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A Series of Approximation Algorithms for the Acyclic 
Directed Steiner Tree Problem 1 

A. Zelikovsky 2 

Abstract. Given an acyclic directed network, a subset S of nodes (terminals), and a root r, the acyclic directed 
Steiner tree problem requires a minimum-cost subnetwork which contains paths from r to each terminal. It is 
known that unless NP c_ DTIME[np~176 n ] no polynomial-time algorithm can guarantee better than (In k)/4- 
approximation, where k is the number of terminals. In this paper we give an O(U)-approximation algorithm 
for any e > 0. This result improves the previously known k-approximation. 
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1. In t roduct ion .  The general Steiner tree problem in graphs requires a minimum-cost 
tree spanning a distinguished node set S in a network G. This problem is investigated 
for different types of networks. We mention below the following cases: usual networks 
with edge costs (NSP), node-weighted networks (NWSP) where the cost of a tree is the 
sum of edge costs and prescribed costs of its nodes, acyclic directed networks with edge 
costs (ADSP), and directed networks (DSP). 

We consider the Steiner tree problem for acyclic directed graphs, i.e., directed graphs 
where no directed chain leads from any node to itself. 

ACYCLIC DIRECTED STEINER TREE PROBLEM (ADSP). Given an acyclic digraph G = 
(V, E , d ) w i t h e d g e c o s t s d :  E ~ R + , a s u b s e t S  C V a n d a r o o t r  6 V, find a minimum 
cost subgraph containing directed paths from r to all elements of S (minimum-cost Steiner 
tree). 

For an instance of the general Steiner tree problem, Smt and smt  denote the minimum- 
cost Steiner tree and its cost, respectively. The elements of the set S are called termihals. 
The number of terminals is denoted by k. 

ADSP is also known as the Steiner arborescenceproblem in acyclic networks [6]. It has 
various practical applications. The most important occurs in biology while constructing 
phylogenetic trees [4]. A number of papers are devoted to the case of a digraph embedded 
in a d-dimensional rectilinear metric. For d = 2, a fast and effective heuristic was 
proposed in [12]; however, this case has not yet been shown to be NP-hard. An exact 
exponential-time algorithm for ADSP based on embedding of a graph in a d-dimensional 
rectilinear metric was given in [11]. 
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Most of cases of the general Steiner tree problem (NSP, NWSP, ADSP, DSP) are NP- 
hard [7], thus many approximation algorithms have appeared in the last two decades. 
The quality of an approximation algorithm is measured by its performance ratio: an 
upper bound on the ratio between the achieved cost and the optimal cost. A worst-case 
analysis for some approximation algorithms was provided to find its exact performance 
ratio. For the most complicated cases, a performance ratio may depend on the number of 
terminals. From the other side, significant progress in lower bounds for approximation 
complexity of NP-hard problems has been made in the last few years [16]. 

The approximation complexity of NSP and NWSP has already been determined. 
NSP belongs to MAXSNP-class [3], so a constant factor approximation algorithm exists 
[14] and, for some e > 1, e-approximation is NP-complete [1]. For NWSP, a (2 In k)- 
approximation algorithm was designed [8]. From the other side, the famous set cover 
problem may be embedded in NWSE This implies that NWSP cannot be approximated to 
within less than (�88 In k)-factor unless DTIME[n p~176 ] D_ NP [9]. Therefore, the only 
question for these problems is still open: what exact constants separate polynomially 
solvable and NP-complete approximations? For NSP, this constant is at most 1 + In 2 
1.69 [ 18]. For the euclidean and rectilinear subcases of NSP, these constants are at most 

61 1 + ln(2/V~) ~ 1.1438 [18] and ~ ~ 1.271 [2], respectively. 
The approximation complexity of ADSP and DSP is still unknown. The only thing we 

can say is that the set cover problem can be transformed to ADSP, so these problems are no 
easier to approximate than NWSE To determine an upper bound on the approximability of 
ADSP we may compare it with the next already distinguished approximation complexity 
class. The famous representative of this class is the chromatic number problem (CNP). 
This class is characterized by the existence of e > 0 such that the n~-approximation is 
NP-complete [9]. The main result of this paper says that to approximate ADSP is easier 
than to approximate CNP. 

THEOREM 1. There exists a series of approximation algorithms At, l = 1, 2 . . . . .  for 
the acyclic directed Steiner tree problem. The performance ratio of an algorithm Al is 

kU;(2 + lnk )  ;-1, 

where k is the number of terminals. The runtime of algorithm A; is 0 (or + nl-l  k;), where 
n is the number of nodes of the input graph and ot means the time complexity ofallpairs 
shortest paths. 

REMARK 1. The limit guarantee of a presented series of heuristics 

exp[x/4 Ink ln(ln k + 2) - ln(ln k + 2)] = k~/41n(lnk+2)/lnk 
lnk + 2  

is subpolynomial, i.e., its growth is less than U for any e > 0. 

We believe that the approximation complexity of ADSP is characterized by the pre- 
sented series of heuristics. 

CONJECTURE 1. ADSP cannot be approximated with a subpolynomial guarantee unless 
P = N P .  
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In the next section we describe in terms of contraction several known heuristics for 
Steiner tree problems and a new level-restricted relative greedy heuristic. In Section 3 
we estimate an approximation of  optimal Steiner trees for ADSP with level-restricted 
Steiner trees. A formal definition of  heuristics At with a runtime analysis is presented 
in Section 4. The last section is devoted to the proof of  the performance ratio claimed in 
Theorem I. 

2. The Greedy Contraction Framework. We assume that the digraph G is transitive, 
i.e., for any u - v path, in G there is an edge (u, v) e E. Moreover, the cost of  any edge 
in G coincides with the cost of the minimum-cost  path between its ends. Gs denotes the 
subgraph of G induced by the set S O r. Mst(S) is the minimum spanning tree of  Gs 
(also called the minimum spanning arborescence of Gs) and M0 = Mo(S) is its cost. 

A full Steiner tree T is a rooted out-going tree such that 

1. the root of  T, r ( T ) ,  belongs to S U r and has only one son; 
2. all leaves of  T belong to S; 
3. all other nodes of  T do not belong to S. 

We can split Smt into edge-disjoint full components. A full tree T is said to be of level 
l = l(T) if every path in T from its root to any leaf has at most l edges. 

Contraction of  a tree T means reducing to zero the costs of  edges of Mst(S) ending 
at the terminals of T (or edges of  Gs between terminals of T for undirected Steiner 
problems). We denote the result of  contraction by S~ T. Thus contraction reduces the 
value Mo(S). 

For all the Steiner tree problems, the following greedy contraction framework is 
successfully used in approximations. 

Greedy Contraction Framework (GCF) 

(i) repeat until Mo(S) ----0 

(a) find a full Steiner tree T* in a class K which 

minimizes a criterion function f ( T ) :  T* ~- arg minTeK f (T). 
(b) i n s e r t  T* in LIST. 
(c)  c o n t r a c t  T*, S ~-- S/T*.  

(2) reconstruct an output Steiner tree from trees of LIST. 

Many famous heuristics can be embedded in this framework considering different 
definitions of  a class K and a criterion function f .  

THE MINIMUM SPANNING TREE HEURISTIC (MSTH) [ 14]. K consists of all paths and 
f ( T )  = d(T) .  

THE RAYWARD-SMITH HEURISTIC (RSH) [ 13]. K contains all stars and f ( T )  = d ( T ) /  
(r - I), where r is the number of leaves of T. 
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THE GENERAIJZED GREEDY HEURISTIC (GGH) [ 17]. K consists oftrees with three ter- 

minals and f ( T ) = d ( T ) - ( Mo ( S ) - Mo ( S / T ) ). 

THE SIZE-RESTRICTED RELATIVE GREEDY HEURISTIC (SRGH) 1181. 
all trees with at most r terminals. 

f ( T )  = 
d ( T )  

Mo(S)  - M o ( S / T )  

K = K,. contains 

Let/~ be the family of all Steiner trees with full components belonging to K. Let smt  R 

be the cost of the minimum Steiner tree in K. We denote by cOStA the cost of the output 
tree of an algorithm A embedded in GCE To determine a performance guarantee of A 
we may bound the following two ratios: a l = ( s m t k / s m t ) ,  and a2 = ( co s ta / sm tR) .  

Below we present the known bounds for the ratios al and a2 for the above heuristics 

embedded in GCF: 

MSTH gives a l  _< 2 and a 2  = 1 for NSP, and al < k and a~ = 1 for NWSP, ADSE 

RSH gives al < 3 and al �9 a2 < 2 for NSP [15] and al �9 a2 < 21ogk for NWSP [8]. 

5 anda l  .a~ < ~ for NSP [17]. GGH gives al < 3 - - 
S R G H g i v e s l i m r _ ~  at = 1 [5] a n d l i m r ~  a2 = l + l n  2 forNSP[ 18]. In other words, 

it induces a series of approximation algorithms for NSP with the limit performance 
ratio (1 + In 2). 

In this paper we present a 

LEVEL-RESTRICTED RELATIVE GREEDY HEURISTIC (LRGH). The class K = Kt con- 
sists of full Steiner trees with at most / levels. The criterion function is the same as for 

SRGH: 

d ( T )  
(1) f ( T )  = 

m o ( S )  - m o ( S / T ) "  

Theorem 2 of the next section says that al ~< k UI for DSP. The rest of the paper is 
devoted only to ADSE In Section 5 we prove that a2 < (2 + Ink). Unfortunately, we 
cannot compute exactly arg minK~ f ( T )  for I > 3. Section 4 shows how we avoid this 
obstacle by restricting the class K~. 

3. Level-Restricted Steiner Trees. A Steiner tree is called l-restricted if the level of its 
full components does not exceed I. Smtt and smtt  denote the minimum-cost/-restricted 
Steiner tree and its cost, respectively. The following theorem bounds the approximation 
of minimal Steiner trees with minimum-cost/-restricted trees. 

T H E O R E M  2. For any instance o f  the directed Steiner tree problem, 

s m O / s m t  < k Ill 



A Series of Approximation Algorithms for the Acyclic Directed Steiner Tree Problem 103 

Fig. 1. The/-restricted tree T l drawn from a full Steiner tree. The Steiner tree edges are dotted. 

PROOF. We construct  Smtt for every  full  componen t  o f  Smt separately, so we  can 

assume that Smt is a full  Steiner  tree. 

First  we in t roduce-some notations. Le t  T = Smtand  let v be a node o f  T.  Let  

denote the set o f  all descendants  o f  v and let s(v) denote  the number  o f  terminals  in ~, 

e.g., s(r) = k. Son(v) is the set o f  all sons o f  v in T. Let  

Vi = {v E T, s(v) > k ( l - i ) / I  &s(v ' )  < k ( l - i ) / I  for any v' ~ Son(v)}, 

i = 1 . . . . .  1 - 1, Vt = S, V0 = {r}. For  every  v 6 V/, i = 0 . . . . .  1 - 1, let  Sonl(v) 
denote fi A Vi+l. 

Let  T l be a tree with the node set V l = U l = o  V/ and the edge  set E l = {(u, v): 

u ~ V t, v ~ Sont(u)}. The cost  o f  an edge  (u, v) in T l coincides  wi th  the cost  o f  the 

u-v path in the tree T.  Note  that the tree T t is an / - r e s t r i c t ed  Steiner  tree, since u ~ 

for any u 7~ v, u, v c Vi (Figure 1). 
Let  u 6 V/ and let  Son(u) = {ul . . . . .  ut}. For  every  j = 1 . . . . .  t,  let  Uj denote  

Sonl(u) N ub and let d(uj, u~) = argmax~stlj d(uj, v). Then  

(2) 
t 

d(u, v) <_% Z IUjl(d(uj, u]) + d(u, uj)) 
vESonl(u) j = l  
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= ~ IUjld(u, u;)  
j=l  )' (max I",l E 
\ j=l . . . . , t  j=I 

Note that ~-~,c_ G s(v) = s(uj) yields IUjl minv~v,., s(v) <_ s(uj) and 

(3) max [Uj] rain s(v) _< max s(uj). 
j=l... . .t  vEV,_, j=l... . .t  

Since min,,~v,,, s(v) > ktt  i-1)/l and maxj=l.....t S(blj)  < k a-ivt,  (3) yields 

(4) max IUjl < k lit. 
j=l.. . . , t  

Inequalities (2) and (4) imply 

l 

t,ESon I (11) j=  1 

Note that all u-u7 paths are edge-disjoint in the tree T. Thus, 

t(u) 

uEV I vcSonl(ul uEV I j=l 

4. The Series of  Algorithms. In this section we construct recursively the series of  
algorithms {A/, l = l, 2 . . . .  }. For any l, Algorithm A/ is LRGH with the restricted 
subclass of Kt, i.e., it approximates the minimum-cost/-restricted Steiner tree. 

Al coincides with MSTH. Since Gs has no cycles, Mst(S) consists of  the cheapest 
edges ending at S-nodes in Gs. For any s E S, denote the cost of  such an edge by 
re(s) --- minr d(s ' ,  s) (we assume that d(s, s) ---- cx~, since there are no loops in G). 
So the output cost is M0 = Y~s~S" re(s). 

A2 coincides with LRGH. Our goal is computing Step (a) of  GCF for the function (1). 
We need the following notations. For any v E V - S, let do ---- min,~sur d(s. v) and 

so = arg mind(s ,  v). S(v) and t(v) denote the set of  all S-descendants of v and its size, 
respectively. For any si E S(v), di = d(v ,  si ) ,  mi --- minses d(s, si). We assume that the 
set S(v) is enumerated in such way that di/mi 5 d i+l /mi+l .  

Every 2-level full Steiner tree T is determined by its root r(T) E S tO r, the unique 
internal node v E V - S, and leaves (Figure 2). 

The following lemma makes computing arg minrer~ f ( T )  possible. 

LEMMA 1. For an), v E V - S, 

J d 
min f ( T )  = min Z i - o i  

teT~=2,T~v j=l,...a(v~ ~ / = 1  m i  
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Fig. 2. Minimum spanning and 2-restricted Steiner trees. The MST edges are dotted. 

PROOF. Let T* = argmin~er f ( T ) ,  and let {(s~, v), (v, s t)  . . . . .  (v, sT.)} be its edges. 
We can rewrite (1) as follows: 

f (T*) "- d(s~, v) + ~*=, d(v,  s*) 

El*=, m(s;) 

We may replace the root s~ by so in T* without increasing f since d(s0, v) < d(s~, v). 
Let s* be the "last" terminal, i.e., s* = argmaxi=l,...,t,[d(v, s[)/m(s*)].  Assume that, 
for some s c S(v), 

(5) d(v,  s) d(v,  s*) 
m(s) - m(s*) 

To prove the lemma we show that f ( T *  U (v, s)) < f ( T * ) .  Indeed, 

f ( T * )  < f ( T *  - (v, s*)) = 
d(T*) - d(v,  s*) 

~f~*=-I m(s;)  -- m(s*) 

since T* minimizes f .  Therefore, d(v,  s*)/m(s*) < f ( T * ) .  Thus, inequality (5) yields 

f ( T *  tO (v, s)) d(T*)  + d(v,  s) d (T )  
= < = f ( T * ) .  [ ]  

Y~*--1 m(s~) + m(s) - Y~I*=I m(s*) 

The Algorithms Ai, i > 3. We cannot find T/* = argminx~ f ( T )  exactly even for 
l = 3. So we are looking for a minimum of f in a subclass of  Kt defined below. 

We define a tree Tt(u), 1 >_ 1, recursively. For any u 6 V, Tl(U) = {(u, s*)}, where 
s* = arg mins~s[ d ( u, s ) / m (s ) ]. For instance, any edge (s, s ') ~ Mst( S) may be assigned 
to Tl(S). Denote V (u) = {v ~ V - S : d(u,  v) < d(s, v) for all s ~ S U r].  To define 
Tl(s), l > 2, we run the following: 
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Procedure  

O) G' ~--G; 
i) for each v �9 V(u) do 

(a) Bo +-- (s, v), i +-- 1; 
(b) repeat forever 

7","_ l ~ ~_,(v); 
if f(Bt, ldT1i_l) >_ f ( B v ) ,  
Bt, ~ B~, t_J T/_I; 

2) 

then exit repeat; 

contract T/_I, S ~ S/TIi_I , i +- i + I; 

(C) for j = I ..... i do 

if f(Bv) < f(T/l) then B~. ~- Bv\TlJl 
(d) G ~-- G';  
Tt(u) ~-- a r g m i n { f ( T )  �9 T = Tt_l(u) v T = B,,, v �9 V(u)} 

In other words, we extend (u, v) with the "best" (1 - 1 )-restricted full tree Tt-l rooted 
in v, which we find recursively. We add (Tt_l)'S as long as this addition decreases the 
function f .  Step (c) further reduces f by discarding (Tt - t ) ' s  with a positive contribution 
to f ( B v ) .  Note that step (c) can be omitted for I = 2. Then we restore G and find graphs 
B,, for all other v �9 V(u) .  So each B~, is an/-restr ic ted full tree with the unique son v of  
the root u. Among all (B,,)'s and Tt-l (u) we choose one with the smallest value of f as 
the tree Tt(u). It is easy to see that Lemma 1 yields T2(s) = argminreK2.rtr~=s f ( T ) .  

REMARK2. F o r a n y s  �9 S t 3 r ,  f ( T l ( s ) )  < 1. 

PROOF. Indeed, for a nonzero edge e 6 Mst(S) ,  f ( e )  = 1. [] 

Now we can present the algorithm At, l > 2, as follows: 

A l g o r i t h m  Al 

(i) repeat until Mo(S) : 0 
(a)  S* +-- argmins~sur f ( T t ( s ) ) .  
(b)  i n s e r t  Tt(s*) in LIST. 

(c)  c o n t r a c t  Tl(s*), S +-- S /TI ( s*)  

(2) reconstruct an output Steiner tree from trees of LIST. 

Now we estimate the time complexity of Algorithm At. For brevity, the sets and their 
cardinalities will have the same notations. 

Since the graph G is acyclic, we can apply the O ( E  + V log V) procedure of finding 
M S T ( S )  due to Mehlhorn [10]. Thus, Al runs in time O ( E  + V log V). 

For A2, we need to know all distances between S and V - S. This can be done in time 
O ( E  -t- V log V) by adding an auxiliary node with zero cost edges to S t3 r and finding 
all distances from this node to all others. Similarly we can find distances between V - S 
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and S. Then in time O(VS)  we can find argminr2 f ( T )  (Lemma 1). Thus, the total 
runtime of A2 is O(E + V log V + S2V). 

To find /](s*), i _> 3, we need a runtime rtl = O((VS)t-1),  since rtt = r t l_lVS 
and rt2 = O(VS) .  Thus, Al has a runtime O(ot + Vt-ISt),  where cr means the time 
complexity of  all pairs shortest paths. 

5. The Performance Guarantee. Our first goal is to show that the minimum of the 
function f in the item (a) of  Algorithm A1 is not far from the minimum in the whole 
class Kr. In other words, we generalize Lemma 1 for arbitrary l. 

LEMMA 2. Let I"1" = arg min K~ f ( T ) and let s* be the root Of Tl* . Then, for l >_ 2, 

(6) f(Tl(s*)) <_ f(Tt*)(2 + l n k ) / - 2 .  

PROOF. Induction on 1. The case of  l = 2 follows from Lemma 1. Denote ct = 
(2 + log k) t~2 and S* = S f) T/*\{s*}. Let v* be the unique son of the root s* in the tree 
T/* and do = d(s*, v*). 

First we consider the case of  S A T/(s*)\{s*} c S*. Consider ADSP for S* with a 
root v*. In the above notations, let Srntt_l and smtl-i be the minimum-cost  (l - 1)- 
restricted Steiner tree and its cost, respectively. So Tt* = (s*, v*) U Smtt-l.  Denote 
S t - 1  ~'~ smtl-lCl-l. Let M0 = Mo(S*) = Y]~seS* m(s). 

We may prove (6) for B~. since f(Tl(s*)) <_ f(B~,.). We follow loop (b) of  Procedure 
while it creates B,,.  For brevity, we denote dl = d(Tt[1), M1 = Mo(S*/TI_I), and 
ml --- M0 - M1. By induction f (T t -1 )  < f(Tl*_l)Cl-l. By definition of Tl*_l, f(Tl*_l) < 
f (Smtl-1) .  Thus we obtain 

dl Sl-1 

m 1 - -  m 0 

After contraction of Ttl_l the procedure finds Tt2_l, Tz3_l, and so on. Denote their corre- 
sponding values by di, Mi, and mi. Similarly, di/mi ~ Sl-l/Mi-1 and, therefore, 

(7) 

Unraveling (7), we obtain 

M i < M i - l ( 1 - s @ _ l  ) "  

Mp<_Mo H 1 -  . 
i=1 S I - - 1  

Taking the natural logarithm on bpth sides and simplifying using the approximation 
ln(1 + x) <_ x, we obtain 

P 
(8) In M0 > Y~i=l d________~, 

Mp - -  S l _ |  

Assume that loop (b) interrupts after j iterations, i.e., f (Bo.  U TtJl) > f(Bv*). If 
st-1 > Mj, then let B'  be the tree obtained after p + 1 iterations such that M e > st- l  > 
Mp+l. Note that f ( B ' )  > f(B~.) ,  since B' is obtained no later than By,. 
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I f s t - i  < Mj,  then f ( B : )  < f ( T / J l  ) 5 S I - I / M j  < I. For the purposes of  analysis 

we put p = j - 1, d) = mj = Mj  - s t - l  and f ( B ' )  = (~_,~_+_~ di)/(Y~P_+_l I mi) .  Note 

that again Mp > s t - i  > Mp+l  and f ( B ' )  > f ( B : ) .  
The inequality d?+l/mp+l < s t - l / M p  implies dp+l/S t - i  < m p + l / M p  < 1. By 

Theorem 2, Mo < s m h  < k .  s m t  < k .  smtt_ I. So (8) yields 

(9) ~-~/P=l di + Mp+l + d p + l  _< 2 + I n k .  

s I -  1 

Since f ( T t ( s ' ) )  < 1 (Remark 2), (6) is true if f (T t*)c t  > 1. So we may assume that 
f (T t*)c t  < 1. Inequality (9) yields 

1 > f (T t* ) c  t > 

p - I  
do + s m h -  lcl Y~i=0 di + Mp+l  > 

M0 - M0 

Since the last ratio is less than 1, 

f (Tt*)ct >_ 
' d ,  

Mo - Mp+I 
-- f ( B ' )  > f ( B : ) .  

Thus, we proved (6) in the case of  S N T/(v*) c S*. 
Now we turn to the case of an arbitrary set S A Tt(v*)\{s*}. As above, we prove (6) 

for the tree B : .  We partition mi of the tree :Ft_ l into two parts mi = m 7 + ~ i ,  where the 
first part is the sum of  costs of  edges ending at the S*-nodes of  T / l  and the second is 
the sum of  costs of edges ending at the rest of  the S-nodes of  T/_ l in the tree Mst (S ) .  We 

also partition di = d* + d i  in the same proportion as m~, i.e., -id*/m*, i = di/r~i .  Assign 
di +-- 0 ifr~i = O, and d/* ~-- 0 if m* = O. 

As above, let loop (b) interrupts after j iterations. 
Step (c) of Procedure guarantees that, for any i = 1 . . . . .  j - 1, 

6( i 
- -  = f (T /_  I) < f ( B , , .  - T/i_I ). 
ffli 

Thus, 

do + Z,G' d, do + El:_; + El-: ai 
f(B<..) = E/Z ,  l m, = 

do + El-11 d* < 
~../ZI I . j - I  -- j--I , mi + Z i = I  mi  Z i = l  mi 

Note that the previous argument for the case of  S A Tt (v*) _c S* is true for the values 
* = O. Therefore, d*, m i*, and Mi = M i - i  - m i* if we omit such i ' s  for which m i 

S -'j-,_,/=: d* < f (T t , )Q .  [] do + 
f ( B , , . )  <_ 

E { - I  1 m i* 

Now we are able to prove the main result of  the paper. 

PROOF OF THEOREM 1. Let T be the output tree of Algorithm Az and let T/l , TI 2 . . . . .  be 
the trees inserted in LIST. Denote d (T / )  = di, Mg = M i - i  - mi,  where mi is the sum of  



A Series of Approximation Algorithms for the Acyclic Directed Steiner Tree Problem 109 

costs of  edges ending at the S-nodes of  Tt i in the tree Mst(S). As above, ct = ( 2 +  In k) t-2, 

si = smtlci. 
Note that f(Tt* ) < smtt/Mo. By Lemma 2, d l / m l  < f(Tt*)cl < st/Mo. Inductively, 

di st 
- -  . (  - -  

mi -- Mi-i  

Similarly to (8) we derive 

In --M~ > Y~/P=I di 

mp - si 

Since, for some j ,  Mj = 0, there is some p such that Mp >_ st >_ Mp+l. Let T'  be 
the Steiner tree formed by the full trees obtained after p iterations of loop ( l )  and the 
rest of  the Mst-edges. By Remark 2, di /mi  < 1 and d ( T )  <_ d(T ' ) .  Since dp+l/st <_ 
mp+l/Mp < 1 and Mo < k~mt, 

This implies that 

Y~P=ldi + Mp+l q-dp+l <_ 2 + l n k .  

Sl 

p+l  

d ( T )  < Z di + Mp+l < st(2 + Ink). 
i=1 

By Theorem 2, the last value is at most kl/ t(2 + lnk ) t - l smt .  [] 

PROOFOF REMARK 1. We find the limit performance guarantee of {AlL Denote the 
performance guarantee of  AI by f i (k)  = kil t(2 + logk)  t - l .  We need to find f ( k )  = 
mint j~ (k). Taking the natural logarithm of j~ (k) and derivative, we obtain 

Ink 
(10) - - -  + I n ( I n k  + 2 )  = 0. 

12 

Substituting the solution of  (10) in In j5 (k), we obtain 

In f ( k )  = 2x/In k In(In k + 2) - In(In k + 2). [] 
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