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R a n d o m i z e d  A p p r o x i m a t i o n  o f  B o u n d e d  
M u l t i c o v e r i n g  P r o b l e m s  1 

D. Peleg,  2 G. Schech tman ,  3 and A. Wool  4 

Abstract. The problem of finding approximate solutions for a subclass of multicovering problems denoted 
by ILP(k, b) is considered. The problem involves finding x E {0, 1} n that minimizes Z j  xj subject to the 
constraint Ax >_ b, where A is a 0-1 m • n matrix with at most k ones per row, b is an integer vector, and b 
is the smallest entry in b. This subclass includes, for example, the Bounded Set Cover problem when b = 1, 
and the Vertex Cover problem when k : 2 and b = 1. 

An approximation ratio ofk - b + 1 is achievable by known deterministic algorithms. A new randomized 
approximation algorithm is presented, with an approximation ratio of (k - b + 1)(1 - (c/m) 1/(k b+O) for a 
small constant c > 0. The analysis of this algorithm relies on the use of a new bound on the sum of independent 
Bernoulli random variables, that is of interest in its own right. 
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1. Introduct ion 

1.1. The Problem. 
formal ly  defined as 

The p rob lem dealt  with in this paper  is the ILP(k, b) problem,  

[ minx  ~ = l x j ,  

/LP(/r b): /Ax >_ b, 
/ x ~ {0, IV, 

where  A is an m x n matrix,  aij ~ {0, 1}, such that, for  a l l  i, ~ = t  aij < k , and 
b = (bl . . . . .  b,n) is an integer  vector  such that  bi > b for all i. Thus  p rob lems  in the 

ILP(k, b) class cons is t  o f  a sys tem o f m  inequalities o f n  variables, where  each inequal i ty  

uses at mos t  k variables, its r igh t -hand s ide  is ">_ bi" such that the smal les t  bi is b, and 

the goal is to min imize  the cost  func t ion  ~ j  xy. 

We demons t ra te  the r ichness  of  the class  ILP(k, b) by exhibi t ing  a n u m b e r  o f  NP-  

hard prob lems ,  taken f rom [GJ], wh ich  can all be formula ted  in a natural way as special  

cases  of  the ILP(k, b) problem.  They are all p resen ted  in their  s tandard  version,  i.e., with. 

bi = b = 1 in our terminology.  
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VERTEX COVER. Given a graph G = (V, E), find a subset V' c V with minimal 
cardinality, such that for each edge (u, v) c E at least one of u and v belongs to V'. 

ILP(2.1)  formulation: Define a variable x~, for each v 6 V. The inequalities are 
x, + x~ > 1, 'v'(u, v) E E. 

BOUNDED DEGREE DOMINATING SET. Given a graph G = (V, E), with maximum de- 
gree A, find a subset V' c V with minimal cardinality, such that for each u ~ V \ V '  
there is a v 6 V' such that (u, v) c E. 

ILP(A + 1, 1) formulation: Define,a variable x~ for each v E V. Denote the neigh- 
borhood of a vertex v by r ( v )  = {u 6 Vl(u, v) 6 E} U {v}. The inequalities are 

PARTIAL FEEDBACK EDGE SET. Given a graph G = (V, E) find a subset E '  c E with 
minimal cardinality, such that E '  contains at least one edge from each circuit of length 

L or less for some fixed integer L > 3. 

ILP(L,  1) formulation: Define a variable xe for each e 6 E. The inequalities are 

Y~.eecXe >_ 1, V circuit C, ICI _< L. 

BOUNDED SET COVER. Given a collection C ---- {C~ . . . . .  C,,} of subsets of a finite set 

S, denote the rank of an element i 6 S by Pi = I{jli ~ Cj}l, and let maxi Pi < k for 
some constant k. Find a subcollection C' c C with minimal cardinality, such that every 

element of S belongs to at least one member of C'. 

ILP(k, 1) formulation: Define a variable xj for each set Cj, j = 1 . . . . .  n. The in- 

equalities are Y~c, gi xj ~__ 1, u ~ S. 

BOUNDED HITTING SET. Given a collection C = {CL . . . . .  Cm} of subsets of a finite 
set S, such that maxilCi[ < k for some constant k, find a subset S' __ S with minimal 
cardinality, such that S' contains at least one element from each subset in C. 

ILP(k, 1) formulation: Define a variable xj for each element j 6 S. The inequalities 

are ~-,jzc, xj >__ 1, for i = 1 . . . . .  m. 

BOUNDED CHOICE TEST SET. Given a collection C ---- {C~ . . . . .  Cn} of subsets of a 
finite set S, let D,~ be the set of indices of possible test sets for each u; o E S, u :/: o: 
D,o = {jl(u ~ Cj A v aft Cj) v (u !g Cj A v ~ Cj)}, such that maxu.~lDu~l < k. Find 
a subcollection C' _ C with minimal cardinality, such that, for each pair of distinct 
elements u, v E S, there is some set Cr c C' that contains exactly one of u and v. 

ILP(k, 1) formulation: Define a variable xj for each set Cj ~ C. The inequalities are 

Y~.j~o,~. xj > 1,u v E S, u 5~ v. 

The ILP(k, b) problem is NP-hard. The case when b = 1 and k = n is the Minimum 
Set Cover problem, and when k ----- 2 and b = 1 it is the Vertex Cover problem, see 
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[GJ]. This also is a MAX-SNP-hard problem [F], i.e., does not have a polynomial- 
time approximation scheme unless P ---- NP [ALM+]. In contrast, the relaxed fractional 
problem, LP(k, b), in which the solution vector is not required to be integral, i.e., x c 
[0, 1] n, appears to be easier; the optimal solution for the relaxed problem can be found 
in polynomial time using Linear Programming algorithms [Kha], [Karl. 

The best known problems in the ILP(k, b) class are those with b = 1. In this work 
we concentrate on the effect of  the b parameter, when it is larger than 1. One typical 
situation in which b > 1 may naturally appear is in network design problems, when a fault 
tolerance requirement is imposed on the design. As an example, consider the following 
center selection problem [HS], IBKP21. The network is given as a graph G = (V, E) 
with maximum degree A. We wish to select nodes of  the network as centers, in which 
copies of  some resource or service are to be placed. Each node should either be a center, 
or have a center as an immediate neighbor. For increased crash resilience, we also require 
that every node will still have at least one functioning center in its neighborhood even 
after b nodes have crashed. To meet this requirement we must select the centers so 
that at least b + 1 of  them appear in each node's neighborhood. For cost efficiency, we 
need to select the minimal number of  centers possible. Therefore, if we define a binary 
variable x,, for each network node v, with x,. ---- 1 meaning "v is selected," then writing 
an inequality per neighborhood and minimizing :~-~v xv as our cost function will give us 
an instance oflLP(A + 1, b + i). 

1.2. Related Work. The earliest published approximation algorithms for the Minimum 
Set Cover problem IJ], [LI, [Chv], or ILP(n, 1), use the greedy heuristic. This heuristic 
chooses variables one by one, according to the number of  inequalities they satisfy. The 
approximation ratio achieved by these algorithms is Rgreedy < 1 + In m. 

In [D], [Wol], and [BKPI] the greedy heuristic is examined in a more general setting. 
In particular, it is shown to be applicable to the ILP(k, b) problem for all values o fb  and 
k. The analysis shows that the approximation ratio achieved is Rgreedy < ln(mb). 

There are several results on ILP(k, b) problems that take advantage of  the bounded 
number of  variables per inequality. The first algorithm for the Vertex Cover problem 
with a constant approximation ratio of 2 is attributed to Gavril in [GJ]. This algorithm 
repeatedly picks an uncovered edge, and takes both of  its endpoints into the output set, 
until all the edges are covered. 

A different algorithm was described by Hochbaum [Hoc I l for the subclass ILP(k, 1). 
The algorithm solves the relaxed fractional LP(k, 1) problem, and takes all the variables 
with fractional values of at least 1/k to be the solution set. The analysis shows an 
approximation ratio of  k (and in particular, 2 for the Vertex Cover problem). 

Both Gavril's algorithm and Hochbaum's algorithm can be extended to the more 
general 1LP(k, b) setting, and both generalizations yield approximation ratios ofk  -b - t -  1 
[Woo]. 

Subsequent algorithms for the Vertex Cover problem, with approximation ratios of 
slightly less than 2 (for anyfixed value of  m), rely on a result by Nemhauser and Trot- 
ter [NT], concerning the properties of  the weighted Vertex Cover problem. Their work 
shows that there always exists an optimal solution to the fractional LP(2 ,  l) problem 

l Hochbaum [Hoc2] uses this property to where the variables all have values of  0, l, or 3" 
obtain improved approximation algorithms for thc Vertex Cover problem. Unfortunately, 
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it may be difficult to extend this approach even to ILP(3, 1) since there are examples in 
1 lWoo]. this class where the optimal solution cannot behave as multiples of  3 

The best currently known approximation algorithm for the weighted Vertex Cover 
problem is by Bar-Yehuda and Even [BE]. They use the Nemhauser-Trotter preprocess- 
ing, coupled with a local-ratio theorem to obtain several approximation algorithms, the 
best of which has an approximation ratio of R < 2 - (log log m) / (2  log m). 

The weighted ILP(k, b) problem, in which the objective function is min Y~j wjxj, is 
studied by Hall and Hochbaum IHH]. Their algorithm is a generalization of the approach 
in IBEI, and has an approximation ratio of  k. However, it is not hard to see that in the 
unweighted case the algorithm becomes a variant of Gavril's algorithm, and hence has 
an approximation ratio of  k - b + 1 for ILP(k, b) instances. This algorithm has a time 
complexity of  O(n �9 max{n, m}), which is better than that of algorithms requiring the 
solution of the relaxed linear program (e.g., [Hoc 1 ]). 

A randomized algorithm for the b-matching problem in hypergraphs has been pro- 
posed by Raghavan and Thompson IRT]. The problem is closely related to the ILP(k, b) 
problem, with the following differences: the inequalities are "<  b," the goal is maxi- 
mizing the cost, and there is no k bound on the number of variables per inequality. The 
algorithm solves the relaxed fractional problem using Linear Programming, and then uses 
the values of  the optimal solution vector as the defining probabilities for independent 
Bernoulli random variables. 

A computational study comparing the performance of many of  the above-mentioned 
algorithms on large-scale problem instances is [GW]. It is shown that on the tested 
instances, the quality of the solutions found differs considerably between algorithms 
with the same approximation ratio. 

1.3. New Results. We first show some interesting structural properties of the ILP(k, b) 
problem. We present approximation-preserving reductions to and from the ILP(k, i) 
problem, thus showing their equivalence in the sense of  I PY]. We also present an example 
showing that the gap between the optima of the integral problem and its fractional 
relaxation may approach a factor of  k - b + 1. 

Our randomized algorithm RND for ILP(k, b) has an approximation ratio of 

( (c),,,, 
RRND _< ( k -  b + 1) 1 - 

for a small constant c > 0. This is better than the ratios of the deterministic algorithms 
for any fixed value of m, although asymptotically it is the same. The analysis of  this 
algorithm relies on the use of a new bound that we prove on the sum of independent 
Bernoulli random variables. 

An extended abstract of this paper can be found in [PSW]. 

2. Preliminaries 

2.1. Definitions and Notation. We refer to a solution to ILP(k, b) either as a vector, 
e.g., x ~ {0, 1 }n, or as a set of chosen variables T = {j Ixj = 1 }. We usually identify the 
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variables with their indices, i.e., we may interchangeably use either xj or j to denote the 
j t h  variable. 

We use the following notation. The cost of a solution z E_ [0, 11" is defined to be 
n C(z)  = )-~j=~ zj. We use x ~ to denote the vector of  an optimal (integral) solution to 

ILP(k, b) and C ~ = C(x ~ to denote its cost. 
We use LP(k, b) to denote the corresponding relaxed fractional problem, x* to denote 

the vector of an optimal solution to LP(k, b), and C* to denote the cost of  an optimal 
feasible solution to LP(k, b), namely, C* = C(x*). 

We are interested in several measures of  the algori thm's quality. For some algorithm, 
B, let CR(A) denote the cost of  the solution found by B on the problem defined by the 
matrix A. Then the approximation ratio of B is 

RR(m) = sup { CS(A)  IA } A ~ has m rows , 

and its asymptotic approximation ratio is R8 = l i m m - ~  Ru(m).  We may also consider 
the fractional approximation ratio of B, R~ (m) ----- supA { (CB (A) /C*  (A))IA has m rows}, 
and the asymptotic fractional approximation ratio, R~ = l im,n_~ R~ (m). 

2.2. Technical Lemmas. In the analysis of  our algorithm, we deal with sets of  variables 
in the range [0, 1 ], whose sum is bounded from below. We now present two technical 
lemmas regarding the properties of  such variables. 

The first lemma characterizes the distribution of "large" values of  variables in the 
range [0, 1] whose sum is bounded from below. 

LEMMA2.1. Letg, b, tbeintegers ,  t < b  < s  L e t O <  xj < 1,for j - - -  1 . . . . .  s  

such that ~j-~.~= 1 x j > b. Then at least b -  t + 1 of  the values x j satisfy x j > I / ( g - b - t + 2). 

PROOF. Assume that y~.~= 1 xj > b, but there are at most b - t values xj satisfying 
x~ _>_ l / ( e  - b - t + 2). Assume without loss of generality that xl > x2 > . - .  > xe. 
Then 

j = l  

b - t  ~' 

--- Z xj + Z xj < ( b - t ) +  Z xj 
j = l  j = b - t + l  j = b - t + l  

1 
< ( b - t ) + ( g - b + t ) .  

g - b - t + 2  
2t - 2 

= ( b - t + l ) +  < b ,  
e - b - t + 2  - 

contradiction. The last step of the derivation uses the fact that b < s - t ,  and therefore 
( 2 t - 2 ) / ( g - b - t + 2 ) < t -  1. [] 

The useful cases of  this lemma, which are applied in later parts of this work, are: 

�9 t = 1. I f  1 < b < s - 1, then at least b of  the values xj satisfy-U > l/(e - b + 1). 
�9 t --- 2. I f 2  < b < s - 2, then at least b -  1 of  the values xj satisfy xj > 1/(s - b). 
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Our second lemma deals with the maximum of  a product of linear terms. In the 
analysis of  our randomized algorithm (Section 5) we need to bound the maximal value 
of  a specific multilinear function. We need to maximize this function constrained to the 
domain where the variables are in the range [0, 1 ] and their sum is bounded from below. 
The following lemma gives us the desired result. 

LEMMA 2.2. For a > 0 let (a) = min{a, 1 }. For any 3 > 1 and integer d let f ( x )  = 
d 1 ]d d X l"Ij=l( -- (3Xj)), X ~ [0, 1 and Y~,j=l J >- 1. I fd  > 3, then f ( x )  attains its maximum 

when xj : 1/d for  all j ,  and f ( x )  : (1 - 6/d) d. I f  d < 3, then f =-- O. 

d PROOF. The condi t ion  Z j = I  Xj >__ 1 implies that there exists j such that xj > 1/d. If  
d _< 8, then, for this j ,  (rxj) = 1, and f = 0. 

Assume now that d > 6. I f x  has some xj > 1/3, then f ( x )  = 0. Therefore since 
1/3 < 1, we need to search for the maximum of the function only inside the domain 

H a ( 3 ) =  0, A xl xj > 1 . 
j=l  

d In this domain we can drop the (.), and consider f ( x )  = l-]j=l (I - 6xj). 
By the fact that the geometric mean is always less than or equal to the arithmetic 

mean (with equality only if the numbers are all equal), we have that 

I - - I ( 1 - 3 x j )  < = 1 xj < l -  
j=l  - d d - ' 

with equality everywhere only if all the xj's are equal and Y~,j xj = 1. [] 

3. S t r u c t u r a l  P r o p e r t i e s  

3.1. Reductions to and from the b = 1 Case. The following propositions show that the 
approximabili ty of ILP(k, b) problems with b > i is closely related to that of  ILP(k, 1). 

PROPOSITION 3.1. Any instance of  lLP(k, b) with m inequalities can be reduced to an 
instance of  lLP(k - b + I, 1) with at most ~_,im__l (b f-I) inequalities, and if bi = b for  all 

i, then there are at most m(bk 1) inequalities. 

PROOF. Consider the inequality 

(1) Z x j  >_ bi, ITI = e < k. 
j eT  

We replace it with (bi e_ l) inequalities: 

(2) Z x j  > 1, VS _c T, ISI = ~ - bi + 1. 
j e s  
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It suffices to show that, for any vector  y ~ {0, 1 }e, 

y satisfies (1) r v satisfies (2). 

1. A s s u m e  y does not satisfy (2). That is, assume that there exists  S ___ T, ISI = g - b i + l ,  
such that Y-~0~s YJ = 0. Then 

~-~.){i = ~--~ y~ 5 b, - l, 
jET j~aT\S 

hence y does not satisfy (1) either. 
2. A s s u m e  y does not satisfy (1). That  is, assume that Y-~,j~7 YJ < bi. Let L = {j lYj = 1 } 

(or equivalently,  T \ L  = {J13) = 0}). Then 

ILl <_ bi - 1 ~ IT\LI  > g - bi + 1. 

It fol lows that there exists  an S c_ T \ L  c T, IS[ = g - bg + 1 such that Y~o~s YJ = O, 
hence y does not satisfy (2) either. []  

REMARKS. 

�9 The t ransformat ion does  not app ly  to the relaxed prob lem LP(k, b),  i.e., the re- 
suit ing L P ( k  - b + 1, 1) instance will  not necessar i ly  be equivalent  to the original  
instance. 

�9 In general  it may  be impract ica l  to use the t ransformation,  since the output  set 
of  inequal i t ies  is cons iderab ly  larger  than the input one. Both the a lgor i thm of  [HH] 
and our r andomized  a lgor i thm have the same approximat ion  ratios on 1LP(k,b)  and on 
the cor responding  Set Cover  problem,  so using the t ransformat ion only increases  the 
t ime-complexi ty .  

�9 The increase in the number  of  inequal i t ies  could  be by a nonpo lynomia l  factor, even 
when k - b + 1 < ln (mb) ,  i.e., when the a lgor i thm of  [HH] has a better  approx imat ion  
ratio than the greedy a lgor i thm [BKP1 ]. 

�9 When  bi o r  k - bi is bounded  for all i the t ransformat ion is po lynomia l ,  since 

( k ) ( k ) ~ < 
bi <_ M or k - b i  <_ M =r bi - 1 k - -b i  @ ] 

Therefore  it is an L-reduct ion,  using the te rminology  from [PY]. 

PROPOSITION 3.2. Any instance of  lLP(k, 1) with n variables and optimal cost C ~ cart 
be reduced to an instance of  lLP(k + b - 1, b) with n + b - 1 variables and optimal cost 
C ~ + b - 1. 

PROOF. Cons ider  an instance of  ILP(k, I) with n variables xl . . . . .  x~. We add b - 1 
new variables,  x~ for s ---- n + 1 . . . . .  n + b -- I. We replace the inequal i t ies  

(3) ~ . . l ' j  __>_ 1, f o r /  = 1 . . . . .  m, 
j~Si 
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with 

n + b -  1 

(4) y ~ x j +  Z x , > b ,  f o r i = l  . . . . .  m. 
jESi ~=n+l 

The inequalities of  (4) contain at most k + b - 1 variables each, since Iail _< k for all i. 
We need to show that 

3y, y satisfies (3), C(y) = t r 3y', y' satisfies (4), C(y') = t + b - 1. 

1. Assume y c {0, 1 }" satisfies (3). Then clearly y '  = (Yl . . . . .  y,,, 1 . . . . .  1) 6 {0, 1 },+b-i 
satisfies (4), and C(y') = C(y) + b - 1 as required. 

2. Assume y '  6 {0, 1} "+b-1 satisfies (4). We first construct y" 6 {0, 1} "+b-I that also 
satisfies (4), such that y.~' = 1 for s = n + 1 . . . . .  n + b - 1, and C(y") = C(y'). The 
vector y" is constructed by the following procedure. 

y" +- y '  

while3s, n + l  < s  < n + b - l , y ~ ' = 0 d o  
Find l  < j  < n ,  y j ' =  1 
y~' ~--- 1; y~' ~---0 

end-while 

Note that the "Find" always succeeds whenever there exists y.~' = 0, since C(y') > b. 
Note also that C(y") = C(y') throughout the procedure. 

We prove that y" satisfies (4) by induction on the loop. Initially y" = y '  satisfies 
(4) by assumption. For the inductive step, consider a specific modification of  y", at 
indices j and s. By construction the variable x~ appears in all the inequalities, thus 
it appears in any inequality that xj appears in. Therefore swapping the values of  y~' 
and yj' does not violate any inequality. 

The vector y is obtained by setting yj = yj' for j = 1 . . . . .  n. Clearly, this y 
satisfies (3), and C(y) = C(y') - b + 1 as required. [] 

Proposition 3.2 leads us to the following conjecture, which extends conjectures 
from [Hoc21 and IBE]. 

CONJECTURE 3.3. Unless P = N P, there is no polynomial-time approximation al- 
gorithm for ILP(k, b) which, for fixed k and b, has an approximation ratio less than 
k - b + l .  

3.2. The Ratio Between the Integral and Fractional Optima. In this section we present 
a family of ILP(k, b) problem instances on which the gap between the optimal integral 
and fractional solutions is "large." We show that on this family of  instances the ratio 
C~ * gets arbitrarily close to k - b + 1. This is an extension of an example given 
in [Hoc3] for the case b = 1. 

Consider the following set of inequalities, denoted by A. For some t, the number 
t of variables is n = b - 1 + t, and there are m = (k-b+0 inequalities. Variables 
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1 . . . . .  b - 1 appear in all m inequalities.  Each inequali ty contains  one of the possible 
choices o fk  - b + 1 variables out of  variables b . . . . .  n, and the r ight-hand side is " >  b." 

The optimal cost o f  LP(  k, b) is C* ( A ) = b - 1 + t / ( k - b + i) .  A possible optimal 
solution is 

1, j = l  . . . . .  b - l ,  
* =  l 

X j  , j = b  . . . . .  n. 
k - b + l  

There exists an optimal solution x ~ that contains  variables 1 . . . . .  b - 1 (see the proof of  

Proposi t ion 3.21). After removing these variables, the problem becomes ILP(k  - b + 1, 1) 
t with m = (k-b+l) inequalities.  A simple count ing argument  shows that the min imal  

number  of  variables that cover all the inequali t ies is t - (k - b + 1) + 1 = t - k + b, and 
that any choice of  t - k + b variables covers all the inequalities. Therefore the optimal 
integral cost i s C  ~  1 ) + t - k + b = t - k + 2 b - l ,  so 

C~ t - k + 2b - 1 

C*(A)  b -  l + t / ( k - b +  i)  

and the ratio tends to k - b + 1 with t. 
This example shows that any approximation algorithm B for the ILP(k ,  b) problem 

has a worst-case f rac t ional  approximation ratio R~ > k - b + 1. 

4. An Inequality Concerning Sums of Independent Bernoulli Random Variables. 
The fol lowing theorem is a key tool in the analysis of our  randomized algorithm, which 
appears in Section 5. 

Let {x} = x - [x] = x ( m o d  1 ), let E denote expectation, and let X ~ B ( p )  denote a 
Bernoull i  random variable X with a distr ibution rule of  

I ? ( X =  1 ) = p ,  ] P ( X = O ) =  l - p .  

THEOREM4.1. T h e r e e x i s t s a c o n s t a n t q  > O s u c h t h a t i f X i  ~ B ( p i ) , i  ----- 1 . . . . .  n, 
n E n are independent  Bernoul l i  random variables, then putt ing E Y~4=I Pi : (Y~i=I X i  ),  

I? (~-'~ Xi  E ) > q ( 1 - { E } ) .  

, . t;  
Note that for every E and n > E there are pi s with Y~4=I Pi = E and Ilz(Y-~7=l Xi < 

E) = 1 - {E}. Indeed, take pj . . . . .  P[EI = 1, PIEI+I = {E}, and PIL]+2 . . . . .  
p,, = 0. 

PROOE Let Xi,  i = 1 . . . . .  n, be independent  Bernoull i  random variables with ]:D( X i = 

1) = Pi, l?(Xi = O) = 1 - Pi. If Pi E {0, I } for all i, then the claim is trivial, so assume 
otherwise. Put 

Xi - pi 
Z i =  i = 1  . . . .  , n .  

(Y~I'=I pi(1 - pi))  1/2" 
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Then 

and 

n 

E Z i  : 0, Z t y 2 ( Z i )  = 1, 
i = l  

F : E l Z i l 3  = ] ~ - . i = l p i ( 1 - p i ) ( ( 1 - p i )  2 + p 2 i )  < ( n 
( n 

i=l Y~q=l p i ( l  - p i ) )  3/2 - Y~i=l  p i (1  p i ) )  l /z"  

By the Be r ry -Es se e n  theorem (a quanti ta t ive version of  the Central  L imi t  Theorem,  see 
p. 225 of  [Chu]),  

sup Z i < x < AI"  
x - -  ~ oo 

for some absolute  constant  A ( >  1). In particular,  f o r x  = 0, 

I~ X i  < Pi = ]~ Zi  < 0 > ~ --  A F  
i=1 i=1 

and it fol lows that, as long as Y~:i'= 1 Pi(  1 -- Pi)  is larger  than 16A 2, 

X i  < Pi > ~. 
i = l  i=1 / 

n So we may  assume Y~.i=l pi(1  -- Pi)  < 16A 2 and, in particular,  

(5) Z (1 - Pi)  < 32A 2 
pi>_l /2  

and 

Z Pi <-- 32A 2. 
pi<l/2 

n n 
Put t = 1 - { Z i = I  Pi}. By increas ing some of  the Pi ' s  without  changing  [)--~-i=l Pi] 

1 we may  assume t < 7" We may  also assume that Pl _> P2 > �9 "" >_ P . .  Let  k0 = 0 and 
i and let kl be the first index ( if  it exists)  such that Pk~ > 

k~ 1 -- t 
kl  --  l < ~ _ ,  Pi < k t  - l + 64A--- 5 . 

i=1 

In a s imi lar  manner  define indices  kj inductively.  Let  kj > kj_ l be the first index, i f  it 
l exists,  with Pkj >_ ~ and 

k: I - -  t 

(6) kj  - k j _ l  - I < Z Pi < k j  - k J - l  - l + 64A-------5" 
i = k j _ ~ + l  
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Let k , ,  be the last such index to exist. Then 

k~ rn(1 -- t) 
(7) k., - rn < ~ Pi < k m  - m + 

6 4  A----- ~ -  i=l z=:kj i-I 

and in particular, by negating the last inequality, 

k~ m( l  - t) 
Z (1 -- ) > m Pi 6 4 A  2 j:=l i=kj .1+1 

Using (5) it follows from the last inequality that 

3 2 A  2 + 1 > m .  

Going back to (7) we get 

~_z.~ 3 ( 1 -  t) 
k . ,  - m < Pi < km - m + 

j=l i=:kj_l+l 
so that 

(8) 
,tl  / 

- - <  Pi < l - - t .  
4 [ i=k , ,+l  

There can be three reasons why k , , + l  does not exist: 

(i) k,, = n (e.g., all p i ' s  are > �89 
(ii) Y~-'i'=km +1 Pi > n -- k,n - 1 + (1 - t ) / 6 4 A  2 (and then )--~-i'=k,,,+l pi < n -- km -- t), 

(iii) for some n > g > kin,  both 

1 - - t  
E >_ g -- k,, - 1 + Pi 64A---~_ 

i =kin + 1 

1 1 g and either Pt'+J < $ or ~ < pe+t < • - k m  - ~-]~i=k,,+[ pi  < 1 - -  (1 - t ) / 6 4 A  2. 

We examine each of  the three cases. For each 1 < j < m, using (6), 

, (  ~ yi ~ ~ pi I :~:D( ~ (l _ Xi) ~> i I  ~i=kj i+l i=kj_l+l ~ki=ky_.t + 1 

= 1 - - ~ (  ~ ( 1 - - X i )  = 0 )  
~i=k,-I+l 

= 1 - ~ ' ( X i  = 1, V k j - i  + 1 < i < k j )  

= 1 -  _ _  Pi > exp - Z (1 Pi )  
i=kj., i+l i=kj_ i+1 

( ( l - t ) )  e_l/e 
_ > 1 -  > 1 - e x p  -- 1 64A2 _ 
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and 

) Xi 5 Pi > (1 - - e - l / 2 )  m > (1 - - e - l / 2 )  32Az+l, 

\ i = 1  i=l  

w h i c h  p r o v e s  the t h e o r e m  i f  c a s e  ( i )  o c c u r s .  I f  c a s e  ( i i )  o c c u r s ,  then  in a s i m i l a r  m a n n e r  

i=k.,+l i=k~+l \ i=k,.+ 1 

and 

Xi <_ Pi _> (1 --e-l/2)32A2+l(1 - - e - t ) .  
i=1 i=1 ) '  

I f  c a s e  ( i i i )  o c c u r s ,  then  pi  < 1 - 1 / 1 2 8 A  2 for  i > s and thus  

~-~pi <_ 1 6 A  2 - 128  A2 = 2 0 4 8 A 2 .  
i=s 

S o  e i ther  

in w h i c h  c a s e  

]P Xi <_ Pi 
i=1 

f 

k,, - ~ Pi > t, s 
i=k,,, + 1 

>_ (1 - e-l/2)32A2+l~ Xi 5 Z Pi 
i=km+l i=k.,+l .I 

i 1 i = t + l  

> (1--e-l/2)32A:+l(1--e-')Ip(~-~ Xi=O) 
\ i = e + l  

= (1 - -  e - l / 2 ) 3 2 A 2 + l ( l  - - e  - t )  I-I ( i  - Pi) 
i=~+1 

\ i=e+ l 

>_ (1 - -  e-l~2) 32A2+1 (1 - -  e-t)e -2~ 

(here  B = 1 2 8 A 2 1 n ( 1 2 8 A  2) s o t h a t  1 - x  > e -Hx f o r 0  < x < 1 - 1 / 1 2 8 A  2) 

or 

km-  )__s Pi < t, g 
i=k., + 1 
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in which case necessari ly 

and 

s 
i=km + l 

Pi > s -- k., 

F Xi < Pi 
i = l  

> ( 1  - -  e-l /2)32A2+l]~ X i  ~ Pi 

\ i=k.-t-I  i:km+l 

> (1 - e - I / 2 ) 3 2 A 2 + l ~  Xi = ~ - k m  
\ i=km + 1 

> (1 - e-l/2)a2A2+lI?(Xz = 1, i =km + 1 . . . . .  e 

& X i  = 0, i = ~ + 1  . . . . .  n) 

>__ (1 --e-l/2z32A2+ll 1 1 Pi (1 -- Pi) 
i=km+l i=g+l 

_> (I -- e-l~2) 32A2+| exp - B  (1 - Pi) 

\ i=km+l 

1 i = f + l  

> (1 -- e-1/2)32A2+le -B(2048A4+I). [] 

We would  now like to state two corollaries;  the first is stated to emphas ize  the amaze-  

ment  that we find in the theorem above,  the second one, suggested to us by Uri  Feige,  

may prove to be a more  useful form of  the theorem. 

COROLLARY 4.2. For 0 < a < 1, let 

f ( a ) - - - - i n f I P ( s  < a n ) ,  

where the Xi "s are as in the statement o f  Theorem 4.1 and the inf  is taken over all n and 
n 

all Pl . . . . .  Pn with ~-~i=l Pi = an. Then f (et) > 0 if and only if a is rational. 

PROOF. (r Assume  a is rational. Then the sequence {an}, n = 1 ,2  . . . . .  has a 

finite set o f  values, so let e = max,,({an}) < 1. Let  n and Pl . . . . .  p,, be as before.  By 
Theorem 4.1 we get 

Xi < a n  >q( l - {an} )  > q ( l - e )  >0. 
" i = 1  

(=*) A s s u m e a  is irrational. F o r a n y n  letk = LcmJ and/~ = {an} .Le t theprobab i l i t i e s  
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be Pl . . . . .  Pk = 1, Pk+l = fl, and Pk+2 . . . . .  Pn = 0. Then 

~ (  ~--~Xii=l - - < a n ) =  ~(X~+I = 0 )  = 1 - - f l  = l - -{om}.  

Since ot is irrational the infimum of the last expression is 0. [] 

COROLLARY4.3. There exists a constant q > O such that for all O < e < 1 if Xi 
B(pi) ,  i = 1 . . . . .  n are independent Bernoulli random variables, then putting E = 

n ~ n 
)--~-i=1 Pi = (~- i=1 Xi), 

]~ X i -< E + e >_ qe. 

PROOF. We separate the discussion into two cases: 

I. {E} < 1 - e. Then using Theorem 4.1, 

P Xi-< E + e  > P  Xi-< E > q ( 1 - { E } )  > q e .  
i=l 

2. {E} > 1 - e. Then E = [E]  - 1 + {E} > [E]  - e, so [E]  < E + e. Define an 
E auxiliary random variable Y ~ B(I-E] - E), so ( ~ i = t  Xi + Y) ---- [E] .  We get 

]~ Xi-< E + e  > ~ X i + Y  -< E + E  
i=l 

> ~(~~Xi+Y-<\i=I [ E ' ] ) > _ q ( m - { F E q } ) = q  >qe . l - I  

5. The Randomized Algorithm 

5.1. Introduction. In this section we present a randomized approximation algorithm 
for the ILP(k, b) problem. Our goal is to obtain an algorithm with an approximation ratio 
which is lower than the ratio o fk  - b + I we already have from deterministic algorithms 
[HHI. 

A randomized algorithm for the closely related general b-matching problem in hy- 
pergraphs has been proposed by Raghavan and Thompson [RT]. Their technique, called 
"randomized rounding with scaling," is based on first solving the fractional b-matching 
problem, and then using randomization to obtain an approximate solution for the inte- 
gral problem. The analysis of  their algorithm relies in two essential ways on the use of 
Chernoff bounds on sums of  Bernoulli random variables IChel~ 

In our algorithm for ILP(k, b) we also use randomized rounding with scaling, but 
with a new analysis which avoids the use of Chernoff bounds. This is both necessary and 
advantageous for the following reasons. First, the analogue of one of  the two applications 
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of Chernoff bounds in [RT] is not possible for ILP(k, b) (the source of the difficulty is 
mentioned in what follows). Second, the other application of  a Chernoff bound yields 
an inferior approximation ratio in our case. Instead of the Chernoff bounds, our analysis 
hinges on the utilization of  the k bound on edge cardinalities, and on the use of  the new 
bound on the sum of  Bernoulli random variables, Theorem 4.1. 

5.2. Randomized Rounding with Scaling. The fundamental idea behind randomized 
rounding is quite simple. Let x* = (x~' . . . . .  x,*) be an optimal solution to an LP(k, b) 
instance. Since x~ E I0, 1 ] we can define independent Bernoulli random variables: 

Yj ~ B(x~) for j =  1 . . . . .  n. 

The Yj's are referred to as the rounded version of  x*. A natural idea is to take a random 
assignment for these variables as a candidate for an integral solution for the corresponding 
ILP(k, b) instance. Indeed, consider a specific inequality 

(9) ~ Xj >_ bi for ISI < k, and bi > b. 
j~S 

Then the expected sum of the Yj variables satisfies the constraint, since by linearity of 
expectation 

and similarly the expected cost is optimal, 

\ j = l  

The difficulty in utilizing this idea lies in the fact that there is a significant probability 
that the rounded Yj values will not satisfy (9). Furthermore, it is not clear whether there 
is a nonzero probabili ty that the randomized rounding will yield a solution in which none 
of the m constraints is violated, and which has a low cost simultaneously. 

More precisely, we require that for a (random) integral solution to be called satisfac- 
too,, with respect to some cost # ' ,  two events must occur: 

S= = {no constraint is violated} 

and 

In other words, we define the event of finding a satisfactory solution by 

(10) s = g~ A s  
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Our task is to find a method of choosing the random variables Yj, and a suitable cost 
bound/~ ' ,  such that for probabili t ies y and e we have 

�9 P(Sl) >_ l - - y ,  
* P(E2(u '))  >_ c. 

Since the events El and s (~ ' )  are not independent, we cannot preclude the possibili ty 
that these two events are largely disjoint. We are only guaranteed that P(C) >_ P(,fl)  + 
P(~'z(/z')) - 1. Therefore we should ensure that 

(II) ( l - y ) - t - e >  l + O >  I. 

Then 0 is a lower bound on the probabili ty of finding a satisfactory solution. Therefore 
the expected number of trials until a satisfactory solution is actually found is 1/0. To 
claim that we have a randomized approximation algorithm, we need to show that 1/0 is 
polynomial,  and then the approximation ratio is determined by the cost /z ' .  

The first step we take is to ensure that Cl occurs with probability 1 - ~'. To achieve 
this, the random variables need to be scaled. By scaling, we mean that the xj* probabilities 
are multiplied by some factor 3 > 1. The resultant values are then used to define the Yj 
random variables. The factor 3 is chosen so the probability of event ,fl is at least 1 - ~, 
for some "safety probabili ty" y.  

REMARK. Multiplying a probabili ty xj* with ~ > 1 may yield a value larger than 1, in 
which case we take 1 as the result. Therefore, we cannot claim that the expected sum 
of scaled variables in a specific inequality is at least 3bi (consider the extreme case of 
x~ ~ {0, 1 } for all j ;  then the scaled variables have the same probabilit ies as the unscaled 
ones). This is the cause of  our inability to apply a Chemoff  bound at this point in the 
analysis. This difficulty does not arise in Raghavan and Thompson's  analysis tbr the b- 
matching problem, since the problem there is a maximization problem, and their scaling 
is done with a factor 6 < 1. 

Trivially, the expected cost of the scaled variables is at most 3C*. However, it turns 
out that for the 3 that we use the expected cost is in fact at most 6C* - 1. This observation 
enables us to claim that the algorithm can (with a high probability) find a solution with 
cost of at most 3C*, i.e., one higher than the bound on the expected cost. In other words, 
our analysis shows that, for some e > 0, 

P(~'z(,Sc*)) >__ c. 

We need to show that for these y and e, (1 !) holds, and that I / 0  is indeed polynomial  (in 
fact it will be constant). We can then claim that we have a randomized algorithm RND 
that finds a satisfactory solution, i.e., a feasible solution with a cost of at most 6C*. The 
approximation ratio would then be 

RRND ~_ RRN D ~ 6. 
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5.3. The Main Results 

THEOREM 5.1. There exists a polynomial-time randomized approximation algorithm 
RND for the ILP(k, b) problem with 4 <_ b < kmin - 2, where kmi n is the minimal 
number of  variables in any inequali~. '. Algorithm RND has the following approximation 
ratio, using q, the universal constant guaranteed by Theorem 4. I, and M = (q /2)(k - 
b + 1) k-b+l" 

. { k - b ,  ( ( q  ~ m < M ,  
RRND < 1/(k-b.t-1) 

- ( k - b + l )  l -  \ 2 m /  ] ,  m > M .  

REMARK. This does not contradict Hochbaum's  conjecture (3.3) since for k - b fixed 
the bound on the approximation ratio tends to k - b + 1 with m. 

The proof of  this result is presented in two stages: 

1. Satisfying the Constraints (Section 5.4). For any probabili ty y we obtain a lower 
bound on the scaling factor 6 that will guarantee that the probability of  the event E~ 
is at least 1 - y.  This is achieved by direct analysis of the event. We then show that 
8 also guarantees that the expected cost is at most 3C* - 1. 

2. The Algorithm (Section 5.5). We find the choice of  probabilities (y and s) that will 
yield a cost of  at most 6C*, while satisfying (11). We conclude by showing that 0, 
the probability of  success, ensures a polynomial- t ime algorithm. 

5.4. Satisfying the Constraints. Let x* = (x~ . . . . .  x*) be an optimal solution to 
LP(k, b). Consider an inequality on ~ < k variables. Assume without loss of  gener- 
ality that it is 

f 

(12) E xj > hi. 
j=l  

NOTATION. 

variables 

and their sum 

For a > 0 let (a) = min{a, 1}. For 3 > 1 define scaled Bernoulli random 

j=l  

Let or(3) = P(Y < bi), the probabili ty that (12) is violated. 

PROPOSITION5.2. For l < bi <_ kmin - 2, and a safe~, probabilit3, y if 

6 > max k - bi, (k - bi + 1) 1 - - -  

then tz(6) <_ y / m .  
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PROOF. Define A r  for r = 0 . . . . .  b~ - 1 as the event that exactly r variables f rom 
I = {1 . . . . .  s are chosen to be 1, i.e., Ar = {Y = r}. From the definition of  Yj, 

(13) P(Ar)  = ~ H ( f x ; )  H (1 - ( f x ~ ) ) .  
sc_t jeS jEI\S IS:=r 

The events are disjoint, therefore 

b1 - 1 
o r ( f )  = y ~  ] ~ ( A r ) .  

r = 0  

By assumption,  b, < kmin - 2 < g - -  2. Assume also that bi > 2. Define the set of  
�9 "large values" in x* as B* = { j l x ;  >_ 1/(e  - bi)}. Then by the fact that x* obeys (12), 

and by Lemma  2.1 applied with t = 2, I B*l _> bi - 1. For each of  the j E B*, (fxT) = 1 
(since by assumption f >__ k - bi > ~ - -  b i ) .  

Consider  the events Ar for r = 0 . . . . .  b~ - 2. Since r < bi - 1, from the pigeonhole  
principle we get that in every term of  (13) there is at least one j ~ I \ S  such that 
(1 - ( fx ; ) )  = 0. Therefore P(Ar)  = 0 for r = 0 . . . . .  bi - 2. 

We now consider  the event As,_ 1. If I B* [ _> bi, then by a similar  a rgument  f = k - bi 
suffices to get P ( A b , - l )  = 0 and we are done. Otherwise,  IB*I = bi - 1. Then the only 
nonzero term in (13) is the one based on the set S = B*. Therefore 

(14) or(8) = ~(Ab,-1)  = H (fiX;) H (1 - - ( S X ; ) ) =  H (1 --(fxj*)) .  
jEB '  j~ I \B *  jEI \B*  

Note the fol lowing facts: 

�9 ] l \ B * l = g - b i + l ,  

Under  these condit ions,  by Lemma  2.2, if a ( f )  > 0 then it gets its maximal  value as 

a function of  x* when all x ; ' s  are equal, and x ;  = 1/(s - bi + 1) for all j E I \ B * .  
Therefore 

�9 ( f ) e - b i + l ( <  1 ( ~ ) k - b i + l  
( 1 5 )  u ( f )  _< 1 * - -  bi + ! --  k - bi + 1 ' 

since, for a > 0 and t > a, the funct ion (1 - a / t ) '  is monotonous ly  increasing with t. 
In our  case e - b~ + 1 > 3, otherwise or(3) = 0. Therefore taking ~ as specified in the 
proposit ion ensures that or(f) < y / m .  

The only remaining  case is bi ---- 1. In this case the only event  is A0, and then we do 
not need to assume that 3 > k - bg. The analysis  can start directly at (14), with B* ---- O. 
This completes  the proof  of  Proposit ion 5.2. [] 

R E M A R K S .  

�9 For the special c a s e  bi = 2 we can simplify the proof. Specifically, we can weaken 
the requi rement  that 6 > k - bi, and replace it by 

k 
3 > -  

- -  2 "  
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Instead of  using L e m m a  2.1, we can then use the observat ion that there exists  at least  
one j with x7 > 2/s and the analysis  holds without  the premise  bi <_ k m i n  - 2. 

�9 I f k  - bi § 1 is not fixed, then we can take the l imit  in (15) and get  a (6 )  < e -~. 
To ensure a (3 )  < F / m  we need to take ~i >__ I n ( m / F ) ,  which  leads to a logar i thmic  
approx imat ion  ratio. 

COROLLARY 5.3. For 1 < b < k m i n  - 2, and a safe~.' probability F, i f  

{ ( 8 > m a x  k - b , ( k - b + l )  1 -  

then P(E1) > 1 - F. 

PROOF. We need ~t to satisfy the requirements  of  Proposi t ion 5.2 for every inequal i ty  i,  
i.e., we must take the value from the inequal i ty  on which the express ion  in Proposi t ion  5.2 
is largest.  This m a x i m u m  is obta ined  for inequali t ies  where b~ = b, the smal les t  r ight- 
hand side value. To prove this, it suffices to show that, for every 0 < r < 1, if  b < bi,  
then 

(k - b + l ) ( l  - r l /(k-h+l))  > (k - bi + 1)(1 -- r l / (k-b i+l ) ) ,  

and after rearranging,  

bi - b  > (k - b  + 1)r  I/<k-b+l) - (k - b i  q'- l ) r  l/(k-b~+l). 

The last inequal i ty  holds since the r ight-band side is a monotonous  increasing function 
of  r in the domain  [0, 1 ] which has a value of  bi - b when r = 1. []  

PROPOSITION 5.4. / f 4  < b < k - 2 ,  and3 i sas inCorol lao '5 .3 ,  t henE(Y)  <_ (~C*-1.  

PROOF. Let  Si be the set of  var iables  in inequal i ty  i,  IS, [ = g < k. Let  Di C S~ be the 
set of  b - 1 var iables  j 6 Si with largest  fractional  values x 7. Since Y~.jcs, x ;  > bi > b, 
the average value for x 7 is at least  b/s  >_ b /k .  Therefore  summing  the b - 1 largest  
values we get 

Zx;>_ 
jEDi 

Now let D be the set of  b - 1 var iables  j E { 1 . . . . .  n} with largest  fractional  values xf .  
Then for  any i, Y~.jeI) x j  > ~-,jeD, x; ,  SO 

(16) Z x ~  > (b- 1) b. 
jcD 

Using the definit ions of  Y and (.) we get 

E(Y)  = / _ . . , , & . j  ) = - max{Sxj* - 1,0}. 
j = l  j = l  
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Since by assumption ~l _> k - b, Lemma 2.1 guarantees that, for all j c D, (6xf) = 1. 
Iqaerefore 

j ~ D  " j c D  

By (16) and using the assumptions that b >__ 4 and k - b > 2 we get 

( ) E(Y) < _ 8 C * -  (k - b)(b - 1 )  k - ( b - l )  ~C* . -  1. [] 

5.5. The Algorithm. Now the groundwork is prepared for proceeding to prove our main 
result, Theorem 5.1. We need to combine the results of  Corollary 5.3 and Proposition 5.4 
regarding the properties of  the scaling factor 6, and then to use Corollary 4.3. Wkh 
these tools we can now build the randomized algorithm RND and prove its claimed 
approximation ratio, and polynomial-time complexity. 

Using the universal constant q from Theorem 4. i, we define 

(17) e = q, 

q 
(18) y = - .  

2 

Hence 
6 

( 1 9 )  0 = (1 - -  y )  + ,9 - -  1 = - .  
2 

We use this y to calculate 3 according to Corollary 5.3, i.e., 

With this 3 denote the scaled probabilities and their sum by 

(8 ;) Z j  ~ .X , 

Iz = 

Note that, by Proposition 5.4,/z _< 3C* - 
Now define the random variables using 

for j = l  . . . . .  n, 

j = l  

1. 
the modified probabilities: 

Yj ~ B(zj)  for j ---- 1 . . . . .  n. 

The algorithm RND flips n independent coins for the Yj random variables, until event s 
occurs (for a cost of 6C*). 

LEMMA 5.5. The algorithm RND enjoys the following properties: 

1. IP(Et) >_ 1 - y ,  
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1. Calculate 7 by (18) and 5 by (20) for k,b and m. 

2. Linear Programming : find the optimal fractional solution 

3. Calculate the scaled probability vector z = (zl,...,z,~) by 

4. Randomize : flip n independent coins with probabilities z 3 until 
the event s (10) occurs. 

Fig. 1. Algorithm RND. 

2. P(g2(3C*)) >_ ~, 
3. P (g)  > 0 = e /2 ,  

:# 
4. RRN o <_ 3. 

PROOF. By the definition of 3, Corollary 5.3 holds, thus 

P(g t )  >_ 1 - F .  

Using Corollary 4.3, along with Proposition 5.4 we get 

P(C2(6C*)) = P(Y <_ 3C*) >_ P(Y <_ t~ + 1) > q .  1 = e. 

We conclude by (19) that the probabili ty of finding a satisfactory solution is 

P ( g )  >_ 0 = - .  
2 

Since P (g )  >_ 0 > 0, algorithm RND will find a solution .~ E {0, 1 }" such that CRND ~--- 
t/ 

Y~q=l )J < 3C*. Therefore the approximation ratio is 

CRND 
R* < < 5. [] RND - -  

C *  - 

We need to show that 0 is polynomial,  which is trivial since 0 = q/2, a constant. 
Therefore the time complexity is dominated by the Linear Programming phase, which 
is polynomial.  

By a straightforward computation we obtain that, for M = (q/2)(k - b + 1)  k - b + l  , 

the value of 8 depends on m by 

k -  _ ( q 
b, 

8 =  ( k - b + l ) ( l  \,~m,] )" 

m < M ,  

m > M .  

This concludes the proof of  Theorem 5.1. 
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5.6. Final Remarks. 1. We have not computed the exact value of the constant q. It is 
bounded very roughly from below by 

q > 2 -2~~ 

A tighter bound can probably be found by careful analysis. Nevertheless, it seems that 
q is too small to be of practical value. 

2. It is not beneficial to reduce ILP(k, b) to ILP(k - b + I, 1) using Proposition 3.1. 
The reduction increases the number of equations by a (potentially) nonpolynomial factor, 
causing the time complexity to increase significantly in the Linear Programming phase. 
Moreover, the increased number of inequalities increases the bound on the approximation 
ratio RAN D . 

An important exception is the case b = k - l, which is not covered by Theorem 5.1. 
Using Proposition 3.1 in this case increases the number of equations by a factor of only 
O (k2), and reduces the problem into an instance ofILP(2, 1). However, this is the Vertex 
Cover problem, for which better deterministic algorithms exist (e.g., [BED. 

3. The requirement b >_ 4 is not a real limitation. We can transform an ILP(k, b) 
instance with b _< 3 into an instance of I L P ( k + 4 - b ,  4) by adding 4 - b  new variables that 
appear in all the inequalities, and increasing the right-hand side to 4, as in Proposition 3.2. 
This has no adverse effect on the analysis since in all the expressions containing b, it 
appears only in the difference k - b, which is invariant under the transformation. 

4. As presented, the algorithm has a small (though constant) probability of finding a 
satisfactory solution. Therefore derandomizing it would be a significant improvement in 
terms of its time complexity. Since the Raghavan-Thompson algorithm was successfully 
derandomized [R] (see also [BV]), we could hope to derandomize our algorithm as well. 
So far we have not succeeded in doing this, and it remains an open problem. The main 
difficulty seems to be derandomizing Theorem 4.1. 
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