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"The Big Sweep": On the Power of the Wavefront 
Approach to Voronoi Diagrams 

E Dehne I and R. Klein 2 

Abstract. We show that the wavefront approach to Voronoi diagrams (a deterministic line-sweep algorithm 
that does not use geometric transform) can be generalized to distance measures more general than the Euclidean 
metric. In fact, we provide the first worst-case optimal (O(n log n) time, O(n) space) algorithm that is valid for 
the full class of what has been called nice metrics in the plane. This also solves the previously open problem of 
providing an O (n log n)-time plane-sweep algorithm for arbitrary L~-metrics. Nice metrics include all convex 
distance functions but also distance measures like the Moscow metric, and composed metrics. The algorithm 
is conceptually simple, but it copes with all possible deformations of the diagram. 
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1, In t roduc t ion .  Given a set S of  n sites in the plane, their Voronoi diagram is a 
partition of the plane into regions, one to each site, such that the region of site p contains 
all points of the plane that are closer to p than to any other site in S. This structure has 
proven most useful in computational geometry as well as in other areas; see, e.g., [2] for 
a survey on variations and applications. 

Four different algorithm schemes have been developed for computing the Voronoi 
diagram efficiently. First, a divide-and-conquer algorithm was presented in [ 18] that runs 
in optimal time O (n log n) in the worst case. Second, geometric transformations were 
discovered in [3] and [8] that reduce the problem to computing convex hulls in 3-space. A 
third worst-case optimal algorithm was proposed in [9]; after applying a transformation in 
the plane, a l ine-sweep algorithm is used. Finally, a randomized incremental construction 
was presented in [4] that allows the Voronoi diagram of  n points to be computed in 
expected time O (n log n), the average being taken over the n ! many orders of  insertion. 

The concept of  the Voronoi diagram and the algorithms for its construction have 
been generalized to different types of  sites and distance measures [2], and to an abstract 
setting [11], [12]. 

In this paper we study the l ine-sweep approach. This paradigm can also be used for 
computing the Voronoi diagram of points on a cone [7]. Furthermore, it has been pointed 
out in [17] and [6] that the planar transform suggested in the original paper [9] is not 
necessary. Rather, the Voronoi diagram can be constructed directly by sweeping the plane 
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with a vertical line l from left to right, maintaining that part of the diagram to the left 
of l that cannot change any more as new sites are discovered during the sweep. Its right 
boundary is a sequence of parabola segments that looks like a wavefront. As a matter of 
fact, this is just the Voronoi diagram of the points to the left o f /and  of the site I itself, and 
the wavefront is the boundary of the region of l. A sweep algorithm without transform 
has been used in [ 19] for computing the Voronoi diagram of points with respect to the 
Manhattan distance L1 and, analogously, Loo. 

Since this wavefront algorithm is extremely natural and simple, we would like to 
generalize it to distance measures other than L1, L2, and L~.  For example, in order to 
plan collision-free motions of a convex robot, convex distance functions are required 
[5]. 

We show that the wavefront approach can even be generalized to the full class of nice 
metrics in the plane introduced in [14]. 

Roughly, a metric d is called nice if convergency of point sequences means the same 
in d as in the Euclidean metric, if for any two points there is a third one between them 
such that their mutual distances add up, and if bisectors are tractable; see Definition 1 
below. This class contains not only all symmetric convex distance functions, but also 
distance measures like the Moscow metric, composed metrics, etc.; see [12]. 

So far, only for a proper subclass of nice metrics has a deterministic worst-case 
optimal algorithm been known [ 12]. Since it is of divide-and-conquer type, it works only 
if each point set can be partitioned into subsets of equal size whose bisector is acyclic. In 
practice, this condition is not easy to verify. Also, the divide-and-conquer algorithm is 
quite complicated in its general version. A randomized O (n log n) algorithm suitable for 
all nice metrics can be obtained from the results on abstract Voronoi diagrams presented 
in [16] and [13]. 

In this paper we present the first deterministic algorithm for computing the Voronoi 
diagram of n points in an arbitrary nice metric in the plane within O(n logn) time 
and linear space. This also extends the results of [ 19] by providing an O (n log n)-time 
plane-sweep algorithm for arbitrary Lk. 

Among the efficient deterministic algorithms, the wavefront approach might be the 
easiest to implement. It gracefully deals with all kinds of ugly phenomena like multiple 
vertices, two-dimensional bisector pieces, one-dimensional pieces of Voronoi regions. 

The paper is organized as follows. After providing the basic definitions in Section 2, 
we briefly review, in Section 3, how the wavefront algorithm works in the Euclidean 
metric. In Section 4 we study the dynamic properties of the wavefront during the sweep. 
Then, in Section 5, we present the general wavefront algorithm. Four different kinds of 
events call for an update of the wavefront; how to handle them is described in respective 
subsections. In the last section we mention possible generalizations and propose some 
problems for further research. 

2. Nice Metrics and Voronoi Diagrams. Most of the material contained in this section 
has been presented in [12]. We include it here for the convenience of the reader. 

Let d be a metric in the plane, i.e., a function that assigns to each pair of points a, b 
in the plane a nonnegative distance d(a, b), such that d(a, b) = 0 if and only if a = b, 
d(a, b) = d(b, a), and d(a, c) < d(a, b) + d(b, c) hold for all a, b, c. 
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Fig.  1. The bisector B(q,/), where q 6 I and q ~ l ,  in the Euclidean metric (L2) and in the L~-metric defined 
by L~(a, b) = max(Ix(a) - x(b)l, ly(a) - y(b)l). 

Let I denote a (vertical) line. By 

d(p, l) :=  min{z E l; d(p, z)} 

we denote the distance between point p and line l. We have d(p, l) = 0 if and only if 
p ~ I. Now let p be a point, and let r denote a point or a vertical line. Let 

B(p , r )  ---- {z; d(p, z) = d(r,z)},  

D(p, r) ----- {z; d(p, z) < d(r, z)}, 

and put C(p, r) -- D(p, r) U B(p, r). The set B(p, r) is called the bisector of p and r 
(see Figure i). It need not be a curve; in L~ it contains quarter-planes if the points are 
diagonal vertices of a square. For a point p and nonnegative distance t~, the d-circle for 
p with distance ot is defined as {z; d(p, z) = et}. 

We consider the following class of metrics in the plane. 

DEFINITION 1. A metric d on ~2 is called nice if: 

1. Each d-circle contains a standard circle, and vice versa. 
2. Each d-circle is contained in a standard circle. 
3. For any two points a and c there exists a point b ~ {a, c} such that d(a, c) = 

d(a, b) + d(b, c) holds. 
4. If p, r are two points, or a point and a line, then the boundary of B(p, r) consists of 

two curves each of which is homeomorphic to a line. The intersection of two such 
curves consists of finitely many connected components. 

The curves referred to in property 4 of Definition 1 will be the edges of the Voronoi 
diagram. However, we can choose between the left and the right boundary curve of 
B(p, r), C(p, r) N D(r, p) or C(r, p) n D(p, r). 

In order to make a consistent choice, let S = {Pl . . . . .  Pm, l} be a set o fm points and 
one vertical line, l, and let -< be a total order on S. By OM we denote the boundary of a 
set M. 
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DEFINITION 2. 

Then 

For sites p,  r 6 S, p ~ r, let 

ID(p,  r) U B(p, r) 
R(p, r) : =  I D(p, r) 

VR(p, S) : =  A R(p, r) 
rcS 
r:~ p 

is the Voronoi region of p with respect to S, and 

V(S) :=  U 3R(p; S) 
p~S  

is the Voronoi diagram of S. 

if p -< r, 
if r -<p .  

Clearly, OR(p, r) = OR(r, p) holds. We denote this separating curve by J (p, r). 
The Voronoi regions form a disjoint decomposition of  the plane. It can be derived 

from property 3 of Definition 1 that for any two points, p and q, there exists a d-straight 
path from p to q, satisfying d(a, c) = d(a, b) + d(b, c) for any three consecutive points 
a, b, and c on the path. Since the Voronoi regions VR(p, S) are d-star shaped--each 
d-straight path from p to a point in VR(p, S) is contained in VR(p, S ) - - w e  obtain the 
following consequence: 

LEMMA 3. For each point p ~ S, VR(p, S) is connected. The Voronoi region of line I 
is connected if no point in S lies on 1. 

The Voronoi diagram is a planar graph of linear complexity whose edges consist of  
pieces of  bisecting curves J (p,  r) ,  and whose faces are the Voronoi regions. However, 
the regions may contain one-dimensional pieces (cut-points whose removal leaves the 
region disconnected). Examples are shown in Figure 2 for the L~-me t r i c  and for the 

\ q o  

pO 

Fig. 2. Let S = {p, q, r} and p -< q, r. Then the region VR(p, S) contains one-dimensional pieces. The thick 
half-line in the left picture and the shaded quarter-plane in the right picture consist of points equally far from 
p, q, and r; they belong to the region of p. 
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Moscow metric, where distance is defined by minimum length paths that consist only 
of  segments radial to the center c, and of  segments of  circles around c; see [ 12]. I f  the 
region of site p has a cut point, v, then p must, with respect to < ,  be the minimum of  all 
other sites whose regions are adjacent to v. 

3. Review of the Wavefront Algorithm for the Euclidean Metric. Let S : {p] . . . . .  
p ,}  be a set of  n point sites in the plane. We want to construct the Euclidean Voronoi 
diagram V (S). To this end we compute, for each value of  t from - o o  to ~ ,  the Voronoi 
diagram V(S,),  where 

St = {p e S; x (p)  < t} U {1,}. 

Here It denotes the vertical line whose x-coordinate equals t. Though It works as the 
sweepline it is most useful to add it to the set of  sites. 

First, we sort the points Pi by their x-coordinates.  We may without loss of generality 
assume that the points pi have pairwise different coordinates x (Pi). 

In Figure 3 two Voronoi diagrams, V(St) and V(St,), are depicted. We first discuss the 
situation at time t. Since none of  p l . . . . .  P5 lies on line lt, the bisecting curves J (Pi, lt) = 
B(pi,  lt) are parabolae. In this example,  all of  them contribute to the wavefront Wt, i.e., 
to the boundary of the Voronoi region VR(lt, St).' The points on the p-s ide  of  J(p ,  lt) 
are closer to p than to It, so they are a priori closer to p than to any line lt,, where t < t ' ,  

�9 P6 

Wt '  ~, 

1:)41 

Fig. 3. The Euclidean Voronoi diagrams V(St) and V(St,). 

Pl �9 
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and to any point site to the right of  lt. Consequently, as It moves on, the waves move on 
as well, whereas the Voronoi regions of  V(St)  that do not contribute to the wavefront do 
not change anymore. 

There are two possible events that call for an update of the wavefront, namely when a 
new wave appears in Wt, or when an old wave disappears. The first type of  event is called 
a site event. In Figure 3 it occurs when the sweepline hits the point site P6. Shortly after, 
at time t ' ,  there is a new wave formed by a segment of  J(P6, lr) glued onto the wave 
of  P4 (which now contributes two segments to the wavefront We). When the sweepline 
hits P6 the new wave starts out as a left half-line; see Figure 1. 

Let p,  q denote two point sites whose waves are adjacent in Wt. The bisector of p 
and q gives rise to an edge of  V(St)  to the left of  Wt. Its prolongation into the region 
of It is called a spike. In Figure 3 spikes are depicted by dashed lines. The spikes can 
be thought of  as tracks the waves move along. A wave disappears from the wavefront 
once it has reached the point where its two neighboring spikes cross. This is called a 
spike event. At point v in Figure 3 a spike event could occur. Without site P6, the wave 
of  P3 would disappear, after reaching v, and the neighboring waves of  P4 and P5 would 
become adjacent. However, after detecting site P6 point v' gives rise to an earlier spike 
event that occurs when the wave of P4 (together with the wave of  P3) arrives at v'. 

If, at t ime tf, all point sites have been detected and all pending spike events have 
been processed, the diagram V(S)  can be obtained from V(St s) simply by removing the 
wavefront. 

To implement this algorithm the segments of  the wavefront can be stored in a balanced 
binary tree and a priority queue maintained for the site and spike events. Together with 
the initial sorting step, all this can be done in time O(n l ogn)  and space O(n), in the 
worst case. 

4. Proofs of Wavefront Properties for the General Case. In the general case there 
are two additional types of  events. Two nonintersecting waves may touch, and then 
intersect (touch event), and of two intersecting waves one may outrun the other (pass 
event). These event types are illustrated in Figure 6. They do not occur in the Euclidean 
metric because any two parabolae B(p ,  l) and B(q, l) intersect, if  p and q are not on 
l. Also,  we have to replace the intuitive arguments given in Section 3 by formal proofs 
based on the properties of  nice metrics, as stated in Definition 1. 

Let Pl . . . .  , Pn denote the given point sites. As before, let 

St = {p ~ S; x (p )  < t} U {It}. 

As tie break order -< in Definition 2 of  the Voronoi diagram we choose the order induced 
by the (unique) x-coordinates;  thus, the line It is always the maximal element of  all sites 
currently considered. It is this choice of  -< that helps us cope with deformations. 

First, we study the behavior of  a single wave J (p ,  lt), as t grows bigger. 

LEMMA4. For every point p, the function fp(t)  = d(p ,  lt), t > x(p) ,  is strictly 
increasing and continuous. The function fp (t) is unbounded, that is, fp (t) --+ cx~ for  
t ----~ ~ .  
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'r- . . . . .  r' 

Fig. 4. The point-to-sweepline distance increases continuously. 

PROOF. Let x (p) < t < t', and let zr denote a d-straight path from p to a point q' E lt, 
satisfying d(p,  q') = d(p ,  lt,); see Figure 4. The path Jr intersects It at some point q, and 
we obtain d(p,  It) < d(p ,  q) < d(p ,  q') = d(p ,  lt,). Hence, fp( t )  is strictly increasing. 
In order to show the continuity of  fp(t)  we consider a d-straight path 6 from p to It 
ending in r, where d(p,  r) = d(p ,  lt). Let r '  be the point on lt, with y(r)  = y(r').  Then 
d ( p ,  lt) < d(p ,  It') < d(p ,  lt) -]- d(r, r'). If  It' - tl ~ 0, then d(r, r') ~ 0 and, hence, 
I fp (t') - fp (t)l --+ 0. The unboundedness of  fp (t) follows from the assumption that the 
d-circles are bounded. [] 

Now we show that the waves keep moving, as the sweepline proceeds. 

LEMMA 5. For any t < t', and for any point p with x (p )  < t, the bisecting curve 
J (p ,  lt) is contained in the domain D(p ,  lt,). In particular, J (p, lt) A J (p, lt,) ~-- ~. 

PROOF. Let w ~ J (p ,  lt) Q B(p ,  It), as shown in Figure 5. From Lemma 4 it follows 
that d(w,  It,) > d(w,  It) = d(w,  p). Hence, w E D(p ,  It, ). [] 

As a consequence, the Voronoi regions of  V (St) can only grow bigger, as the sweepline 
proceeds. 

\ \ \ ~ 1  
I 

/ 
/ 

/ 
/ 

J(p,lt) J(p,lt,) 

Fig. 5. The waves keep moving, as the sweepline proceeds. 
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LEMMA 6. For any t < t', and for  any point site p ~ St, we have VR(p, St) 
VR(p, St,); equality holds if  the Voronoi region o f  p in V (St) does not share an edge 
with the wavefront 0 VR(lt, St). 

PROOF. Lemma 5 implies R ( p ,  lt) C R(p ,  It,) for each point site p 6 St. For each 
point site q ~ St, - St we have VR(p, St) C R(p ,  q). Namely, i fz  belongs to the region 
of p in V(St) ,  then, in particular, z 6 R(p ,  It), hence d(p ,  z) < d(z,  It) < d(z,  q); 
the latter could be an equality if q 6 lt. This implies z ~ C(p ,  q) = R(p ,  q), due 
to p -< q. [] 

Next, we show that there is no bound to the expansion of  a wave. 

LEMMA 7. Let p c St, and let z ~ D(It, p). Then there is a real number t' > t such 
that z lies on or to the left o f  J (p , It,). 

PROOF. At time t we have d(z,  lt) < d(z,  p). Due to Lemma 4 the value of  d(z,  lt) 
is continuously increasing, as t tends to cx~ (it may be decreasing first, if z lies to 
the right of lt). Thus, there is a unique t '  such that d(z,  l~,) = d(z,  p),  which means 
z ~ B(p ,  lt,) Q R(p ,  It,). [] 

DEFINITION 8. For each point z to the right of point p let treach(P, Z) = inf{t; z e 
R(p ,  l,)}. 

To simplify the discussion we assume that the bisector B(p ,  It) is a curve, i.e., that 
B(p ,  It) = J (p ,  lt) holds if p r l. This can be shown to be true for all symmetric convex 
distance functions. The case where B(p ,  lt) contains two-dimensional pieces does not 
cause any problems. Under this assumption, treach(P, Z) marks the unique time when 
J ( p ,  lt) hits z. 

Now we look at the possible interaction of  two waves. 

DEFINITION 9. Two bisecting curves, J (p ,  q) and J(q ,  r), are said to cross at point 
v if, in a neighborhood of  v, one piece of  J ( p ,  q) is a Voronoi edge that separates the 
regions of  p and q in the Voronoi diagram V({p, q, r}), and the other piece of J (p ,  q) 
is not. 

This definition is symmetric in J ( p ,  q) and J(q ,  r). 
Two bisectors J (p, lt) and J (q, lt) can cross at most twice, or the Voronoi diagram of 

{p, q, lt} would have a disconnected Voronoi region, contradicting Lemma 3. It is easy 
to distinguish the two vertices that two bisectors represented in the wavefront may have 
in common. Namely, the cyclic sequences of  Voronoi regions in counterclockwise order 
around them are different; see, for example, the waves of p4 and P6 in Figure 3. 

DEFINITION 10. For p, q r St let 

tstart(t', p ,  q) = inf{t > t'; J ( p ,  lt) crosses J(q ,  lt) with region order (p, q, It)}, 

tstop(t', p,  q) = sup{t > t'; J ( p ,  lt) crosses J(q ,  lt) with region order (p, q, It)}. 
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Fig. 6. At time tl a touch event occurs. At time t2, the q-wave outruns the p-wave, giving rise to a pass event. 

If J(p , / t ' )  is strictly above J(q,  It,) then tstart(t', p,  q) marks the time when the two 
curves touch, as depicted in Figure 6, if they ever do. Otherwise, tstart(t', p, q) = cx~. 
Once two such bisectors have started to intersect, they can only get disentangled if one 
of them passes the other, because they never recede, due tO Lemma 5. In Figure 6 this 
happens at time t2 = tstop(tl,  p ,  q ) .  

Next, we look at the wavefront W, --  OVR(lt, St) as a whole. Since It is maximal with 
respect to -<, its Voronoi region does not contain cutpoints, according to Definition 2. The 
wavefront can consist of  finitely many disconnected pieces that are separated by parts 
of VR(lt, St) extending to infinity. Each wavefront segment consists of finitely many 
waves, some of  which may have degenerated into points. Conceptually, we assume that 
the "essential" part of the diagram is encirled by a closed curve F consisting of  a segment 
of  It and a c - s h a p e d  segment to the left, so large that only semi-infinite bisectors are 
outside of  F,  which either coincide or stay disjoint. Each of the wavefront segments hits 
F at two points, thereby introducing a top-down order among these segments, just  as if 
they were connected. 

The right drawing of Figure 3 shows that the same site may contribute more than one 
wave to the wavefront. 

LEMMA 11. At each time t, the number of  waves in Wt is 0 (n). 

PROOF. Since any two bisecting curves can cross at most twice, the assertion follows 
from the fact that )~2(n) == O(n);  see [1]. [] 

As in Section 3 we denote the part in VR(lt, St) of the curve bisecting the sites of  two 
neighboring waves of  Wt a spike. It is easy to see that the two spikes of a p-wave in Wt 
can cross at most once, and that they do not intersect at all if they belong to the same 
bisecting curve. 
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5. The  Gene ra l  Wavef ron t  A lgor i thm.  During the sweep, we maintain the combina- 
torial structure of  the wavefront Wt = a VR(lt, St), i.e., the sequence of  boundary edges 
of VR(lt, St) in top-down order, and the event queue Qt. In the latter, future events of  
four types are stored, together with the time when they will occur: 

�9 Site events. For each point site p to the right of  It the time x (p).  
�9 Spike  events.  For each pair of spikes of  a p-wave in Wt that cross at point v the time 

treach(P, V); see Definition 8. 
�9 Touch events. For each pair of  disjoint segments of  Vet the time tstart(t, p, q), if  less 

than cx~, if the lowest wave of the upper segment is a p-wave and the uppermost wave 
of the lower segment is a q-wave; see Definition 10. 

�9 Pass  events.  For each end of  a segment of Wt the time t~top(t, p ,  q), if less than ~ ,  if 
the last wave in the segment is a p-wave,  its predecessor a q-wave, and if  the p-wave 
is above the q-wave. 

We assume that events scheduled for the same time are sorted in such a way that spike 
events come first, next pass events, then touch events, and finally site events. 

The correctness of  the wavefront approach is due to the following: 

LEMMA 12. The wavefront can only change its structure when one of  the above events 
O c c u r s .  

PROOF. Suppose that no event occurs within the time interval (t ' ,  t"). Then disjoint 
wavefront segments remain disjoint, because there is no touch event. If a wave outruns 
its neighbor, the latter must be situated at the end of  a wavefront segment (otherwise 
there would be a spike event before), but such pass events do not occur in (t ' ,  t"), by 
assumption. 

Therefore, the waves run along their spikes. Since the spikes do not cross it follows 
that no wave can disappear from Wr. 

Suppose that at time t ~ (t ' ,  t") a new wave of  site p appears. Then p belongs to 
St,, and has, due to Lemma 6, already contributed one or several waves to Wt,. None 
of them has yet disappeared. For each p-wave in Wt we consider a d-straight arc to p;  
since it is contained in the region of  p,  it must pass through a p-wave of W,'. Since the 
latter contains fewer p-waves than Wt, there must be two paths leading through the same 
p-wave of Wr; see Figure 7. Each wave of Wt between the p-waves these paths start 
from is separated from its s i t e - - a  contradiction. Therefore, the sequence of  waves in the 
wavefront does not change before time t". [] 

If  the two spikes of  a p-wave cross at point v, then the p-wave reaches v at time 
treach(P, V) and not before, by definition. However, some other part of  the wavefront 
could reach v at an earlier time. 

LEMMA 13. Assume that the first event in Q t is a spike event, and let v be the cross-point 
associated with it. Then v lies in front o f  Wt, i.e., in VR(lt, St). 

PROOF. Suppose the spike event is scheduled for time t '  = treach(p, V). I f  some piece 
of the wavefront reaches v before time t ' ,  then it is bound to hit the p-wave head-on 
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Fig. 7. The wave of q cannot be connected to q by a path contained in the region of q. 

before the latter arrives at v. However, then there must be a spike event before time t ' - - a  
contradiction. [] 

Next, we describe how to update Wt and Qt on  processing an event. 

5.1. Spike Events. When a spike event occurs we delete the corresponding wave from 
the wavefront. If  any of  the two spikes involved has had a later cross-point with its other 
neighbor, this spike event is deleted from at. For example, in Figure 3 we would at time 
tp4 (v') delete the event associated with v. Finally, we form the spike of  the two newly 
adjacent waves and compute the cross-points with its neighbors. The corresponding spike 
events are inserted into at. They could occur at t ime t, too, but they would be processed 
before the sweepline moves on. 

Multiple spike events (leading to Voronoi vertices of  degree larger than three) are dealt 
with like simple ones. If  we have a sequence of spikes crossing at the same point, v, then 
all the associated waves arrive at v at the same time. Within this sequence, neighboring 
pairs of  spikes can be processed in any order. 

5.2. Touch and Pass Events. When two formerly disjoined segments of  Wt become 
united we have to update the sequence of  waves, because the piece of  the encircling 
curve F that has separated the two segments disappears. A new spike appears between 
the newly touching waves. We compute the cross-points with its neighbors, and insert 
any resulting spike event into the queue Qt. 

Similarly, if a wave at the end of  a wavefront segment is outrun by its neighbor, we 
delete it from Wt, and remove from at the spike event possibly caused by the spike 
between these two waves. 

5.3. Site Events. When the sweepline hits a new site, q, at t ime t, we insert a new wave 
into the wavefront Wt. Before that, we have processed all other events of  time t that were 
stored in the queue. 

From the examples depicted in Figure 1 we know that the new wave B(q, It) can be 
a curve through q that is still folded, like the left half-line in L2, or one that has already 
begun to open up, like the contour of the left quarter-plane in L ~ .  We treat the first 
situation as a special case of  the second. Thus, for each of  the two arcs of B(q, lt) we 
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have to find the first point where it crosses the wavefront. This is greatly facilitated by 
the following observation. 

LEMMA 14. Let A be an arc of  B(q,  lt), where q E It. Then there is at most one 
cross-point o f  A with Wt, namely, the first point on A that belongs to Wt. 

PROOF. The first point w of  Wt on A must be a cross-point. Namely, if w belongs to the 
wave of site p 6 St, then p -< q -< It holds, by definition of  -<. However, then A stops 
being a (q, lt)-Voronoi edge at point w, even if it only touches the wavefront. In fact, we 
have w ~ B(p ,  It) n B(q,  lt) C B(p ,  q) C R(p ,  q), so w belongs to the region of  p,  
and not q, in V({p,  q, lt}). Moreover, once A has touched the wavefront it cannot return 
into the region of  It; either the region of  q or the region of I t would not be connected. 
This shows that there can be only one cross-point. [] 

Thanks to Lemma 14 we can locate each of  the two cross-points of B(q,  lt) with Wt 
by a binary search on the ordered sequence of  waves in Wt. We start with the wave s in 
the middle of  Wt and test if arc A has a cross-point with s. If  not, we check whether s 
lies above or below A, to direct the further search. Note that this search works correctly 
even if  Wt is not y-monotone. 

Once both cross-points have been found, the new wave is inserted into the wavefront. 

LEMMA 15. The waves o f  Wt that are covered by the new wave B(q,  lt) now become 
Voronoi edges separating the regions o f  their point site from q; see Figure 8. 

PROOF. For t h e t w o p o i n t s m a r k e d x  andz  w e h a v e d ( r ,  x) < d(x ,  lt) < d(x ,  q) ,hence  
x ~ R(r, q) because o f r  -< q. Also, we have d(z,  q) = d(z,  It) < d(r, z), which implies 
z c R(q,  r) for each r ~ St. [] 

After inserting the new wave we check its two spikes for cross-points with their 
neighbors, and insert the resulting spike events into the event queue. Before that, we 
remove from Qt all spike events involving spikes that are covered by the new wave. 

p'lq 

x �9 r 
�9 r 

q 
- -  g q 

S �9 s it 

It 
t~q 

Fig. 8. The part of Wt covered by the new q-wave belongs to V(S). 
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Note that, for Le we need to consider only spike events and site events, and Lemmas 14 
and 15 are obvious for this special case. 

THEOREM 16. The Voronoi diagram of n points based on a nice metric in the plane can 
be computed by the wavefront algorithm in optimal time 0 (n log n ), using linear space. 

PROOF. Only the performance bounds need proof. Due to Lemma 11, the update oper- 
ations on Wt and Qt can  be carded out in time O( logn)  per event, and linear space is 
sufficient to hold these structures. Clearly, we have n site events and O(n) spike events, 
each giving rise to a Voronoi vertex. Each touch or pass event results in an unbounded 
Voronoi edge. Hence there are O (n) events altogether. [] 

Here we assume that O (1) implementations of  the following elementary operations 
are available. To find out if and where two neighboring p-spikes cross, and to test if and 
where a segment c of  a bisector B(p, l) is crossed by an arc A of  B(q, l) starting from 
q ~ l, or whether c lies above or below A. Finally, to compute the functions treach(P, Z), 

tstart(ff, p, q), and tstop(t', p,  q). 

6. Conclusion. We have shown that the wavefront approach to computing the Voronoi 
diagram is very natural, that it applies to a variety of  interesting metrics, and that it can 
easily cope with all kinds of  degeneracies. These properties should make it a tool well 
suited for practical applications. 

An obvious question is if the wavefront algorithm can handle even more general 
situations than point sites in nice metrics. For example, as long as there is a substitute 
for d-straight paths that connect each point to its site, a further generalization seems 
possible. Another open problem is whether the approach can also be applied to general 
(not necessarily symmetric) convex distance functions. Second, sites other than points 
should be considered. We expect that without major modifications the Voronoi diagram 
of n line segments can be computed, as is the case for Fortune's approach [9] that uses 
a geometric transform. 

Also, it would be possible to use curves different from a vertical line for the sweep. For 
example, an expanding circle would allow us to compute the Voronoi diagram of a large 
set of  points locally, if the sites are given in increasing distance from the query point. 

The existing general Voronoi diagram algorithms make use of  the fact that the bisector 
of  two sites is homeomorphic to a curve, and not to a circle. However, this condition is 
violated, e.g., if the sites are disjoint convex curve segments, or for point sites on the 
surface of  a cone [7]. We think it is one of  the major open problems to invent a general 
algorithm that can deal with this case, too. 
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