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A b s t r a c t .  The spectral stability of synchronous circular orbits in a rotating conservative 
force field is treated using a recently developed Hamiltonian method. A complete set of 
necessary and sufficient conditions for spectral stabilitY is derived in spherical geometry. 
The resulting theory provides a general unified framework that encompasses a wide class of 
relative equilibria, including the circular restricted three-body problem and synchronous 
satellite motion about an aspherical planet. In the latter case we find an interesting class 
of stable nonequatorial circular orbits. A new and simplified treatment of the stability of 
the Lagrange points is given for the restricted three-body problem. 
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1. I n t r o d u c t i o n  

Rotat ing force fields are frequently encountered in celestial mechanics, for example 
geosynchronous satellite orbits (Blitzer et al., 1962, 1985), planetary rings, galactic 
motion (Binney and Tremaine, 1987), the problem of two centers and the restricted 
three-body problem (Szebehely, 1970). The stability of equilibrium orbits in such 
systems is one of the central problems of celestial mechanics and a great deal 
of effort has been devoted to developing methods for calculating stability limits 
(Wintner,  1941, Siegel and Moser, 1971, Broucke, 1980). 

It is useful to distinguish among three different kinds of local stability of au- 
tonomous flows (Holm et al., 1985) : 

(i) Lyapunov Stability. An equilibrium Zo e Rn of a flow i = Z(z) satisfying 
Z(zo) = 0 is Lyapunov stable if for every neighborhood V of Zo there exists 
a subneighborhood U C V such that  z(O) E U ~ 3z(t) E V for all forward 
time. 

(ii) Linear Stability. An equilibrium zo is linearly stable if the orbits of the 
tangent  map are bounded for all forward time. 

(iii) Spectral Stability. An equilibrium zo is spectrally stable if the spectrum of the 
tangent  flow has no positive real part. For Hamiltonian systems this definition 
reduces to neutral stability, for which the spectrum is pure imaginary. 

In general, Lyapunov stability ~ linear stability ~ spectral stability, but not 
conversely. It can be shown that  an equilibrium is linearly stable iff it is spectrally 
stable and all Jordan blocks corresponding to eigenvalues on the imaginary axis 
are one-dimensional (Hirsch and Smale, 1974). Since the boundaries of linear and 
spectral stability are identical for Hamiltonian flows, the notion of spectral sta- 
bility allows us to calculate stability limits without continually excluding multiple 
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eigenvalue cases. In this paper "stable" will always mean "spectrally stable." 
The important special case of axisymmetric potentials has received much atten- 

tion in the literature, particularly motion about an oblate planet (Blitzer, 1962, 
Danby, 1968, Zare, 1983). Since the potential is cyclic in the longitude, the problem 
is fully autonomous and reduces to two degrees of freedom. Furthermore, Dirichlet'8 
Principle now applies, which asserts that if the kinetic energy is positive definite, 
an equilibrium is Lyapunov stable if the potential energy U has a locM minimum 
there (Abraham and Marsden, 1978). Thus it is possible to make much stronger 
statements about the stability of the motion for axisymmetric potentials. The sta- 
bility of circular orbits in general axisymmetric gravitational (Howard, 1990a) and 
magnetic (Howard, 1990b) fields will be reported separately. 

For nonaxisymmetric potentials it is advantageous to transform to a noninertial 
co-rotating coordinate system in which the equations of motion are autonomous. 
However, the kinetic energy is then no longer locally quadratic in the velocity 
components, so that the linearized kinetic and potential energies cannot be si- 
multaneously diagonalized. For this reason most authors obtain a characteristic 
equation by linearizing the equations of motion, a procedure which often obscures 
the generic features of the stability analysis. We offer here a unified treatment of 
the spectral stability of circular orbits in arbitrary uniformly rotating potentials 
using a recently developed Hamiltonian method (Howard and MacKay, 1987a,b). 
This systematic approach yields explicit expressions in arbitrary dimension for the 
stability boundaries for tangent and Krein bifurcations in terms of the derivatives 
of the potential function. It turns out that harmonic potentials enjoy a privileged 
position in this theory, yielding especially simple stability conditions. 

The paper is organized as follows. We begin by reviewing the basic features of 
Hamiltonian stability theory, which yields explicit stability boundaries for tangent 
bifurcations and Krein collisions. In Section 3 the results are applied to equilibrium 
orbits in an arbitrary three dimensional potential, for which the phase space is six 
dimensional. If the potential is symmetric with respect to an equatorial plane, then 
equatorial equilibrium orbits are possible. In such cases the latitudinal libration 
decouples from the equatorial modes, greatly simplifying the analysis. The resulting 
stability criteria are then applied to satellite motion about an aspherical planet, 
using a standard model potential which includes a J2 term and an asymmetric 
longitude-dependent term proportional to the equatorial eccentricity e. On the 
basis of available data the planets of our solar system are all shown to support 
stable synchronous satellite orbits. 

In  addition to equatorial equilibrium orbits we also find nonequatorial circu- 
lar orbits for both oblate- and prolate-type potentials. For J2 > 0 nonequatorial 
equilibrium orbits exist for e ~ 0, but are always unstable; for J2 < 0, however, 
stable families of nonequatorial equilibria exist, even for e = 0. These results may 
have some bearing on observed ring structures around prolate galaxies (Binney 
and Tremaine, 1987). In Section 4 we revisit the venerable restricted three-body 
problem and obtain some familiar results directly from our general formulas. The 
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present t reatment  not only puts this classic problem in perspective, but also yields 
a single simple condition for the stability of the colinear Lagrange points without 
the necessity of analyzing a single quintic equation. 

2. Stability of  Hamiltonian Flows 

In this section we briefly review the elements of Hamiltonian stability theory. For a 
more complete t reatment  see Howard and MacKay (19873,b). Hamilton's equations 
in n degrees of freedom may be written 

i = J .  DH~,  (2.1) 

where z = (q, p) E R 2n, H(z)  is the Hamiltonian, D H z  is the derivative, 

(0 
J =  - I ,  0 

and In is the n x n identity. The equilibria z0i are given by setting D H z  = 0. The 
tangent  flow (variational equations) near such an equilibrium point Zo is then 

= L0. ~, (2.3) 

where { = z - Zo and 
Lo = J "  D2Ho (2.4) 

is an infinitesimally symplectic matrix (Abraham and Marsden, 1978). 
The eigenvalues ai of L0 are given by the characteristic equation 

P ( a )  = det(L - ~rI) = O, (2.5) 

which is necessarily even; 

P(~r) = a 2" + A l a  2"-2 + A2a  2"-4 + . . .  + A , .  (2.6) 

The coefficients Ak  are readily expressed as functions of the elements of L. Defining 
~- = - a  2, we obtain the reduced characteristic equation 

Q ( v )  = r '~ - A ~ r  '~-1 + A 2 r  " -2  . . . .  + ( - ) ' ~ A .  = O. (2.7) 

The motion is said to be spectral ly  stable if all the zeroes of Q are non-negative 
real. The libration frequencies are then given by wi = x/~-, i = 1, 2, ..., n. 

Spectral stability may be lost in just two ways : 
(1) Tangen t  Bi furcat ion  : a pair of pure imaginary eigenvalues 4-a coalesce at 

zero and split along the real axis (a stability index ~- becomes negative). 
(2) Kre in  Coll is ion : a pair of imaginary eigenvalues al  and a2 coalesce at a 

nonzero point and split off into the complex plane. Their complex conjugates 
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do likewise, forming a complex quadruplet. (Equivalently, two stability indices 
rl and r2 merge at a nonzero point and become complex). 

Thus, the transition boundary (in the space of polynomial coefficients) for tan- 
gent bifurcations is given by setting r = 0 in (2.7), while that for Krein collisions is 
given by the vanishing of the discriminant A(Q). In order for a pair of eigenvalues 
to actually leave the imaginary axis after a Krein collision it is also necessary that 
the double eigenvalue have mixed Krein signature (Moser, 1958). The stability re- 
gion is thus bounded by the intersection of the transition boundaries defined by the 
plane An = 0 and the hypersurface A = 0. Figures 1 and 2, taken from Howard and 
MacKay (1987b), depict the stability regions for four and six dimensional equilib- 
ria. The edges and corners of these simply connected regions correspond to various 
multiple eigenvalue configurations. It can be shown that two-and three degree of 
freedom equilibria are spectrally stable iff all Ak _> 0 and A(Q) > 0. A complete 
set of necessary and sufficient conditions for spectral stability in arbitrary dimen- 
sion may be obtained by applying Sturm's theorem to the reduced characteristic 
equation (2.7), requiring that all its roots be non-negative real. The stability of 
a general periodic orbit may be treated by a similar analysis of the monodromy 
matrix (Howard and MacKay, 19S7a). 
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Fig. 1. Stability region for four dimensional equilibrium. A and B are the coefficients 

of the reduced characteristic polynomial. 
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Fig. 2. 

8 4 = 0  

A 
Stability region for six dimensional equilibrium. 

3. Equilibrium Orbits in a Gene ra l  Aspher ica l  P o t e n t i a l  

In this section we investigate the stability of circular orbits in an arbitrary three- 
dimensional rotating potential, for which the phase space is six-dimensional. Al- 
though we shall be primarily concerned with satellite orbits, the theory is quite 
general and not limited to gravitational systems. Thus, while nonharmonic poten- 
tials are allowed, restricting to harmonic potentials pays an immediate dividend in 
simplicity. Using a standard model for the Earth's gravitational potential, which 
includes longitudinal as well as latitudinal variations, Blitzer et al. (1962) demon- 
strated the existence of pairs of stable and unstable equatorial equilibrium orbits 
and showed that, for purely oblate potentials, the transverse (latitudinal) libration 
decoupled from the equatorial modes. However, their results were limited to a par- 
ticular model in which the deviations from sphericity were very small, and they 
did not attempt to identify stability boundaries. In a later paper, Blitzer (1985) 
studied the stability of circular orbits in a general axisymmetric potential. Here we 
consider arbitrarily aspherical potentials and obtain general stability conditions in 
spherical polar coordinates. 

The symmetric case is of central importance in celestial mechanics, as it includes 
equatorial orbits about an oblate planet, the predominant configuration for the 
natural satellites in our solar system. This problem has been studied by many 
authors (Danby, 1968, Zare, 1982), most often using the first two terms of the 
spherical harmonic expansion. For potentials even in the latitude we find that 
the cubic reduced characteristic polynomial factors for equatorial equilibria; the 
decoupling property is thus seen to be quite general. Using this factorization and 
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the harmonic property, we obtain a greatly simplified set of conditions for spectral 
stability. 

Next we apply the results to the standard planetary model with two variable co- 
efficients (a,/3), and derive simple explicit expressions for the transition boundaries 
for tangent  bifurcations and Krein collisions in the a - /3  plane for each equilibrium 
orbit. For "obloidal" planets (J2 > 0) we find four basically different equatorial 
equilibria, only one of which is stable for a range of a and/3. This "principal orbit" 
loses stability by a Krein collision of the equatorial modes upon crossing a stability 
boundary given by the vanishing of the discriminant of Q(r).  For purely oblate 
(/3 = 0) potentials two pairs of eigenvalues merge, so that  stability is lost via a 
double tangent bifurcation. For "proloidar' potentials (J2 < 0) we again find a sin- 
gle stable equatorial orbit. Working out tile transition boundaries for this case, we 
find that  stability can be lost through a tangent bifurcation of the transverse mode, 
as well as by Krein collision of the equatorial modes. Morever, stable nonequatorial 
orbits are born out of the transverse destabilization! The stability boundaries for 
these orbits are found analytically for the equatorial orbits and by a numerical 
eigenvalue calculation for the nonequatorial orbits. 

3. 1. E Q U A T I O N S  O F  M O T I O N  

Consider a small mass moving in a smooth arbitrary potential U rotating at uniform 
angular speed w. The Hamiltonian per unit mass is, in spherical polar coordinates 
(r = longitude, 0 = colatitude) 

1 2 1 
H = ~(p~ + r-~p o + r 2 sinS0J 

(3.1) 

where the canonical momenta  are 

Pr = i', PO = r2/~, pr = r 2 sin 2 0 r 

To remove the time dependence, let us transform to a co-rotating coordinate 
system r ~, 0 ~, r using the generating function 

F = rp'~ + Op~o + (r  - cvt)p~r 

so that  r = r - wt  and p;  = r 2 sin 2 0(r + w). The new Hamiltonian (Jacobi 
integral) is then autonomous, 

1 2 1 2 +  P~ ) + U ( r , 0 , r 1 6 2  
H = ~(Pr  + r--~Po r2 sin2-----~ (3.2) 

where we have dropped the primes for convenience. 
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The equations of motion in the rotating system are 
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~" ~ P r  

o=PO 
r2 

PC w 
- r 2 sin 2 0 

OH p~ + p~ OU 

~9~ - Or - -  r 3 r 3 sin2~-----O Or 

i)o- 
OH p~ cos 0 OU 

O0 r 2 sin 3 0 O0 

OH OU 

i)o - o r  or  

so that  the relative equilibria (r0,00, r are given by 

(3.3) 

p~ = po = O, pc = r~w sin 2 O0 

and the simultaneous solutions of 

Ur = rw 2 sin 2 0 

Uo = 1r2w2 sin20 

U o = O, 

(3.4) 

where the subscripts denote partial derivatives. In general there will be more than  
one equilibrium orbit, not necessarily equatorial. 

In writing H in the form (3.1) we have implicitly assumed the existence of a 
spin axis fixed in the inertial frame. In the case of a rotating planet this is always 
possible if the spin axis coincides with a principal inertial axis (/3, say) which is not 
an intermediate axis. Thus, an axisymmetric body has a stable rotational mode with 
the angular momentum vector L coincident with the axis of symmetry. In general, 
however, w precesses around L at the Chandler frequency ft = (1 - I1 / I3 )w3  with 
an amplitude depending on the initial conditions. If I1 ~ /2 the motion is more 
complicated (Goldstein, 1980). Thus, strictly speaking our analysis is valid only 
w h e n / 3  is a stable spin axis, i.e. /3 r [I1,/2]- If the precession is large and rapid, 
then U in the inertial frame will contain additional time-dependences which cannot 
be removed by a simple transformation to rotating coordinates. For the Ear th  the 
period of the Chandler precession is about 420 days and the amplitude only a few 
tenths  of an arc-second, so that  the effect on satellite orbits is quite negligible. 
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3.2. STABILITY 

Note that in the vicinity of a relative equilibrium the kinetic energy T is not a 
positive-definite quadratic form. Consequently, we cannot employ the customary 
Lagrangian technique of simultaneously diagonalizing T and U (Goldstein, 1980). 
Following instead the Hamiltonian program outlined in Section 2 and evaluating 
the variational matrix L = J .  D2Ho,  we find 

- L =  

0 0 0 - I  0 0 
0 0 0 0 -_A 0 r2 

2 w / r  2w cot 0 0 0 0 ~ sin 2 0 
Urr -t- 3w 2 sin 2 0 Uro + rw 2 sin 20 Urr 0 0 - 2 w / r  
Uro + rw 2 sin20 Uoo + r~w 2(2 + cos 20) Uor 0 0 -2w cot 0 

U ~  Uo4, Ur 0 0 0 

(3.5) 

The reduced characteristic equation is 

Q ( r )  = "c a - AT 2 + B r  - C (3.6) 

where 

A = -2Tr (L2)  

- 4 B  = T r ( L  4) - ~ ( T r L 2 )  2 

C = det L. 

(3.7) 

The motion is spectrally stable iff 

A, B, C _> 0 (3.8) 

and 

A = 4(A 2 - 3B)(B 2 - 3 A C )  - ( A B  - 9C) 2 >_ 0. (3.9) 

If any one of these conditions is violated, the motion will become linearly unstable. 
It should be noted, however, that an orbit reaching the boundary for Krein collisions 
will not actually destablilize unless the eigenvalues have mixed Krein signature 
(Howard and MacKay, 19873). 

The algebra required to evaluate these conditions is fairly daunting, especially 
(3.9) for Krein collisions. Fortunately, for equatorial orbits the latitudinal libration 
separates out, so that it is only necessary to examine the discriminant of a simple 
quadratic. The stability of nonequatorial orbits will be determined numerically 
from the eigenvalues of L. 
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3. 3. E Q U A T O R I A L  O R B I T S  

If U is even in the lati tude :r/2 - 0, inspection of (3.4) shows that there is the 
possibility of equatorial equilibria. Taking 0 -- 7r/2 and Uo = U~o = 0 in (3.5), we 
find, after some manipulation, 

= u~ + ~ Woo + u~) + A 4w 2 

B = ( U ~ r  + 3 ~ o 2 ) ( 1 U o o + c o ~ ) + I u r  + I u o o ) _  1 2 7 ~ U ~  (3.10) 

1 1 2 

For harmonic potentials,  A reduces to a constant, 

A = 2~0 2. ( 3 . 1 1 )  

Minor simplifications also occur in the coefficients B and C in the case of halznonic 
potentials.  These expressions may then be used to calculate stability boundaries 
for tangent bifurcations and Krein collisions. 

Inspection of the variational matrix L shows that the &motion is entirely de- 
coupled from the r- and r librations, so that (3.6) factors; 

where 

Q ( r )  = (r  - re ) ( r  2 - A '  r + B ' )  = 0 (3.12) 

1 
re = -~Uee + w 2 (3.13) 

and 
1 

A' = U,.~ + ~ U r  + 3w 2 

1 2 (3.14) 

The libration frequencies wi = v&7 easily follow from (3.12). For harmonic poten- 
tials, at equilibrium, 

bd ~ = w 2 - ~ U o o .  (3.15) 

The original coefficients are related to (A', B ' )  as follows : 

A = A ' + r e  

B = B '  + A'ro (3.16) 

C = B'ro ,  

in agreement with (3.10) and (3.14). The discriminant of Q is 

A = ( r r  - re)2(rr - r o ) 2 A  ', (3.17) 
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where rr and rr are the remaining zeroes of Q (not necessarily purely radial or 
azimuthal),  and 

A'  = A "  - 4B'  = (rr - TO) 2 (3.18) 

or 
1 4 2 4 2 

A t = (Urr -}- -~Ur ~ -4- 3w2) 2 -}- -~Urr -]- -~U(~r - Urr). (3.19) 

Now observe that  since re is real, either Tr and zr are both real, or complex 
conjugates. In either case, 

sgn A = sgn A' (3.20) 

so that  our stability conditions are A', B',  to, A ~ _> 0, which are equivalent to, but 
much simpler than, the original set B, C, A > 0. Since A' + r0 = 2w 2 for harmonic 
potentials,  the conditions A',  ro >_ 0 may be replaced by 

IUoo[ ~ r 2 w  2. (3.21a) 

Alternatively, 
0 _< r0 < 2co 2. (3.21b) 

According to the general theory, spectral stability may be lost in just two ways; 
(i) a tangent  bifurcation, in which the coefficient C becomes negative, and (ii) a 
Krein collision, in which the discriminant A passes through zero. From (3.16) we 
see that  a tangent bifurcation occurs when either B ~ or ~-o becomes negative. The 
role of A' is to exclude the unstable portion of the A > 0 manifold, as will be seen 
below. 

3. 4. M O D E L  P O T E N T I A L  

A popular model gravitational potential which includes both longitudinal and lat- 
i tudinal variations is the truncated spherical harmonic expansion (Blitzer et al., 
1962), 

U(r, O, r = - p-r + ~a/~ [a(3 cos 2 0 - 1) + b sin 2 0 cos 2r (3.22) 

1 2 1 2 where # = G M ,  a = + l , a  = ~J2R ,b = yeR  , R  is the average planetary radius, 
and e is the mean ellipticity of the equator. For a = +1 we shall speak of "obloidal" 
potentials while the case a = - 1  will be dubbed "proloidal." The terms oblate and 
prolate will be reserved for purely axisymmetric potentials. We begin with the 
obloidal case, a = +1. 

A. Obloidal Planet  

The equilibrium conditions (3.4) are 

t~ 3 ,  [ a ( a c o s 2 0 _ l ) + b s i n 2 O c o s 2 r  ] =rw2s in2  0 g r -  r2 r4 

Uo = - r~(3a - b cos 2r sin 20 = lr2w2 sin 20 (3.23) 
2 

2#b sin2 0 sin 2r = 0. Ur - r3 
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From (3.23c) it follows tha t  all equilibrium orbits (proloidal as well as obloidal, 

nonequator ia l  as well as equatorial)  have azimuth 

r = 0, 7r/2, 7r, 37r/2. (3.24) 

Wi th  cos 2r = a l  = 4-1, the first two conditions (3.23) become 

~2 sin s 0 r 5 - , r  2 + 3 , [2a  - (3a - o ,b)  sin s 0] = 0 (3.25) 

[w2r 5 + 2p(3a - alb)] sin20 = 0. (3.26) 

Note  tha t  these equations are independent  of any assumptions about  the symmet ry  

of L, so tha t  the possibility of nonequatorial  orbits must  be considered. 

E q u a t o r i a l  Orbit~ 
Since b always occurs in the combinat ion al  b, we may  without  loss of generali ty 

take it to be positive; negative values of b then simply correspond to a 90 ~ rota t ion 

in r If (71 = - 1 ,  (3.26) shows tha t  only equatorial orbits  are allowed. If  al  = +1,  
then  we still get equatorial  orbits, with the intriguing possibility of nonequatorial  
orbi ts  for b > 3a. In the lat ter  case the simplified theory of Section 3.3 does not 
apply  and the question of stabil i ty is best  settled by calculating the eigenvalues of L 

numerically;  this is done in Section 3.4 below. In the present  case we pu t  00 = ~r/2 

and al  = +1 in (3.25) to obtain the radial equilibrium equation 

w2r~ - #r0 ~ - 3#(a - b) = 0, (3.27) 

which is the appropr ia te  generalization of Kepler 's  third law. It is interesting tha t  
when a = b this reduces to Kepler 's  third law for a spherical planet ,  with the 
equil ibrium radius independent  of bo th  a and b. 

At this point it is convenient to introduce dimensionless scaled variables x = 
( r / R ) f z  -1 /3 ,  a = ( a / R 2 ) f t  -2 /3 ,  and /3 = (b /R2) f t  -2 /3 ,  where ft = # / o ) 2 R  3 is the 

average rat io of the gravi ta t ional  acceleration to the centrifugal acceleration at the 

equator .  Equat ion (3.27) then simplifies to 

x 5 - x 2 - 3(a - / 3 )  = 0. (3.27a) 

For la -/31 < <  1 the solution near  x = 1 is approximate ly  

x ..~ 1 +  ( a -  f l)  - 3 ( a - / 3 ) 5  + . . . .  

All the stabil i ty boundaries  will turn  out to depend only on the two dimensionless 
1 j .~ -2 /3  1 5-2/3 pa ramete r s  a = ~ 2~ and/3 = ~e,~ . 

For/7 < a Descarte 's  rule of signs implies that  there is a single posi t ive real root 
r0. For /3  > a there are either two or no positive roots, depending on the sign of 
the  diseriminant.  It is easily seen tha t  (3.27a) has a double root when 

/7 - ~ = g =/70 = 0.1086 (3.28) 
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0.i 

NO REAL ROOTS 

/ 
-0.i -0.2 0 0.I 0.2 0.3 0.4 

Fig. 3. Regions in the c~ - fl plane where the radial equation (3.27) has zero, one and 
two roots for e > O. 

so tha t  the  n u m b e r  of equi l ibr ium orbits  for 31 = +1 are as follows : 

f l < a  : l posi t ive root  

< fl < a + fl0 : 2 posi t ive roots  (3.29) 

/3 > c~ +/30 : 0 posi t ive roots,  

as shown in F igure  3. 

W h e n  fl < 0 (oh = - 1 ) ,  Eq.(3.27) has a single posi t ive root  V(x, r which will be 
seen to be  always unstable .  Let  us now work out  the t rans i t ion  boundar ies  (3.13), 
(3.14) and (3.19) in the c~ - fl plane. 

(i) T0 >_ 0 : Using (3.22) in (3.13), we find 

ro = w2[1 + x2--g-(aoL - fl)] (3.30) 

where  x(c~, fl) is one of the  posi t ive roots  of (3.273). T he  single posi t ive root  for 
fl < o~ is clearly s table to t ransverse  librations; in fact the  two posi t ive roo ts  r01 
and  r02 of (3.27), which exist for (~ < fl < a + rio, are b o t h  s table  to t r ansverse  
l ibrat ions,  p rov ided  tha t  fl < 3c~. It remains  to invest igate the  t r iangular  region 
be tween  the  fl-axis and the  line fl = 3c~ (Figure 4). 

E l imina t ing  x be tween  (3.273) and (3.30) yields the following locus of poin ts  
w h e r e w 0 = 0 :  

(5f l  - 93)  5 = 4(f l  - 3o~) 2. (3.31) 
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It  can  be  shown  t h a t  ve < 0 for the  smaller  root  r01 in the  region b o u n d e d  b y  this  
cu rve  a n d  the /3-ax is .  T h e  ou te r  orbi t  is s table  to t r ansverse  l ib ra t ions  whe reve r  it 

is def ined  in the  a - / 3  plane.  Finally,  we observe  t ha t  the  single roo t  for aa = - 1  
is s t ab le  to  t r ansve r se  l ibra t ions  Ya,/3. 

0.4 

0.3 

0.2 

0.I 

-0.2 0.6 

/ X /  

/ A = 0 

-0.i 0 0.i 0.2 0.3 0.4 0.5 

Fig. 4. Stability diagram for principal equilibrium orbit in model geophysical potential.  

The stable region is crosshatched. For a > 0 (oblate planet) stability is lost via Krein 

collisions except for /3 = 0, when a double tangent bifurcation occurs at oL = c~0. For 
c~ < 0 (mythological prolate planet) stability can be lost either by an equatorial Krein 
collision or a transverse tangent bifurcation; when /3 = 0 stability is again lost via a 

double tangent  bifurcation, at ol = - 1 . 0 4  (off scale). 

(ii) A'  >_ 0 : Using (3.22) in (3.14a) gives 

-- r - x-%(3o~ - / 3 ) ] .  (3.32) A'  

In  this  case we see i m m e d i a t e l y  t h a t  b o t h  orbi ts  have  A' > 0 in the  wedge  where  
/3 _> 3o~. To  inves t iga te  the  region outs ide the wedge  we first ca lcu la te  the  locus of  
po in t s  where  A'  = 0. T h e  result  is 

(3a  +/3)5 = 4(3o~ - / 3 ) 2 ,  /3 < 3a .  (3.33) 

(iii) B '  > 0 : Using (3.22) in (3.14b) gives 

B I 12w4/3 
- xl0 [x2 + - /3 ) ] .  (3.34) 
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This coefficient is crucial because, together with To, its vanishing yields the bound- 
ary for tangent  bifurcations. Thus,  its sign determines the character  of the four 
fixed points (3.24), which are seen to al ternate in type with al  (which we have 
incorporated into the sign of/3).  For al = +1,  setting B'  = 0 and using (3.27a) 
to eliminate x we find that  the stability boundary is just the line /3 = s +/30, 
at which the two positive roots merge and become complex. For al = - 1 ,  B t is 
always negative, so that  this orbit is unstable Vs,/3. 

(iv) A t > 0 : Using (3.22) in (3.19) gives 

xlOAt 
w4 -- [x 2 - (3s  +/3)]2 _ 48/3[x 2 + 5(s  - /3 ) ] .  (3.35) 

Setting A t = 0 and solving the resulting quadratic in x 2, we find 

x 2 = 3s  + 25/3 + 816/3(s + / 3 ) ] 1 / 2  (3.36) 

Employing (3.27a) to eliminate x then gives the transit ion boundary  for Krein 
collisions 

4{3s  + 11/3 =t= 416/3(s + / 3 ) ] 1 / 2 } 2  = {3s + 25/3 + 816/3(s + / 3 ) ] 1 / 2 } 5 .  (3.37) 

To implement  these results we must identify each of the transit ion boundaries 
with the appropriate  root of (3.22) and determine on which side of the curve the 
corresponding coefficient is positive. This was accomplished part ly by analysis and 
par t ly  by numerically scanning the s - / 3  plane for each root. The  results for the 
principal orbit  r02 are shown in Figure 5. The transition boundary  for tangent  
bifurcations is the line/3 = s +/3o, at which r02 merges with r01. B t is positive for 
r02 everywhere below this line. However, it is not a stability boundary,  because A t 

is negative above its transit ion boundary, which is seen to lie near the s-axis. The 
stable region is the tr iangular area below the A t = 0 curve, which is therefore a 
t rue stabili ty boundary.  The A t = 0 curve is tangent to the s-axis at 

s0 = ( 4 )  1/3 = 0.5291, 

where the A t = 0 curve intersects the a-axis. The role of the condition A t = 0 
is thus to exclude the unstable portion of the A t > 0 manifold, in this case the 
region where s > s0. (The 4- signs in (3.37) correspond to the stable and unstable 
portions, respectively.) The B'  = 0 line is tangent to the A t = 0 curve (3.33) at 
the point ( s 1 , 2 s l ) ,  where oq = /3o. For s > s l  the A t = 0 curve is a transit ion 
boundary  for r02; for s < S 1 it applies to r01. Since B t < 0 everywhere for r01, the 
inner orbit is always unstable and we will not discuss it fur ther  here. These results 
have all been verified by numerical computat ion of the eigenvalues of the matr ix  
L. 
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Fig. 5. Enlargement of the stability diagram of Figure 4 in the region near the boundary 

for Krein collisions for oblate potentials, showing how the A' = 0 curve excludes the 
unstable portion of the A'  > 0 region. 

For the Ear th ,  J2 = 1.08 x 10 .3 and e = 3.21 x 10 .5  , so tha t  /5 = 289, o~ = 

1.24 x 10 -5 and /? = 3.67 x t0 -7. Thus,  geosynchronous satellites are orders of 
magni tude  away from the stabil i ty boundary  in Figure 5! Even Saturn,  which has 

J2 = 0.0165 (Hubbard ,  1989) and presumably  e --~ 0, so tha t  /2 = 5.91, we find 
c~ = 0.0025, still a long way from the stabil i ty boundary.  Does this mean  tha t  
s table synchronous orbits always exist? Clearly, on physical grounds ~ is l imited 

f rom below by a factor  of a few. Further,  it seems unlikely to encounter  conditions 
where o~ could exceed 0.25. Yet a value of/~ > 0.01 is not at all inconceivable, 
especially for asteroids, which are typically quite irregular. Indeed, we could well 

argue tha t  orbits  about  asteroids would be typically unstable.  It  is also wor th  noting 
tha t  since o~ and ~ scale as w 4/3, larger rotat ional  speeds correspond to less stable 
synchronous orbits. 

Nonequatorial Orbits 
When al  = +1 and fl > 3c~, the expression in brackets  in Eq. (3.26) can vanish 

for 0 r ~'/2, which yields an equation for the equilibrium radius, 

x 5 = 2(fl - 3~). (3.38) 

Note tha t  a l though typically x < <  1, the corresponding physical  radius r = ftl/3Rx 
is typical ly greater  than  R. Substi tut ing this result into (3.25) then gives an ex- 
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pression for O0 : 
z 2 - 6~ 

sin 2 00 - 5(/3 - 3~) (3.39) 

These orbits exist for 0 < sin 2 00 < 1. The lat ter  condition turns out  to be exactly 
(3.31), the locus of points where re = 0, while the former condition is equivalent to 

/3 = 3~ + ~(6c@/2. (3.40) 

The  nonequatorial  equilibria exist everywhere above this curve and outside the 
To = 0 lobe. However, numerical calculation of the eigenvalues of L suggests tha t  
this family of nonequatorial  orbits is always unstable. 

B. Proloidal Potentials 

While proloidal planets do not exist in our solar system, proloidal moons and 
asteroids are not at all uncommon and are capable of supporting satellites. Ring 
structures have also been observed around prolate galaxies (Binney and Tremaine, 
1987). Moreover, one cannot fully understand the obloidal case without  some knowl- 
edge of the proloidal stability boundaries. 
Equatorial Orbits 

Again we may  assume without loss of generality that  /3 > 0. Replacing c~ by 
- ~  in (3.27), we see that  there are either two or no positive roots. We shall ignore 
the unstable inner orbit and work out the transition boundaries for the outer  orbit.  
The  transit ion boundary  for transverse tangent bifurcations (re = 0) is obtained by 
simply reversing the sign of (~ in (3.31) and turns out to apply to the outer orbit  (in 
contrast  to the obloidal case, where this boundary applied to the already unstable 
inner orbit).  The  A' = 0 curve does not exist in this quadrant .  The transit ion 
boundary  for equatorial  tangent  bifurcations is just the extension of the B I = 0 
line from the first quadrant,  shown as the dashed line in Figures 4 and 6. Finally, 
the transit ion boundary  for Krein collisions is given by (3.37) where again both  
branches are required to draw the entire curve. The resulting stability region for 
equatorial  orbits is thus the fin-shaped area between the A' = 0 and the v0 = 0 
curves, as depicted in Figure 6; the B' = 0 curve is not accessible from the stable 
region. 
Nonequatorial Orbits 

Setting c~ ~ -c~ in (3.38) and (3.39), we find that  nonequatorial  equilibria 
exist everywhere in the second quadrant above the r0 curve. While these stabili ty 
boundaries may be calculated in principal by setting A = 0 in (3.9) the results are 
too unwieldy to be useful. A numerical eigenvalue calculation shows these orbits 
to be stable in two regions : a narrow band above the 7"o = 0 curve and a second 
layer above and along the negative s-axis to the left of the point o~ = - a 2 ,  where 

1 4 1/3 
c~2 = ~(~)  = 0.0848 (3.41) 
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Fig. 6. Enlargement of the stability diagram of Figure 4 for prolate potentials. Stability 

can be lost either by crossing the boundary for Krein collisions (A'  = 0) or via a transverse 
tangent bifurcation, in which stable nonequatorial orbits are born. These orbits are stable 
in the shaded areas, losing stability via a Krein collision (A = 0). 

as indicated by  the shaded areas in Figure 6. The  thickness of the first layer shrinks 

to zero at the points  (0,/~0) and ( - a 2 , 0 ) ,  while the second reaches a m a x i m u m  near  

a = - 0 . 2 ,  again shrinking to zero as a ~ -o~3 ~ -1 .04.  Stabili ty is lost via an 
equator ia l  Krein collision upon crossing this boundary  upwards or by a double 
tangent  bifurcat ion as a decreases through - a 3  wi th /3  held equal to zero. Thus ,  

if we imagine the shape of the planet  to be changed adiabatically by  some giant 

hand,  a l ibrating equatorial  orbit  would change smoothly  into a nonequatorial  one 
above or below the equatorial  plane, depending on the phase of its libration. 

C. A x i s y m m e t r i c  Potent ia ls  

It  is instruct ive to compare  these results with the stabil i ty boundaries  for a purely 

oblate  or prolate  potential .  In this case one can construct  a 4D reduced Hamil tonian  
f rom the original 6D one by incorporat ing the longitudinal kinetic energy into 
an effective potential .  In the reduced system, Krein collisions are impossible, and  

A = 2w 2 for harmonic  potentials,  so that  a necessary and sufficient condition for 
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spectral stability is that  B > 0, or 

-[U,,.  + aw2sin20] [Ur,. + w 2 ( 1 -  3cos2O)] > [1-Uro +w2sin20]2.  (3.42) 
r 

For the model potential (3.22), with 0 = ~r/2 and/3 = 0, it is easily shown tha t  
stability is lost by a tangent bifurcation when a > a0 or a < a2- Thus, in the full 6D 
t reatment ,  the a-axis is a singular direction, corresponding to reduction from 6D to 
4D. In this event it is readily seen that  A' is the appropriate coefficient to demark 
tangent  bifurcations. In the purely prolate case we also find stable nonequatorial 
equilibria which are born when a decreases through - a 2  and subsequently lose 
stability by a tangent  bifurcation at - a 3 .  To see this, set/3 = 0 in (3.42) to obtain 
- 1  < cos00 _< -1 /15 ,  or 0• < 0 < 7r/2, where sin0~) = vf@lh.  The corresponding 
range of a for stable motion is then - a 3  < a < -o~2, where 

aa = (9) 1/a = 1.040. (3.43) 

4. Restricted Three-Body Problem 

It is also of interest to apply the Hamiltonian method to the restricted three-body 
problem. As usual, we adopt the idealized model of a negligibly small mass m 
moving in the gravitation field of two large bodies 341 and M2 revolving in circular 
orbits about their center of mass, as depicted in Figure 7. We wish to find all circular 
equilibrium orbits and determine their spectral stability. This problem is almost 
invariably solved in cartesian coordinates, a singularly inappropriate way to treat  
a rotat ing system! Here we employ the more natural spherical polar coordinate 
system, thereby obtaining the five equilibria and their stability boundaries directly 
and economically, without any hand-waving. 

First observe that  the present problem is a just a particular case of the general 
problem treated in Section 3, so that  many of the results of that  section apply here. 
Thus,  the Hamiltonian (Jacobi integral) in a coordinate system rotating with M1 
and M2 is (3.2), with angular velocity given by Kepler's third law, 

G M  
_ (4.1) 

d 3 ' 

where d = dl + d2 is the distance between M1 and M2. Taking m as the unit of 

mass, let us scale time by setting GM = I, where M = M1 + M2. The potential 

energy then takes the form, 

U(r,O,r - m ~__2, (4.2) 
r l  r 2  

where #1 = M 1 / M ,  #2 = M 2 / M ,  and, of course, #1 + #2 = 1. From Figure 7 we 
have 

r~ = r 2 + d~ - 2rdl sin O cos r (4.3) 
r~ = r 2 + d~ + 2rd2 sin 0 cos r 
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Fig. 7. Geometry of restricted three-body problem. 
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Since U(r,  O, •) is symmetric with respect to the orbital plane of M1 and M2, 
we know that  the transverse libration decouples from the equatorial  modes, so 
that  the simplified stability criteria may be employed. Further,  while equatorial 
orbits are allowed (and realized), we also know that  nonequatorial  orbits cannot 
be excluded a priori. To determine the possible equilibria, use (4.3) in (4.2) and 

evaluate eqs.(3.4) : 

r + - /~1#2 r23 s i n O c o s $ = r s i n  20 

[ l) ] 
r s i n 0 + # l # 2  r] cos~b c o s 0 = 0  

#1#2 ~ r s inOs in~b=0 .  

(4.4) 

where we have used the fact that  #1dl = #2d2, scaled r in units of d and used 
Kepler 's third law to eliminate w. From the last condition we see that  there are 
two basic cases : 

(i)  rl  = r2 : tr iangular solutions. 
(ii)  q~0 = 0, 7r : straight line solutions. 
Consider first the triangular solutions (i). Put t ing  rl = r2 in (4.4b) we find 

cos 0 = 0 ~ 00 = ~r/2, showing that  the triangular solutions are equatorial.  Then,  
setting 00 = ~r/2 and rl = r2 in (4.4a) gives r l  = r2 = w 2/3 = d by (4.1). To 
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complete the solution, we have, with # = #1, say, 

r0 = [1 + #(# - 1)11/2d, (4.5) 

s i n e 0 -  v/~d 
2r0 (4.6) 

We now turn  to the calculation of the stability boundaries, for which we need 
the following derivatives : 

Vrr  = 1 - -  3(~0 ~ + # 1 ~  c o s  2 r  

Uoo = 0 
9 (4.7) 

Ur162 = -3#1/ '2  r02 sin 2 r = --5#1#2 

Urr = 3#1#2 r0 sin r cos r 

f rom which 
ra = A  I = 1  

= -~#(1 - #) (4.8) B' 

A' = (A') 2 - 4B'  = 1 - 27#(1 - #). 

Thus,  in addition to the familiar Krein Collision, AKA "Trojan  Bifurcation" at 
#c = 0.03852._ we see that  there is a tangent bifurcation at # = 0 and 1, when 
one of the masses M1 or Ms vanishes. However, as the orbiting body is assumed to 
have vanishingly small mass, this limit is not well defined. (There is no compelling 
reason to restrict # to the range (0, �89 .) 

Now consider the colinear equilibria (ii). Setting a = cos r = +1 in (4.4b) gives 

a#1#2 + r sin8 cos8 = 0. (4.9) 

It can be shown that  the expression in brackets is always positive, so that  again 
80 = rr/2. The radial coordinate is then given by (4.4a), which may be wri t ten 

3 3 3 (rlr 2 - # l r  2 - #2r~)r0 = a#l#2(r a - -  r3), (4.10) 

where r~ = (r0 - adl) 2 and r~ = (r0 + ad2) 2. It is shown in many places (e.g. 
Moulton, 1914, p 291) that  (4.10) has three distinct positive real roots r0i, V# E 
(0, 1). However, the exact location or even the existence of these equilibria need 
not concern us! For we shall show that if any colinear equilibria exist, then they 
must  all be unstable. 

To do so it is sufficient to show that any one of the four stability conditions is 
violated. It is easily seen that  U~r = 0 and 

U o o = U r 1 6 2  ~2) ' (4.11) 
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so that 

B ' =  1 -  __~Ur (3 + ~02 Ur162 . 2  (4.12) 

Hence, we need only show that Ur162 > 0 to prove that B r < 0. But this follows 
from (4.11), which implies that 

sgn Ur162 = a sgn(r2 - -  r l ) ,  (4.13) 

which by Figure 7 is positive for all possible colinear equilibria. QED. 

5. D i s c u s s i o n  

We have derived explicit necessary and sufficient conditions for the spectral stabil- 
ity of circular equilibrium orbits in a general three-dimensional rotating potential. 
The method is quite general and applies to any Hamiltonian equilibrium for which 
the variational equations are known analytically. Stability boundaries for tangent 
bifurcations and Krein collisions are given in terms of the derivatives of the poten- 
tial function. Significant simplifications are found for harmonic potentials, such as 
those occurring in gravitational problems. The result is a complete description of 
all possible linear instabilities in a potential of arbitrary complexity. In previous 
treatments, each such problem was analyzed via the equations of motion and gave 
only limited information under particular assumptions. 

Applying the results to circular orbits around an aspherical planet we find sta- 
ble equatorial equilibria for both oblate and prolate potentials, thus generalizing 
the results of Blitzer et al. (1962, 1985). In addition, we find stable nonequatorial 
orbits, which turn out to be born out of the equatorial orbits. For purely oblate or 
prolate planets, stability is lost only by tangent bifurcations, Krein collisions not 
being possible. In the full 6D case, on the other hand, with longitudinal as well 
as latitudinal variations in the potential, Krein collisions of the equatorial modes 
are the only destabilization route for obloidal potentials (J2 > 0). For proloidal 
potentials, however, stability can be lost through tangent bifurcation of the trans- 
verse mode as well. Stable nonequatorial orbits are also found as a result of the 
latter process, which subsequently lose their stability via a Krein collision. In each 
case, a tangent bifurcation of a purely oblate/prolate potential may be viewed as a 
degenerate Krein collision or a tangent bifurcation of double eigenvalues. In general 
a Krein collision does not signal a loss of stability unless the corresponding eigen- 
values have mixed Krein signature. Rather than carry out this calculation, the loss 
of stability is verified by calculating eigenvalues on both sides of the boundary. 

Applying the results to synchronous satellite orbits about the planets in our 
solar system, we find that stable orbits exist, with parameters several orders of 
magnitude distant from the stability boundaries. In order to lose stability, a planet 
or asteroid would have to be very irregular, with J2 on the order of several tenths 
or equatorial eccentricity exceeding 0.01. We also apply the same formalism to the 
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circular restricted three body problem, obtaining an improved t rea tment  of the 
stabili ty of the Lagrange points. Finally, we remark that  noncircular orbits may 
t rea ted  by an analogous analysis of the monodromy matr ix  (Howard and MacKay, 
1987a). 
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