
Algorithmica (1997) 18:99-110 Algorithmica
�9 1997 Springer-Verlag New York Inc.

A Series of Approximation Algorithms for the Acyclic
Directed Steiner Tree Problem 1

A. Zelikovsky 2

Abstract. Given an acyclic directed network, a subset S of nodes (terminals), and a root r, the acyclic directed
Steiner tree problem requires a minimum-cost subnetwork which contains paths from r to each terminal. It is
known that unless NP c_ DTIME[np~176 n] no polynomial-time algorithm can guarantee better than (In k)/4-
approximation, where k is the number of terminals. In this paper we give an O(U)-approximation algorithm
for any e > 0. This result improves the previously known k-approximation.

Key Words. Algorithms, Approximations, Steiner tree.

1. In t roduct ion . The general Steiner tree problem in graphs requires a minimum-cost
tree spanning a distinguished node set S in a network G. This problem is investigated
for different types of networks. We mention below the following cases: usual networks
with edge costs (NSP), node-weighted networks (NWSP) where the cost of a tree is the
sum of edge costs and prescribed costs of its nodes, acyclic directed networks with edge
costs (ADSP), and directed networks (DSP).

We consider the Steiner tree problem for acyclic directed graphs, i.e., directed graphs
where no directed chain leads from any node to itself.

ACYCLIC DIRECTED STEINER TREE PROBLEM (ADSP). Given an acyclic digraph G =
(V, E , d) w i t h e d g e c o s t s d : E ~ R + , a s u b s e t S C V a n d a r o o t r 6 V, find a minimum
cost subgraph containing directed paths from r to all elements of S (minimum-cost Steiner
tree).

For an instance of the general Steiner tree problem, Smt and smt denote the minimum-
cost Steiner tree and its cost, respectively. The elements of the set S are called termihals.
The number of terminals is denoted by k.

ADSP is also known as the Steiner arborescenceproblem in acyclic networks [6]. It has
various practical applications. The most important occurs in biology while constructing
phylogenetic trees [4]. A number of papers are devoted to the case of a digraph embedded
in a d-dimensional rectilinear metric. For d = 2, a fast and effective heuristic was
proposed in [12]; however, this case has not yet been shown to be NP-hard. An exact
exponential-time algorithm for ADSP based on embedding of a graph in a d-dimensional
rectilinear metric was given in [11].

I This research was supported in part by Volkswagen-Stiftung and Packard Foundation.
2 Computer Science Department, Thornton Hall, University of Virginia, Charlottesville, VA 22903, USA.
alexz @ chestnut.cs.virginia.edu.

Received October 15, 1994; revised August 23, 1995. Communicated by M. X. Goemans.

100 A. Zelikovsky

Most of cases of the general Steiner tree problem (NSP, NWSP, ADSP, DSP) are NP-
hard [7], thus many approximation algorithms have appeared in the last two decades.
The quality of an approximation algorithm is measured by its performance ratio: an
upper bound on the ratio between the achieved cost and the optimal cost. A worst-case
analysis for some approximation algorithms was provided to find its exact performance
ratio. For the most complicated cases, a performance ratio may depend on the number of
terminals. From the other side, significant progress in lower bounds for approximation
complexity of NP-hard problems has been made in the last few years [16].

The approximation complexity of NSP and NWSP has already been determined.
NSP belongs to MAXSNP-class [3], so a constant factor approximation algorithm exists
[14] and, for some e > 1, e-approximation is NP-complete [1]. For NWSP, a (2 In k)-
approximation algorithm was designed [8]. From the other side, the famous set cover
problem may be embedded in NWSE This implies that NWSP cannot be approximated to
within less than (�88 In k)-factor unless DTIME[n p~176] D_ NP [9]. Therefore, the only
question for these problems is still open: what exact constants separate polynomially
solvable and NP-complete approximations? For NSP, this constant is at most 1 + In 2
1.69 [18]. For the euclidean and rectilinear subcases of NSP, these constants are at most

61 1 + ln(2/V~) ~ 1.1438 [18] and ~ ~ 1.271 [2], respectively.
The approximation complexity of ADSP and DSP is still unknown. The only thing we

can say is that the set cover problem can be transformed to ADSP, so these problems are no
easier to approximate than NWSE To determine an upper bound on the approximability of
ADSP we may compare it with the next already distinguished approximation complexity
class. The famous representative of this class is the chromatic number problem (CNP).
This class is characterized by the existence of e > 0 such that the n~-approximation is
NP-complete [9]. The main result of this paper says that to approximate ADSP is easier
than to approximate CNP.

THEOREM 1. There exists a series of approximation algorithms At, l = 1, 2 for
the acyclic directed Steiner tree problem. The performance ratio of an algorithm Al is

kU;(2 + lnk) ;-1,

where k is the number of terminals. The runtime of algorithm A; is 0 (or + nl-l k;), where
n is the number of nodes of the input graph and ot means the time complexity ofallpairs
shortest paths.

REMARK 1. The limit guarantee of a presented series of heuristics

exp[x/4 Ink ln(ln k + 2) - ln(ln k + 2)] = k~/41n(lnk+2)/lnk
lnk + 2

is subpolynomial, i.e., its growth is less than U for any e > 0.

We believe that the approximation complexity of ADSP is characterized by the pre-
sented series of heuristics.

CONJECTURE 1. ADSP cannot be approximated with a subpolynomial guarantee unless
P = N P .

A Series of Approximation Algorithms for the Acyclic Directed Steiner Tree Problem 101

In the next section we describe in terms of contraction several known heuristics for
Steiner tree problems and a new level-restricted relative greedy heuristic. In Section 3
we estimate an approximation of optimal Steiner trees for ADSP with level-restricted
Steiner trees. A formal definition of heuristics At with a runtime analysis is presented
in Section 4. The last section is devoted to the proof of the performance ratio claimed in
Theorem I.

2. The Greedy Contraction Framework. We assume that the digraph G is transitive,
i.e., for any u - v path, in G there is an edge (u, v) e E. Moreover, the cost of any edge
in G coincides with the cost of the minimum-cost path between its ends. Gs denotes the
subgraph of G induced by the set S O r. Mst(S) is the minimum spanning tree of Gs
(also called the minimum spanning arborescence of Gs) and M0 = Mo(S) is its cost.

A full Steiner tree T is a rooted out-going tree such that

1. the root of T, r (T) , belongs to S U r and has only one son;
2. all leaves of T belong to S;
3. all other nodes of T do not belong to S.

We can split Smt into edge-disjoint full components. A full tree T is said to be of level
l = l(T) if every path in T from its root to any leaf has at most l edges.

Contraction of a tree T means reducing to zero the costs of edges of Mst(S) ending
at the terminals of T (or edges of Gs between terminals of T for undirected Steiner
problems). We denote the result of contraction by S~ T. Thus contraction reduces the
value Mo(S).

For all the Steiner tree problems, the following greedy contraction framework is
successfully used in approximations.

Greedy Contraction Framework (GCF)

(i) repeat until Mo(S) ----0

(a) find a full Steiner tree T* in a class K which

minimizes a criterion function f (T) : T* ~- arg minTeK f (T).
(b) i n s e r t T* in LIST.
(c) c o n t r a c t T*, S ~-- S/T*.

(2) reconstruct an output Steiner tree from trees of LIST.

Many famous heuristics can be embedded in this framework considering different
definitions of a class K and a criterion function f .

THE MINIMUM SPANNING TREE HEURISTIC (MSTH) [14]. K consists of all paths and
f (T) = d(T) .

THE RAYWARD-SMITH HEURISTIC (RSH) [13]. K contains all stars and f (T) = d (T) /
(r - I), where r is the number of leaves of T.

102 A. Zelikovsky

THE GENERAIJZED GREEDY HEURISTIC (GGH) [17]. K consists oftrees with three ter-

minals and f (T) = d (T) - (Mo (S) - Mo (S / T)).

THE SIZE-RESTRICTED RELATIVE GREEDY HEURISTIC (SRGH) 1181.
all trees with at most r terminals.

f (T) =
d (T)

Mo(S) - M o (S / T)

K = K,. contains

Let/~ be the family of all Steiner trees with full components belonging to K. Let smt R

be the cost of the minimum Steiner tree in K. We denote by cOStA the cost of the output
tree of an algorithm A embedded in GCE To determine a performance guarantee of A
we may bound the following two ratios: a l = (s m t k / s m t) , and a2 = (co s ta / sm tR) .

Below we present the known bounds for the ratios al and a2 for the above heuristics

embedded in GCF:

MSTH gives a l _< 2 and a 2 = 1 for NSP, and al < k and a~ = 1 for NWSP, ADSE

RSH gives al < 3 and al �9 a2 < 2 for NSP [15] and al �9 a2 < 21ogk for NWSP [8].

5 anda l .a~ < ~ for NSP [17]. GGH gives al < 3 - -
S R G H g i v e s l i m r _ ~ at = 1 [5] a n d l i m r ~ a2 = l + l n 2 forNSP[18]. In other words,

it induces a series of approximation algorithms for NSP with the limit performance
ratio (1 + In 2).

In this paper we present a

LEVEL-RESTRICTED RELATIVE GREEDY HEURISTIC (LRGH). The class K = Kt con-
sists of full Steiner trees with at most / levels. The criterion function is the same as for

SRGH:

d (T)
(1) f (T) =

m o (S) - m o (S / T) "

Theorem 2 of the next section says that al ~< k UI for DSP. The rest of the paper is
devoted only to ADSE In Section 5 we prove that a2 < (2 + Ink). Unfortunately, we
cannot compute exactly arg minK~ f (T) for I > 3. Section 4 shows how we avoid this
obstacle by restricting the class K~.

3. Level-Restricted Steiner Trees. A Steiner tree is called l-restricted if the level of its
full components does not exceed I. Smtt and smtt denote the minimum-cost/-restricted
Steiner tree and its cost, respectively. The following theorem bounds the approximation
of minimal Steiner trees with minimum-cost/-restricted trees.

T H E O R E M 2. For any instance o f the directed Steiner tree problem,

s m O / s m t < k Ill

A Series of Approximation Algorithms for the Acyclic Directed Steiner Tree Problem 103

Fig. 1. The/-restricted tree T l drawn from a full Steiner tree. The Steiner tree edges are dotted.

PROOF. We construct Smtt for every full componen t o f Smt separately, so we can

assume that Smt is a full Steiner tree.

First we in t roduce-some notations. Le t T = Smtand let v be a node o f T. Let

denote the set o f all descendants o f v and let s(v) denote the number o f terminals in ~,

e.g., s(r) = k. Son(v) is the set o f all sons o f v in T. Let

Vi = {v E T, s(v) > k (l - i) / I &s(v ') < k (l - i) / I for any v' ~ Son(v)},

i = 1 1 - 1, Vt = S, V0 = {r}. For every v 6 V/, i = 0 1 - 1, let Sonl(v)
denote fi A Vi+l.

Let T l be a tree with the node set V l = U l = o V/ and the edge set E l = {(u, v):

u ~ V t, v ~ Sont(u)}. The cost o f an edge (u, v) in T l coincides wi th the cost o f the

u-v path in the tree T. Note that the tree T t is an / - r e s t r i c t ed Steiner tree, since u ~

for any u 7~ v, u, v c Vi (Figure 1).
Let u 6 V/ and let Son(u) = {ul ut}. For every j = 1 t, let Uj denote

Sonl(u) N ub and let d(uj, u~) = argmax~stlj d(uj, v). Then

(2)
t

d(u, v) <_% Z IUjl(d(uj, u]) + d(u, uj))
vESonl(u) j = l

104 A. Zelikovsky

= ~ IUjld(u, u;)
j=l)' (max I",l E
\ j=l , t j=I

Note that ~-~,c_ G s(v) = s(uj) yields IUjl minv~v,., s(v) <_ s(uj) and

(3) max [Uj] rain s(v) _< max s(uj).
j=l... . .t vEV,_, j=l... . .t

Since min,,~v,,, s(v) > ktt i-1)/l and maxj=l.....t S(blj) < k a-ivt, (3) yields

(4) max IUjl < k lit.
j=l.. . . , t

Inequalities (2) and (4) imply

l

t,ESon I (11) j= 1

Note that all u-u7 paths are edge-disjoint in the tree T. Thus,

t(u)

uEV I vcSonl(ul uEV I j=l

4. The Series of Algorithms. In this section we construct recursively the series of
algorithms {A/, l = l, 2 }. For any l, Algorithm A/ is LRGH with the restricted
subclass of Kt, i.e., it approximates the minimum-cost/-restricted Steiner tree.

Al coincides with MSTH. Since Gs has no cycles, Mst(S) consists of the cheapest
edges ending at S-nodes in Gs. For any s E S, denote the cost of such an edge by
re(s) --- minr d(s ' , s) (we assume that d(s, s) ---- cx~, since there are no loops in G).
So the output cost is M0 = Y~s~S" re(s).

A2 coincides with LRGH. Our goal is computing Step (a) of GCF for the function (1).
We need the following notations. For any v E V - S, let do ---- min,~sur d(s. v) and

so = arg mind(s , v). S(v) and t(v) denote the set of all S-descendants of v and its size,
respectively. For any si E S(v), di = d(v , si) , mi --- minses d(s, si). We assume that the
set S(v) is enumerated in such way that di/mi 5 d i+l /mi+l .

Every 2-level full Steiner tree T is determined by its root r(T) E S tO r, the unique
internal node v E V - S, and leaves (Figure 2).

The following lemma makes computing arg minrer~ f (T) possible.

LEMMA 1. For an), v E V - S,

J d
min f (T) = min Z i - o i

teT~=2,T~v j=l,...a(v~ ~ / = 1 m i

A Series of Approximation Algorithms for the Acyclic Directed Steiner Tree Problem 105

Fig. 2. Minimum spanning and 2-restricted Steiner trees. The MST edges are dotted.

PROOF. Let T* = argmin~er f (T) , and let {(s~, v), (v, s t) (v, sT.)} be its edges.
We can rewrite (1) as follows:

f (T*) "- d(s~, v) + ~*=, d(v, s*)

El*=, m(s;)

We may replace the root s~ by so in T* without increasing f since d(s0, v) < d(s~, v).
Let s* be the "last" terminal, i.e., s* = argmaxi=l,...,t,[d(v, s[)/m(s*)]. Assume that,
for some s c S(v),

(5) d(v, s) d(v, s*)
m(s) - m(s*)

To prove the lemma we show that f (T * U (v, s)) < f (T *) . Indeed,

f (T *) < f (T * - (v, s*)) =
d(T*) - d(v, s*)

~f~*=-I m(s;) -- m(s*)

since T* minimizes f . Therefore, d(v, s*)/m(s*) < f (T *) . Thus, inequality (5) yields

f (T * tO (v, s)) d(T*) + d(v, s) d (T)
= < = f (T *) . []

Y~*--1 m(s~) + m(s) - Y~I*=I m(s*)

The Algorithms Ai, i > 3. We cannot find T/* = argminx~ f (T) exactly even for
l = 3. So we are looking for a minimum of f in a subclass of Kt defined below.

We define a tree Tt(u), 1 >_ 1, recursively. For any u 6 V, Tl(U) = {(u, s*)}, where
s* = arg mins~s[d (u, s) / m (s)]. For instance, any edge (s, s ') ~ Mst(S) may be assigned
to Tl(S). Denote V (u) = {v ~ V - S : d(u, v) < d(s, v) for all s ~ S U r]. To define
Tl(s), l > 2, we run the following:

106 A. Zelikovsky

Procedure

O) G' ~--G;
i) for each v �9 V(u) do

(a) Bo +-- (s, v), i +-- 1;
(b) repeat forever

7","_ l ~ ~_,(v);
if f(Bt, ldT1i_l) >_ f (B v) ,
Bt, ~ B~, t_J T/_I;

2)

then exit repeat;

contract T/_I, S ~ S/TIi_I , i +- i + I;

(C) for j = I i do

if f(Bv) < f(T/l) then B~. ~- Bv\TlJl
(d) G ~-- G';
Tt(u) ~-- a r g m i n { f (T) �9 T = Tt_l(u) v T = B,,, v �9 V(u)}

In other words, we extend (u, v) with the "best" (1 - 1)-restricted full tree Tt-l rooted
in v, which we find recursively. We add (Tt_l)'S as long as this addition decreases the
function f . Step (c) further reduces f by discarding (Tt - t) ' s with a positive contribution
to f (B v) . Note that step (c) can be omitted for I = 2. Then we restore G and find graphs
B,, for all other v �9 V(u) . So each B~, is an/-restr ic ted full tree with the unique son v of
the root u. Among all (B,,)'s and Tt-l (u) we choose one with the smallest value of f as
the tree Tt(u). It is easy to see that Lemma 1 yields T2(s) = argminreK2.rtr~=s f (T) .

REMARK2. F o r a n y s �9 S t 3 r , f (T l (s)) < 1.

PROOF. Indeed, for a nonzero edge e 6 Mst(S) , f (e) = 1. []

Now we can present the algorithm At, l > 2, as follows:

A l g o r i t h m Al

(i) repeat until Mo(S) : 0
(a) S* +-- argmins~sur f (T t (s)) .
(b) i n s e r t Tt(s*) in LIST.

(c) c o n t r a c t Tl(s*), S +-- S /TI (s*)

(2) reconstruct an output Steiner tree from trees of LIST.

Now we estimate the time complexity of Algorithm At. For brevity, the sets and their
cardinalities will have the same notations.

Since the graph G is acyclic, we can apply the O (E + V log V) procedure of finding
M S T (S) due to Mehlhorn [10]. Thus, Al runs in time O (E + V log V).

For A2, we need to know all distances between S and V - S. This can be done in time
O (E -t- V log V) by adding an auxiliary node with zero cost edges to S t3 r and finding
all distances from this node to all others. Similarly we can find distances between V - S

A Series of Approximation Algorithms for the Acyclic Directed Steiner Tree Problem 107

and S. Then in time O(VS) we can find argminr2 f (T) (Lemma 1). Thus, the total
runtime of A2 is O(E + V log V + S2V).

To find /](s*), i _> 3, we need a runtime rtl = O((VS)t-1), since rtt = r t l_lVS
and rt2 = O(VS) . Thus, Al has a runtime O(ot + Vt-ISt), where cr means the time
complexity of all pairs shortest paths.

5. The Performance Guarantee. Our first goal is to show that the minimum of the
function f in the item (a) of Algorithm A1 is not far from the minimum in the whole
class Kr. In other words, we generalize Lemma 1 for arbitrary l.

LEMMA 2. Let I"1" = arg min K~ f (T) and let s* be the root Of Tl* . Then, for l >_ 2,

(6) f(Tl(s*)) <_ f(Tt*)(2 + l n k) / - 2 .

PROOF. Induction on 1. The case of l = 2 follows from Lemma 1. Denote ct =
(2 + log k) t~2 and S* = S f) T/*\{s*}. Let v* be the unique son of the root s* in the tree
T/* and do = d(s*, v*).

First we consider the case of S A T/(s*)\{s*} c S*. Consider ADSP for S* with a
root v*. In the above notations, let Srntt_l and smtl-i be the minimum-cost (l - 1)-
restricted Steiner tree and its cost, respectively. So Tt* = (s*, v*) U Smtt-l. Denote
S t - 1 ~'~ smtl-lCl-l. Let M0 = Mo(S*) = Y]~seS* m(s).

We may prove (6) for B~. since f(Tl(s*)) <_ f(B~,.). We follow loop (b) of Procedure
while it creates B,,. For brevity, we denote dl = d(Tt[1), M1 = Mo(S*/TI_I), and
ml --- M0 - M1. By induction f (T t -1) < f(Tl*_l)Cl-l. By definition of Tl*_l, f(Tl*_l) <
f (Smtl-1) . Thus we obtain

dl Sl-1

m 1 - - m 0

After contraction of Ttl_l the procedure finds Tt2_l, Tz3_l, and so on. Denote their corre-
sponding values by di, Mi, and mi. Similarly, di/mi ~ Sl-l/Mi-1 and, therefore,

(7)

Unraveling (7), we obtain

M i < M i - l (1 - s @ _ l) "

Mp<_Mo H 1 - .
i=1 S I - - 1

Taking the natural logarithm on bpth sides and simplifying using the approximation
ln(1 + x) <_ x, we obtain

P
(8) In M0 > Y~i=l d________~,

Mp - - S l _ |

Assume that loop (b) interrupts after j iterations, i.e., f (Bo. U TtJl) > f(Bv*). If
st-1 > Mj, then let B' be the tree obtained after p + 1 iterations such that M e > st- l >
Mp+l. Note that f (B ') > f(B~.) , since B' is obtained no later than By,.

108 A. Zelikovsky

I f s t - i < Mj, then f (B :) < f (T / J l) 5 S I - I / M j < I. For the purposes of analysis

we put p = j - 1, d) = mj = Mj - s t - l and f (B ') = (~_,~_+_~ di)/(Y~P_+_l I mi) . Note

that again Mp > s t - i > Mp+l and f (B ') > f (B :) .
The inequality d?+l/mp+l < s t - l / M p implies dp+l/S t - i < m p + l / M p < 1. By

Theorem 2, Mo < s m h < k . s m t < k . smtt_ I. So (8) yields

(9) ~-~/P=l di + Mp+l + d p + l _< 2 + I n k .

s I - 1

Since f (T t (s ')) < 1 (Remark 2), (6) is true if f (T t*)c t > 1. So we may assume that
f (T t*)c t < 1. Inequality (9) yields

1 > f (T t*) c t >

p - I
do + s m h - lcl Y~i=0 di + Mp+l >

M0 - M0

Since the last ratio is less than 1,

f (Tt*)ct >_
' d ,

Mo - Mp+I
-- f (B ') > f (B :) .

Thus, we proved (6) in the case of S N T/(v*) c S*.
Now we turn to the case of an arbitrary set S A Tt(v*)\{s*}. As above, we prove (6)

for the tree B : . We partition mi of the tree :Ft_ l into two parts mi = m 7 + ~ i , where the
first part is the sum of costs of edges ending at the S*-nodes of T / l and the second is
the sum of costs of edges ending at the rest of the S-nodes of T/_ l in the tree Mst (S) . We

also partition di = d* + d i in the same proportion as m~, i.e., -id*/m*, i = di/r~i . Assign
di +-- 0 ifr~i = O, and d/* ~-- 0 if m* = O.

As above, let loop (b) interrupts after j iterations.
Step (c) of Procedure guarantees that, for any i = 1 j - 1,

6(i
- - = f (T /_ I) < f (B , , . - T/i_I).
ffli

Thus,

do + Z,G' d, do + El:_; + El-: ai
f(B<..) = E/Z , l m, =

do + El-11 d* <
~../ZI I . j - I -- j--I , mi + Z i = I mi Z i = l mi

Note that the previous argument for the case of S A Tt (v*) _c S* is true for the values
* = O. Therefore, d*, m i*, and Mi = M i - i - m i* if we omit such i ' s for which m i

S -'j-,_,/=: d* < f (T t ,)Q . [] do +
f (B , , .) <_

E { - I 1 m i*

Now we are able to prove the main result of the paper.

PROOF OF THEOREM 1. Let T be the output tree of Algorithm Az and let T/l , TI 2 be
the trees inserted in LIST. Denote d (T /) = di, Mg = M i - i - mi, where mi is the sum of

A Series of Approximation Algorithms for the Acyclic Directed Steiner Tree Problem 109

costs of edges ending at the S-nodes of Tt i in the tree Mst(S). As above, ct = (2 + In k) t-2,

si = smtlci.
Note that f(Tt*) < smtt/Mo. By Lemma 2, d l / m l < f(Tt*)cl < st/Mo. Inductively,

di st
- - . (- -

mi -- Mi-i

Similarly to (8) we derive

In --M~ > Y~/P=I di

mp - si

Since, for some j , Mj = 0, there is some p such that Mp >_ st >_ Mp+l. Let T' be
the Steiner tree formed by the full trees obtained after p iterations of loop (l) and the
rest of the Mst-edges. By Remark 2, di /mi < 1 and d (T) <_ d(T ') . Since dp+l/st <_
mp+l/Mp < 1 and Mo < k~mt,

This implies that

Y~P=ldi + Mp+l q-dp+l <_ 2 + l n k .

Sl

p+l

d (T) < Z di + Mp+l < st(2 + Ink).
i=1

By Theorem 2, the last value is at most kl/ t(2 + lnk) t - l smt . []

PROOFOF REMARK 1. We find the limit performance guarantee of {AlL Denote the
performance guarantee of AI by f i (k) = kil t(2 + logk) t - l . We need to find f (k) =
mint j~ (k). Taking the natural logarithm of j~ (k) and derivative, we obtain

Ink
(10) - - - + I n (I n k + 2) = 0.

12

Substituting the solution of (10) in In j5 (k), we obtain

In f (k) = 2x/In k In(In k + 2) - In(In k + 2). []

Acknowledgments . I am deeply indebted to the referees whose comments consid-
erably improved the final version of this paper. I would also like to thank Professors
M. Szegedy and A. Shen for helpful discussions of this work.

in]

References

S. Arora, C. Lund, R. Motwani. M. Sudan, and M. Szegedy. Proof veritication and hardness of approx-
imation problems. In Proc. 33rd Annual IEEE L~vmp. on Foundations of Computer Science, pp. 14-23,
1992.

110 A. Zelikovsky

[2] E Berman, U. F6Bmeier, M. Karpinski, M. Kaufmann, and A. Zelikovsky. Approaching the 5/4-
Approximations for Rectilinear Steiner Trees. I,ecture Notes in Computer Science, vol. 855. Springer-
Verlag, Berlin, 1994, pp. 60-71.

[3] M. Bern and P. Plassmann. The Steiner problems with edge lengths 1 and 2. Inform. Process. Lett.
32:171-176, 1989.

[4] J .H. Camin and R. R. Sokal. A method of deducing branching sequences in phylogeny. Evolution
19:311-326, 1972.

[5] D.Z. Du, Y. Zhang, and Q. Feng. On better heuristic for Euclidean Steiner minimum trees. In Proc.
32nd Anm~al IEEE Svmp. on k?~undations of Computer Science, pp. 431~J,39, 1991.

[6] E K. Hwang, D. S. Richards, and E Winter. The Steiner Tree Problem. Annals of Discrete Mathematics,
vol. 53. North-Holland, Amsterdam, 1992.

[7] R.M. Karp. Reducibility among combinatorial problems. In Miller and Thatcher (eds.), Complexio' of
Computer Computations, Plenum, New York, 1972, pp. 85-103.

[8] E Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted Steiner trees.
In Proc. Third Confer. on Integer Programming and Combinatorial Optimization, pp. 323-331, 1993.

[9] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. In Proc. 25th
Annual ACM ,~vmp. on Theory of Computing, pp. 286-293, 1993.

[10] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. Inform. Process.
Lett. 27:125-128, 1988.

[11] L. Nastansky, S. M. Selkow, and N. E Stewart. Cost minimal trees in directed acyclic graphs. Z. Oper.
Res. 18:59-67, 1974.

[12] S.K. Rao, E Sadayappan, E K. Hwang. and E W. Shor. The rectilinear Steiner arborescence problem.
Algorithmica 7:277-288, 1992.

[13] V.J. Rayward-Smith, The computation of nearly minimal Steiner trees in graphs. Internat. J. Math. Ed.
Sci. Tech. 14:15-23, 1983.

[14] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs. Math.
Japon. 24:573-577, 1980.

[15] B .M. Waxman and M. Imase. Worst case-performance of Rayward-Smith's Steiner tree heuristic.
Inform. Process. Lett. 29:283-287, 1988.

[16] M. Yannakakis. Recent developments on the approximability of combinatorial problems. In K. W. Ng
et al. (eds.), Algorithms and Computation. Lecture Notes in Computer Science, vol. 762. Springer-
Verlag, Berlin, 1993, pp. 363-368.

[17] A .Z . Zelikovsky. An l l/6-approximation algorithm for the network Steiner problem. Algorithmica
9:463--470, 1993.

[18] A.Z. Zelikovsky. Better approximations algorithms for the network and Fuclidean Steiner tree problems.
Tech. Rep. CS-96-06, University of Virginia, Charlottesville, VA.

