EEG traces using FFT methods (SIEGEL et al., 1982; GOTMAN, 
1987) suffers from the fact that long signal traces (relative to 

Fig. 6 Seizure prediction by MSC. Patient A, seizure No. 1, EEG channels F3 and F4. All the other details are as in Fig. 2 
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b 

Fig. 7 Seizure prediction using pole trajectory. Patient B, EEG 
channels P4-02 and 02-T6. (a) Movement of  the dominant 
pole in the upper right quadrant of the unit circle, stretched 
into half circle, during the time 17-23 s. The seizures onset is 
at 21 s. Instead of  degrees the corresponding frequencies are 
denoted. (b) Portion of  the upper trace, movement of  the 
pole during the time 17-19 (preictal). The arrows denote 
progression in time 

the non-stationary character of the EEG signal) are needed for 
the analysis because of the averaging inherent in the FFT 
technique (GATH et al., 1992). To reveal such immediate 
preictal changes high time/frequency methods have to be 
employed, and processing based on multivariate parametric 
modelling of the EEG is the method of choice (GATH et al., 
1992). 

The method outlined in the present study is aimed at 
detecting two strongly linked phenomena which might indi- 
cate convulsive EEG changes, namely the tendency to over- 
synchronisation, and that towards instability. Thus, tracking of 
pole trajectories and calculation of coherence have been 
carried out, using the method of residual energy ratios (DICK- 
INSON, 1978; DICKINSON, 1979) in order to obtain the neces- 
sary high time/frequency resolution (HARRIS et al., 1994). 

Numerical experiments on a two-channel autoregressive 
signal simulating the epileptic EEG signal have shown that 
precise estimation of the coefficient matrices elements can be 
obtained from short record lengths�9 

Prediction of an oncoming seizure was carried out on 
several epileptic signal segments with various forms of seizure 
activities. Movement of a dominant pole-pair towards the unit 
circle was found in all cases examined and was interpreted as a 
tendency towards instability, allowing a prediction time in the 
range 1-6 s. Early oversynchronisation has been detected by 
increased magnitude squared coherence (MSC) in six out of 
eight seizure outbursts, and can also be used for seizure 
prediction. Although prediction by MSC is based on a preictal 
increase in the value of the coherence compared to its back- 
ground level and thus should not be significantly influenced by 
the mode of electrode derivation, the use of monopolar 
electrode derivation is recommended. This is in order to 
prevent calculation of MSC from two EEG channels having 
a common electrode (as in the bipolar case) and to avoid any 

5 10 15 20 25 
time, s 

8 
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30 

Fig. 8 Seizure prediction using pole trajectory. Patient C. (a) The 
two EEG channels, F4 and 01. (b) Movement of  two poles in 
the upper right quadrant of  the unit circle, stretched into half 
circle, during the time 22-24s of  the EEG signal in (a) 
(preictal). Instead of  degrees the corresponding frequencies 
are denoted. (c) As (b), but for the time 22-26s (preictal and 
ictal). The arrows denote progression in time. The pole at 
around 7-8 Hz has been discarded 

doubt as to the reliability of the results. Likewise, it is 
preferred that two EEG channels with the longest possible 
inter-electrode distance be chosen thus obtaining relatively 
low values of MSC during the inter-ictal periods. It is 
concluded that calculation of preictal coherence and pole 
trajectories, using multivariate parametric modelling of scalp 
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Seizure prediction by magnitude squared coherence (MS@. 
Patient E, EEG channels F4 and 01. Traces a-c are from 
different sections of  the 324 s of  interictal EEG. (d) Immedi- 
ate preictal and ictal EEG. The arrow depicts the beginning 
of the seizure 
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EEG can be an aid in the design of alternative anti-epileptic 
treatment such as electrical stimulation or conditioning and 
biofeedback. 
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