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Improved Approximation Algorithms for MAX k-CUT 
and MAX BISECTION 1 

A. Frieze 2 and M. Jerrum 3 

Abstract. Polynomial-time approximation algorithms with nontrivial performance guarantees are presented 
for the problems of(a) partitioning the vertices of a weighted graph into k blocks so as to maximize the weight 
of crossing edges, and (b) partitioning the vertices of a weighted graph into two blocks of equal cardinality, 
again so as to maximize the weight of crossing edges. The approach, pioneered by Goemans and Williamson, 
is via a semidetinite programming relaxation. 
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1. I n t r o d u c t i o n .  Goemans  and Wi l l i amson /8 ]  have significantly advanced the theory 

of  approximat ion algori thms.  Previous work on approximat ion algor i thms was largely 

dependent  on compar ing  heuristic solution values to that of  a Linear  Program (LP) relax- 

ation, ei ther implici t ly or  explicitly. This  was recognized some t ime ago by Wolsey [ 16]. 

(One significant except ion to this general  rule has been the case of  Bin Packing.)  

The main novel ty  o f  [8] is the use o f  a SemiDef in i te  Program (SDP) as a relaxation.  

To be more precise we consider  the problem M A X  C U T  studied (among others) in [8]: 

we are given a vertex set V = { 1 . . . . .  n} and nonnegat ive weights  ll)ij , for 1 < i, j < n, 

where wij = wji and wii = 0 for all i, j .  I f  S _ V and S : -  V \ S ,  then the weight of  the 

cut (S : S) is 

/ / ) ( S  : ,.~) = y~  ll)ij. 
iES.jES 

The aim is to find a cut of  max imum weight.  

Introducing integer variables yj 6 { - 1 ,  1 for j 6 V we can formulate  the M A X  

C U T  problem as 

1 y ~  wi j ( l  - y iy j )  IP: max imize  
( 1 )  i<j 

subject  to yj ~ { - 1 , 1 } ,  Yj  c V. 

The key insight of  Goemans  and Wil l iamson is that instead of  convert ing this to an 

integer l inear program and then consider ing the LP relaxation,  it is possible to relax IP 
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directly to the following: 

SDP: 1 maximize ~ ~ wij (1 - u i . u j )  
i<j 

subject to vj �9 Sn-l ,  Yj �9 V. 

Here Sn_~ = {x �9 ]K" : Ixl = 1} is the unit sphere in n dimensions. SDP is an example 
of  a special kind of  convex program, called a semidefinite program for reasons that will 
become apparent presently, which is efficiently solvable in both theoretical and practical 
senses. In particular, an optimal solution within given additive error e may be computed 
in time polynomial  in n and log e -1 . (See [1] for a detailed exposition.) More explicitly, 
the optimization problem SDP is equivalent to 

1 
CP :  m a x i m i z e  ~ E w i j ( 1  - Y/J) 

i<j 
(2) subject to Yjj = 1, Y j  �9 V, 

Y = [Y/j] >- 0. 

Here Yij replaces vi �9 v j,  and the notation Y >- 0 indicates that the matrix Y is constrained 

to be positive semidefinite; this constraint defines a convex subset of R n2. The idea of  
Goemans and Will iamson is to solve SDP and then use the following simple (randomized 
rounding) heuristic to obtain a remarkably good solution to M A X  CUT: choose a random 
hyperplane through the origin, and partition the vectors vi (and hence the vertex set V) 
according to which side of  the hyperplane they fall. 

This is an exciting new idea and it is important to see in what directions it can be 
generalized. In this paper we do so in two ways. First we consider MAX k-CUT where 
the aim is to partition V into k subsets: for a partition 7 9 = P1, P2, �9 . . ,  Pe of  V we let 
1791 --  e and 

11)(79)= E E ll)ij" 
1 <r<s<e iEPr,JEPs 

The problem is then 

M A X  k-CUT: maximize w(79) 
subject to 1791 = k. 

Note that MAX k-CUT may be interpreted as the search for a ground state in the anti- 
ferromagnetic k-state Potts model: see [15]. 

Papadimitriou and Yannakakis [ 1 1] studied an unweighted (wij �9 {0, 1 }) version of  
M A X  k-CUT in the guise of  "MAX k-COLORABLE SUBGRAPH",  and showed it to 
be MAX SNP-complete.  In the light of Arora et al.'s characterization of the class NP in 
terms of  probabilist ically checkable proofs [3], this result implies that there can be no 
polynomial- t ime approximation scheme for MAX k-CUT, for any k > 2, unless P = NP. 
The question, then, is how closely may MAX k-CUT be approximated in polynomial  
t ime? 

To attack this problem we need to be able to handle variables that can take on one of  
k values as opposed to just  two, a similar problem to that faced by Karger et al. in trying 
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to colour 3-colourable graphs with relatively few colours [10]. Our solution (and theirs) 
is a natural extension of  the existing solution for the case k = 2, but the performance 
analysis presents greater technical difficulties. 

The simplest heuristic for MAX k-CUT is just to partition V randomly into k sets. If  
7 ~ denotes the (random) partition produced and 79* denotes the optimum partition, then 
it is easy to see that 

since each edge (i, j )  has probability (1 - k -1) of joining vertices in different sets of  
the partition. 

We describe a (randomized) heuristic "k-CUT" that produces a k-partition, say 79k, 
which is provably better on average than the one produced by oblivious random parti- 
tioning. This heuristic is a natural extension of that of Goemans and Williamson, and is 
similar to the one discovered earlier and independently by Karger et al. for the related 
problem of finding "semicolorings" of  a graph. We prove the existence of  a sequence of  
constants uk, for k ~ 2, such that if 79~ denotes the optimal partition in MAX k-CUT, 
then: 

THEOREM 1. E(w(79k)) > ak W(P~), where the constants Otk satisfy 

(i) Otk > 1 - - k - l ;  
(ii) otk -- (1 - k -1) ~ 2k-2 lnk; 4 

(iii) cr > 0.878567, or3 > 0.800217, Ot 4 > 0"850304, Or5 > 0"874243, al0 > 0"926642, 
and al00 >_ 0-990625. 

The performance ratio for k = 2 in the above theorem is the same as that quoted by 
Goemans and Williamson, as in this special case we are able to carry across their analysis 
unchanged. 

It will be seen that we achieve an improvement over the random partitioning heuristic 
for all k, and this is the main contribution of the article. However, it must be admitted 
that the improvement for large k is rather small. Kann et al. show, by presenting a more 
refined approximation-preserving reduction than the one employed by Papadimitriou and 
Yannakakis, that there can be no polynomial-time approximation algorithm for MAX 
k-CUT with performance ratio 1 - 1/239k, unless P = NP [9]. (Note, however, that 
polynomial-time approximation schemes are known for the case of  dense graphs: see [6] 
or [2].) This leaves open the possibility of  an algorithm with performance ratio bounded 
below by 1 - otk -1, uniformly over k, for some 1/239 < ~ < 1. We say something 
about the theoretical limitations of  our chosen semidefinite program relaxation in the 
following section. 

Our second result concerns the problem MAX BISECTION. Here we have to partition 

4 Throughout this article, the relation ~ indicates two expressions whose ratio tends to 1 as k ~ ~ .  
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V into two subsets of  equal size (assuming that n is even) so as to maximize  w: 

M A X  BISECTION:  maximize  w(79) 
subject to 79 = S, V \ S ,  

/1 
ISI = - .  

2 

A problem of this type might  arise as follows. Postulate a set of  m people each of whom 
select a pair of  "activities" from a set of  n activities. Assume that n is even. We are 
required to sprit the activities evenly between two t imetable slots so as to maximize  the 
number  of people who are able to participate in both their chosen activities. 

As with MAX CUT, a random bisection produces an expected perfomance ratio of 4. 
Let e be a small  positive constant.  We describe a heuristic "BISECT"  which produces a 
partition 79R, such that if 79~ denotes the optimal bisection, then 

THEOREM 2. E(w(798)) >_/~ w(79~), where /~  = 2( 2V/-~2 - I) - e. 

Note that or2 = 0.878567 . . . .  as in Theorem 1, and/~ > 0.651 for e sufficiently small. 
The difficulty with general izing Goemans  and Wi l l i amson ' s  heuristic to M A X  BISEC- 
TION is that it does not general ly give a bisection of  V. We prove that a simple modi-  
fication of  their basic algorithm is adequate to achieve the improved performance ratio 
claimed in Theorem 2. 

Note that there is a natural general izat ion of this problem to M AX k-SECTION,  
where we seek to partit ion V into k equal pieces. Unfortunately we cannot  prove that 
the natural generalization of  our bisect ion heuristic beats the 1 - k - i  lower bound of the 
simple random selection heuristic when k > 3. 

2. M A X  k-CUT.  In this section we describe our heuristic "k-CUT".  We first describe 
a suitable way of model l ing variables which can take one of k values. Just al lowing 
?~ = l,  2 . . . . .  k does not  easily yield a useful integer program. Instead we allow yj  to 
be one of k vec tors  a l ,  a2 . . . . .  at- defined as follows: take an equilateral s implex Zk in 
I~ k-I with vertices b l ,  b2 . . . . .  bk. Let ck = ( b l  -4- b 2  q '-  - �9 �9 7 t- b k ) / k  be the centroid of Ek 
and let ai ~ b i  - Ok, for l < i < k. Final ly assume that Ek is scaled so that l a i l  ~--- 1 for 
l < i < k .  

LEMMA 3. 

- 1  
(3) ai . a j  - -  k -  1' f o r  i # j .  

PROOF. Since a l, a2 . . . . .  ak are of unit  length we have to show that the angle between ai 

and aj is a r c c o s ( -  1/(k - 1)) for i # j .  Let b i, b2 . . . . .  bk-l  lie in the plane xk - 1 = 0 and 
form an equilateral simplex of d imens ion  k - 2. Let b i  = ( b ~ ,  0 )  for I < i < k - 1, where 

b~ has d imens ion  k - 2, and assume b'  I + b ~  + . .  �9 + b ~ _  1 = 0. Then ck = (0, 0 . . . . .  0, x)  
and bt. = (0, 0 . . . . .  0, k x )  for some x > 0. However, I b~ - ck I = 1 and so x = 1 / ( k -  1), 
but then ( b k -  ck) .  (bj - ck ) - - - -  - ( k -  l )x  2 = - l / ( k -  1). [] 
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Note that - 1 / ( k  - 1) is the best angle separation we can obtain for k vectors as we see 
from: 

LEMMA 4. I f  U l ,  U 2 . . . . .  uk sa t i s f y  lui l  = l f o r  l < i < k,  a n d  ui . u j  < F f o r  i r j ,  

t hen  g > - l / ( k -  1). 

PROOF. 0 < (ul + u2 + ' "  + Uk) 2 < k + k ( k  - l )F .  [] 

Given Lemma 3 we can formulate MAX k-CUT as follows: 

IPk: maximize k -  1 ~ _ w i j ( l  --  yi " . 
t<J 

subject to yj  ~ {a i, a2 . . . . .  ak}.  

Here we use the fact that 

{ ~  if Yi = Yj ,  

1 - Y i  "Yj  : _k if Yi ~ Y j .  
1 

To obtain our SDP relaxation we replace Yi by vi, where vi can now be any vector in S~-l.  
There is a problem in that we can have vi - vj = - !  whereas yi " Yj >--- - 1 / ( k  - 1). We 
need therefore to add the constraint vi �9 vj  > - l / ( k  - 1). We obtain 

(4) 

S DP~: 
k 1 

maximize ~- Z w i j ( 1  - vi . v j )  
i< j  

subject to vj  c S ~ - i ,  Y j ,  
- 1  

U i "Uj > - -  u  --/= j .  
- k - l '  

Note that (4) reduces to the linear constraint Yij > - l / ( k  - 1) if we go to the convex 
programming form CP. We can now describe our heuristic: 

k -CUT 

S t e p  !. Solve the problem SDPk to obtain vectors Ul, u 2 . . . .  , U n E S n _  1 . 

S t e p  2. Choose k r a n d o m  vectors z l, z2 . . . . .  zk. 
S t e p  3. Partition V according to which of  z i, z2 . . . . .  zk is closest to each v j ,  i.e., let 

"P = P I ,  P2 . . . . .  Pk be defined by 

Pi = {J : v j  �9 zi  >_ vj �9 zi' for all i '  ~ i} for 1 < i < k. 

(Break ties for the minimum arbitrarily: they occur with probability zero!) 

The most natural way of  choosing Zl, z2 . . . .  , zk is to choose them independently at 
random from Sn-t.  Forcing Izi[ = 1 complicates the analysis marginally and so we 
let z j  = ( z l , j ,  z2. j  . . . . .  zn . j ) ,  1 <_ j < k ,  where the z i , j  are k n  independent samples 
from a (standard) normal distribution with mean 0 and variance 1. When k = 2 we 
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have (modulo the normalization [zil = 1) the heuristic of  Goemans and Williamson, 
although they define it in terms of  cutting S,,__l by a random hyperplane through the 
origin. Karger et al. [10] also use the above partitioning heuristic in their approach to 
approximate colouring, though applied to a slightly different semidefinite relaxation. 
However, we must diverge at this point, as their analysis--though adequate for the 
colouring application--is not sharp enough to yield Theorem 1. 

Let Wk denote the weight of the partition produced by the heuristic, let Wk* be the 

weight of  the optimal partition, and let ff'k denote the maximum value of SDPk. Putting 
yj = ai, for j ~ Pi and 1 < i < k, we see that 

(5) E(Wk) ----- Z wij Pr(yi 5 ~ yj) .  
i<j  

Now by symmetry Pr(yi r yj) depends only on the angle 0 between vi and vj, and 
hence on 0 = cos0 = vi vj. Let this separation probability be denoted by ~k(O). It 
then follows from (5) that 

E(Wk E(W~) 

w ;  - 

Z i < j  ll)ij r " Uj) 

((k - l ) /k )  Y~i<j w i j ( l  - vi �9 vj) 

>_ Ol k , 

where 
k qb~ (0) 

~k = min 
-l/ck-l)_<o_<l (k - 1)(1 - 0 ) "  

The main work lies in bounding the quantity ~k. As Goemans and Williamson showed, 
the computation can be done exactly in the case k = 2, save for a final step involving 
the optimization of a simple trigonometric function. When k > 2, it appears that we 
must work much harder, and the remainder of  the section is devoted to obtaining lower 
bounds in this case. The results are summarized in Corollaries 6-8,  which, taken together, 
establish Theorem 1. First, some definitions and a technical lemma. 

Let u, v be vectors, and let rl . . . . .  rk be a sequence of  vectors, all in ~n. We say that 
u and v are separated by rj . . . . .  rk if the vector ri maximizing u .  ri is distinct from 
the vector rj maximizing v - rj. When we speak of a random vector, we mean a vector 
r = (~l . . . . .  sen) whose coordinates sei are independent, normally distributed random 
variables with mean 0 and variance 1. Note that the probability density function of  r is 
(2zr)-n/2 exp(_(~12 + . . .  + se~)/2), and in particular is spherically symmetric. 

Denote by g ( x )  = (2rr) -I/2 exp ( -x2 /2 )  the probability density function of  the uni- 
variate normal distribution, and by G ( x )  = f ~  g ( ~ ) d ~  the corresponding cumulative 
distribution function. For i = l, 2 . . . . .  the normalized Hermite  polynomials  qgi ( �9 ) are 
defined by 

(6) ( - l ) i ~ . t P i ( x ) g ( x )  = d i g ( x )  
dx  i 

Let hi = hi(k)  denote the expectation of ~0i(Xmax), where Xmax is distributed as the 
maximum of a sequence of  k independent, normally distributed random variables. 
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LEMMA5. Supposeu ,  v E I~" a r e u n i t v e c t o r s a t a n g l e O , a n d r l ,  . . . , r k i s a s e q u e n c e o f  

random vectors. Let  4 = cos 0 = u . u, and denote by Nk (4) = 1 -- ~k  (0) the probabili ty 

that u and v are not  separated by rl . . . . .  rk. Then the Taylor series expansion 

Nk(4)  = a o ~  a t 4  + a242 + a343 + "'" 

of  Nk (4) about  the point  4 = 0 converges f o r  all 4 in the range ]OI <- 1. l h e  coefficients ai 
o f  the expansion are all nonnegative, and their sum converges to Nk(1) = I. The first 

three coefficients are ao = 1/ k, al = h~ / (k - l) ,  and a2 = kh~ /  (k - l ) (k  - 2). 

The main work lies in the proof of the above iemma,  which we defer to the end of  the 
section in order to press on with establishing the claims about  tXk made in Theorem 1. 

COROLLARY 6. ctk > 1 -- k -I f o r  all k >_ 2. 

PROOF. Denote by Ak(4)  the funct ion 

Ak(4)=-- 
k ( l  - Nk(4)) 

( k - 1 ) ( l - 4 ) "  

so that the performance ratio of the k -CUT heuristic can be expressed as 

ak = min Ak (4)" 
-l/(k-I)_<~o< l 

At O = 0, the numera tor  and denomina tor  of Ak(Q) are both k - 1; at O ---- 1 they are 
both 0. Since the power series expansion of  Nk(4) has only positive terms, the numerator  
is a concave function in the range 0 < O < 1, and hence Ak (0) > 1 in that range. 

Turning  to the case 4 < 0, note that Nk(1) = 1 and Art-(- 1) = 0 implies  Y~'~i even ai = 
! .  furthermore,  since hi (k) increases with k and hi (3) = 3 / 2 v / ~  - (using calculat ions 2'  
described by David in Section 3.2 of [51), we have al > 9 /4r r (k  - 1). Therefore, 

4 2 1 ( - 4 )  1 9 ( - 0 )  + < 
Nk(O) <_ - -  - -  

k 4 7 r ( k -  1) 2 - k 5 ( k -  1) '  

1 where the second inequal i ty  is valid over the range - 1 / ( k -  1 ) < O < 0, since 9/4zr - 2 >_ 

I and hence 5' 

1 ( k(-o) 
Ak(0) -- 1 - - 4  > - -  \ 1  + 5(-~_--q)2 ] . 

It is easily verified that the above expression is strictly greater than 1 - k - l  over the 
closed interval - 1 / ( k  - 1) < p _< 0. [] 

COROLLARY 7. ak -- ( i -- k -  l ) ~ 2k-2  In k. 

PROOF. Galambos  [7, Section 2.3.2] gives the asymptotic distr ibution of the m a x i m u m  
of  k independent ,  normal ly  distributed random variables. In part icular the quanti ty h I (k), 



74 A. Frieze and M. Jerrum 

which is just the expectation of  the maximum, satisfies 111 (k) ~ ~/2 In k. Thus we have 
the asymptotic estimate 

1 2 Ink  
Nk(Q) = ~- q- (1 + e(k))-----~Q + 0(~o2), 

where e(k) is a function tending to 0, as k --~ ~ .  The result follows by arguments used 
in the proof of the previous corollary. As betore, we need only concern ourselves with 
negative Q; then, plugging the above estimate for Nk(Q) into the formula for Ak(Q), it is 
found that Ak(Q) is bounded below by I - k - I  + (1 + e(k)) 2k -2 In k for Q is the range 

- 1 / ( k - l ) < _ o < _ O .  [ ]  

COROLI.ARY 8. o~ 3 > 0.800217, o~ 4 >_ 0.850304, a5 > 0.874243, aJ0 _ 0.926642, and 
at00 >_ 0.990625. 

PROOE We use the bound N~(Lo) _< l / k+alQ+a2Q2+Q4/2 ,  val id for- I  < Q < 0 ,  
and evaluate al and a2 numerically. The bound follows from two observations: (i) all 
coefficients ai are nonnegative, and hence the odd terms make a negative contribution 

and hence the sum of the even terms to the sum, and (ii) the even coefficients sum to ~, 

from the fourth power upwards is bounded above by �89 4. [] 

Note that by computing further terms in the Taylor expansion of Nk(~o) it is possible 
to obtain better bounds on ak; e.g., expanding to the term in ~o 4 yields the bound or3 > 
0-832718. The calculations, though routine (more integration by parts, "~ la proof of  
I .emma 5), are lengthy, and we shall not try the reader 's patience by repeating them here. 
The returns from this additional computation in any case decline rapidly as k increases. 

As remarked in the Introduction, the performance ratio for large k, though better than 
the random partitioning heuristic, is hardy impressive. Upper bounds on the pertbrmance 
ratio that can be achieved using our approach may be obtained by exhibiting graphs G 
for which the optimum solution to the relaxation SDPk is large in relation to the size of  
the maximum cut in G. Assume k > 2 is even, and let G = K,, be the complete graph on 
n = 3k/2 vertices. A feasible solution to SDPk is obtained by placing the vectors vi at 
the corners of an (n - l )-dimensional  equilateral simplex. Then, by routine calculation, 
the ratio between the actual maximum k-cut in G, and the optimal solution to SDPk, is at 
most 1 - 1/9(k - 1). This upper bound is much larger that the performance ratios quoted 
in Theorem 1 : perhaps there are much worse instances than the complete graph K, ,  or 
perhaps our heuristic is not extracting as much information from the relaxation as it 
might. 

Finally, as promised, we present the proof of the technical lemma. 

PROOF OF LEMMA 5. We begin by computing the joint  distribution of x = u �9 r and 
y = v �9 r ,  where r = (~l . . . . .  sea) is a random vector. Each of  the random vectors r i in 
the statement of  the lemma induces an independent sample from this distribution. The 
quantity Nk(Q) we wish to estimate is the probabili ty that one sample point dominates 
the other k - 1, coordinatewise. Since the density function of r is spherically symmetric, 
this joint  distribution is dependent on 0 only, and not on the particular choice of  u and 
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v; for convenience let u = (1 ,0  . . . . .  0) and v = (cos0,  sin0, 0 . . . . .  0). Then 

P r ( u . r < x  and v - r < y )  

= Pr(~l < x and ~ cos 0 + ~2 sin 0 < y) 

= 2 ~  ,~1=_~ ,~=_ ~ e x p (  2 ] 

: =_ 2(sin 0) 2 ' 

where we have applied the change of  coordinates (1 = ~i and (2 = ~1 cos 0 + ~2 sin 0. 
The joint probability density function of  x = u .  r and y = v .  r is thus 

1 ( x 2 - 2 O x v + ,  2 )  
f (x' Y; O) = azr ~ exp ~(] ~ T )  ' 

where 0 = cos 0; this is the probability density function of  the bivariate normal distribu- 
tion in standard form, with c o l l a t i o n  0 = cos 0. Denote the co~esponding cumulative 
distribution function by 

F (x' Y; O) = Ji~-~,a J!~-~ f ("  ~; o) drl d~" 

Let rl . . . . .  rk be independent random vectors; then 

Pr(u and v are not separamd by rl . . . . .  rk) 

= k I (O), 

where 

1(0) = f(x ,  y; O) F(x, y; O) k-I dxdy. 

(8) 

(9) 

and 

(lO) 

There is no expression for the integral I (0) in closed form, so we compute instead a 
Taylor series expansion for I (0) about O = 0 using ideas (and notation) from Bofinger 
and Bofinger [41. The Mehler expansion [ 14] of  the bivariate normal prc~bability density 
function 

(7) f ( x ,  y; O) = g(x)g(y)(l + O~ol(x)~o~(y) + Ozq~(x)q~z(y) +. .  O, 

converges uniformly for l0 J < 1.Threefactsthatfol loweasilyfromtheMehlerexpansion 
and definition (6) of  the H e . i r e  polynomials e.-e 

d 
d~ g(x)~pi-~ (x) = --v/i g(x)~oi (x), 

OF(x, y; O) 
= f(x,  y; 0), 

O0 

O! f l = L! g ( x ) g ( y ) ~ o i ( x ) ~ o i ( y ) .  
00 Io=0 
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We now evaluate I (Q) and its successive derivatives with respect to Q at the point 
Q = 0 by noting that F(x, y; 0) and f (x ,  y; 0) factorize into G(x)G(y) and g(x)g(y), 
respectively. In this way we obtain a Taylor series expansion for I (Q) about the point Q = 
0. We defer an examination of the radius of convergence of this Taylor expansion to the 
end of the proof. 

Starting with I itself, we have 

( l l )  (f )' ' 
I(0) = g(x)G(x)k-]dx k2, 

where the second equality can be seen by interpreting the integral as the probability that 
the maximum of a sequence of k independent, normally distributed random variables is 
achieved by the first variable. 5 

By identities (9) and (10), 

~ o=o = ( f  g(x)~o~(x)G(x)~-i dx )2+ ( k - 1 )  ( f  g(x)2G(x)k-2 dx)  2 

(Passing the derivative through the integral is justified by Section 1.88 of Titchmarsh's 
text on analysis of functions [13].) The first integral is simply hi~ k; the second may be 
simplified using integration by parts, and identity (8): 

[g(x)G(x) k-l ]~ 1 f f g(x)(g(x)G(x)k-Z) dx g' (x)G(x) k-1 dx 

-- k - 1 g(x)~ol(X)G(x) k-I dx 

hi 
k(k - 1) 

Substituting these expressions for the two integrals yields 

(12) 
OI h 2 

o= 0 -- k ( k -  1) 

Differentiating with respect to O a second time~ we obtain 

021 2 2 

= '(f )' 
+ (~-  1)(~- 2) ( f  g(~)~a(~)~-~ d~ . 

5 Integration is assumed to be over the infinite line when the l imits of integration are omitted. 
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The first integral is just h2/k. The second, using integration by parts and identity (8), is 

f (- g(xl 2(xllO(xl k-' dx f (g(x)~~ k -  i 

.,/2h: 
k ( k -  1)" 

A further application of integration by parts reduces the third integral to the second, from 
which 

f 2q'2 h2 g(x)3G(x)k-3 = k ( k -  l ) ( k -  2)" 

Substituting these expressions for the three integrals yields 

00---5[o=0 = ~ + kZ(k - 1 / +  kE(k - l ) ( k  - 2 /  h~ = (k - l / ( k  - 21 '  

In principle the process of repeated differentiation by 0 could be continued indefinitely;. 
for any i, the ith derivative of I (0) evaluated at 0 = 0 is a positive linear combination 
of squares of one-dimensional integrals. This observation, combined with (11), (12), 
and (13), establishes the claims concerning the Taylor expansion of I (O)- 

It remains to show that the Taylor expansion of I (0) is valid for 101 < I and hence--by 
continuity of Nk(o) at 0 = 1 and the fact that all terms in the expansion are positive--for 
Iol _< 1. Observe that I(0) is defined by an integral of the form 

(141 I(0) = O'si(x, y) dx dr ,  
" '/  i = 0  

where si(x, y) = ~_,]'=-ff tij(x, y) is a sum of terms tij(x, y), where each term is a 

product of factors of the form g(x)g(y)~Oz(X)~Ol(y). Now f f  Itij(x, Y)I dx dy < 2.6, 
since f Ig(x)~ot(x)[ dx < 1.6 and max~lg(x)~ot(x)l < 1 for all I. (These facts follow 
from the key inequality on page 324 of Sansone's treatise on orthogonal functions [ 12], 
which bounds I~0t (x) I by c exp(-x2/4)  foran absolute constant c; note, however, that the 
bound given by Sansone is for unnormalized Hermite polynomials, and must be scaled 
accordingly.) Noting that tti = O ( / k - l ) ,  we see that the sum 

OC ni--I f f ~_~ Oi E [tij(x, y)[ dx dy 
i =0 j =0 

converges, provided 101 < 1. Thus, by uniform convergence of the Mehler expansion, and 
the theorems contained in Sections 1.7 i and 1.77 of [ 13], it is permissible to integrate (14) 
term by term, yielding 

l(ol=s 
i=0 

The above expression is a power series expansion of I (0) valid for Iol < 1, which must 
be identical to the Taylor expansion, by uniqueness. [] 
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3. MAX B I S E C T I O N .  We now describe how to ensure that the partition we obtain 
divides V into equal parts. As an integer program we can express MAX BISECTION as 

(15) 

IPB: 1 maximize ~ E wi j (1  - YiYj) 
i<j 

- -n  
subject to Z YiYj  ~ -'~-, 

i<j 
yj E {--1, 1} Vj E V. 

Inequality (15) is equivalent to ~ i  Yi : 0 and expresses the constraint that the partition 
sought must bisect the vertex set; this equivalence can be seen by considering the identity 

2 ~ Yi Yj = Yi - Zi y2i = Yi -- n. 

The version (15) has the advantage of  being easily relaxed to give a semidefinite program: 

(16) 

SDPB: 1 maximize ~ Z wij  (1 - vi �9 v j )  
i<j 

- -n  
subject to ~ ~i" vj _< -5--' 

i<j 

1)j E Sn-1 ,  Vj E V .  

We can now describe our heuristic. The overall strategy is to solve SDPB, and partition 
the resulting vectors vi by a random hyperplane. The induced partition of  vertices is not 
in general a bisection, but with reasonable probability we do not need to move many 
vertices to obtain balance. In swapping these relatively few vertices, we do not harm the 
cut too much. Let e be a small positive constant, e = 1/100 being small enough. In more 
detail, the procedure is as follows. 

B I S E C T  

Step 1. Solve the problem SDPB to obtain vectors v~, v2, �9 �9 �9 vn ~ Sn- l .  

Repeat Steps 2-4  below for t ----- 1, 2 . . . . .  K = K ( e )  = Fe -1 In E-11 and output the best 
partition St, V\St found in Step 4. 

Step 2. Choose two random vectors zl, z2. 
Step 3. Let St = { j  : vj . zl  < vj �9 z2}. 
Step 4. Suppose (without loss of  generality) that [St[ _> n /2 .  For each i 6 St let if(i) = 

Y~.jCs, Wiy and St = {xl, X2 . . . . .  Xe} , where i (x l )  _> ~'(X2) ___~ " ' "  __~ ~'(Xs Also, 

let St = {xl . . . . .  x , / z } .  

Clearly the construction in Step 4 satisfies 

n w ( S t  : V \ S t )  
(17) w(St  : V \ S t )  >_ 

2~ 
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In order to analyse the quality of the final partition we define two sets of random variables: 

X t  = w ( S ,  : V \ S t )  for 1 < t  < K; 

Y, = IS, l(n - IStl) for 1 < t < K. 

Recall that 79~ denotes the optimum bisection, and let W* > w (79~) denote the maximum 
of SDPB. Then, by the analysis of Theorem 1 (or [81). 

E ( S t )  >__ ot2W*. ( 1 8 )  

Also 
O/2 

~_~(1 Vi _ E ( Y , ) = ~ 2 ( v i . v j )  > ~ - _ _  --  . v j )  > ot2N,  
i < j  t<j" ' 

where N = n e / 4 .  (Note the use of (16) here.) 
Thus if 

then 

(19) 

On the other hand 

(2O) 

since X, _< W* and Yt < N. 

Xt Y, 
Zt = W--- z + ~- ,  

E(Zt )  > 2ot2. 

Zt  < 2 ,  

and so 

Define Zr = m a x  l <_t <_r { Z t  }. Now (19) and (20) imply that, for any e > 0, 

Pr(Zl  < 2(1 - e)ot2) < 
1 - -  Ot 2 

! - (1  - e ) a 2  

Pr(Z~ < 2(1 - e)~2) < < 
- - - 

for the given choice of K ( e ) .  Assume that 

(21) 

and suppose 

Z~ > 2(1 - e)a2 

X~ = )~W*. 

which from (19) and (21) implies 

(22) Yr > (2( 1 - 8)o~2 - -  2.)N. 

Suppose bSr I = an; then (22) implies 

2(1 - e)a2 - ~. 
(23) a ( l  - 3) > 

4 
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Applying (17) and (23) we see that 

u,,(sr ' v \ s r  

2~ 
~.W* 

> 

(2(1 - ~)~2 - 4~(1 - ~))W* 
~> 

2~ 

_>_ 2(~/2(1 - E ) o t 2 -  I )W*.  

The last inequality lbllows from simple calculus. Thus 

E(w(S~)) ( ( >_ 2 ( ~ / 2 ( I - e ) o ~ 2 - 1 )  1 -  l - ( i - - - - ~ ) o t 2 /  J 

>_ 2( 2 v / ~ -  3e)ot2 - l )W* .  

Finally note that the partition output by BISECT is at least as good as S~. We divide 
e above by 3 2~,,Q-~2 to obtain the precise result presented in Theorem 2. Sanjeev Mahajan 
has pointed out that the algorithm extends easily to "MAX (c, 1 - c)-CUT" where the 
two blocks of the partition are required to have between cn and (1 - c)n vertices. For 
example, an 0.81 approximation may be obtained for MAX (�89 2)-CUT. 

As with MAX k-cut, we can look for upper bounds on the performance ratio that 
may be obtained using this approach. Let G = K2,2.2 be the complete tripartite graph on 
2 + 2 -t- 2 vertices. The maximum bisection of G has eight edges, whereas the optimum 
solution to the relaxation SDP~ is at least nine. (Arrange the vectors vi in pairs at the 

8 corners of an equilateral triangle.) Thus ~ < 0.889 is an upper bound on the performance 

ratio that is achievable using this relaxation. Given the somewhat crude nature of the 
approach, the large gap between this and the provable lower bound on the performance 
ratio is perhaps not surprising. 

References 

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial 
optimisation, SIAM Journal on Optimization 5 (1995). 13-51. 

[2] S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for dense instances 
of NP-hard problem, Proceedings of the 27th Annual ACM Symposium on Theory of Computing. ACM 
Press, New York. 1995, pp. 284-293. 

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hardness of ap- 
proximation problems, Proceedings of the 33rd IEEE Symposium on t'bundations of Computer Science, 
IEEE Computer Society Press, New York, 1992, pp. 14-23. 

[4] E. Bofinger and V. J. Bofinger, The correlation of maxima in samples drawn from a bivariate normal 
distribution, The Australian Journal of Statistics 7 (1965), 57-61. 

[5] H.A. David, Order Statistics, Wiley. New York. 1980. 
[6] W. E de la Vega, MAXCUT has a randomized approximation scheme in dense graphs, Random Struc- 

tures and Algorithms 8 (1996), 187-198. 
[7] J. Galambos. The Asymptotic Theory of Ertreme Order Statistics, Wiley, New York, 1978. 



Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION 81 

[8] M.X. Goemans and D. P. Williamson, .878-Approximation algorithms for MAX CUT and MAX 2SAT, 
Proceedings of the 26th Annual ACM Symposium on Theot 3' of Computing, ACM Press, 1994, New 
York, pp. 422--431. 

[9] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi, On the hardness of approximating MAX k-CUT 
and its dual, Technical Report TRITA-NA-9505, Department of Numerical Analysis and Computing 
Science, Royal Institute of Technology, Stockholm, 1995. 

[10] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidetinite programming, 
Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society 
Press, New York, 1994, pp. 2-13. 

[ 11 ] C.H. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes, Journal 
of Computer and System Sciences 43 ( 1991), 425-440. 

[12] G. Sansone, Orthogonal Functions (translated from the Italian by A. H. Diamond), Interscience, New 
York, 1959. 

[13] E.C. Titchmarsh, The Theory of Functions (second edition), Oxford University Press, Oxford, 1939. 
[ 14] G.N. Watson, Notes on generating functions of polynomials: Hermite polynomials, Journal of the 

london Mathematical Society 8 (1933), 194-199. 
[15] D.J.A. Welsh, Complexity: Knots, Colourings and Counting, London Mathematical Society Lecture 

Notes, volume 186, Cambridge University Press, Cambridge, 1993. 
[ 16] L.A. Wolsey, Heuristic analysis, linear programming and branch and Lx)und, in Combinatorial Optimiza- 

tion II, Mathematical Programming Study, volume 13, North-Holland, Amsterdam, 1980, pp. 121-134. 


