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ABSTRACT

The development of a boundary layer characterised by very low gradients in temperature and 
salinity near the bottom boundary of a lake does not necessarily imply an increase in diapycnal
mixing within the boundary layer. The results of a quasi three-dimensional diffusion model for a
basin with sloping boundaries demonstrate that in lakes a boundary layer also develops when the
diapycnal diffusivity is chosen to be constant.

In the model mixing is assumed to be anisotropic and is described as an isopycnal and diapyc-
nal turbulent diffusion process. Advective transport is not considered. Therefore, the model is
restricted to the description of the purely diffusive response of a lake. It should be regarded as a
contribution to the discussion of boundary mixing and not as a complete mixing model for a spe-
cific lake. The isopycnal and diapycnal turbulent diffusion coefficients are presumed to be constant
in space and time. The direction of isopycnal and diapycnal density flux changes with time since
mixing of the density distribution influences the orientations of the isopycnals. This interaction
between mixing process and density distribution is accounted for by the model.

According to the model the density distribution, and therefore the development of a bound-
ary layer, only depends on diapycnal mixing while the distribution of a passive tracer depends on
both, isopycnal and diapycnal mixing. The application of the model to the subalpine Lake Alpnach
demonstrates that a simple diffusion model is sufficient to predict the development of a boundary
layer. Considering that the model does not include advective processes and that diffusivities have
been assumed to be constant in space and time, the structure of the boundary layer predicted 
agrees surprisingly well with experimental data.

1. Introduction

In natural waters turbulent mixing is one of the major processes transporting dis-
solved substances and suspended particles. The lake sediments are source and sink
for biological and chemical components. Therefore, mixing near the lake boundaries
is of particular importance to the distribution of bio-geochemical substances, e.g.
phosphate and oxygen, and thus to the ecology of the entire lake.
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Often, a drastic decrease in the vertical gradients of density and temperature can
be observed near the bottom boundary in lakes (Gloor et al., 1994). In this paper we
call this region of low gradients the boundary layer.

In the literature vertical diffusion within the boundary layer has been shown to
be large compared to the open water (Ivey, 1987 and references therein for experi-
ments in the ocean, and Wüest et al., 1996b in lakes). The influence of this large ver-
tical boundary mixing on the total effective vertical flux in the ocean has been in-
vestigated by several researchers (Armi, 1978; Garrett, 1990; Woods, 1991). Note
however, that large vertical mixing within the boundary does not necessarily imply
large diapycnal mixing since the diapycnal direction is not parallel to the vertical
direction within the boundary layer.

The aim of this work is to show that in lakes a simple diffusion model with spatial-
ly and temporally constant diapycnal and isopycnal diffusion coefficients can be suffi-
cient to predict a boundary layer, the structure of which is in good qualitative agree-
ment with experimental data. Large vertical mixing within the boundary layer compar-
ed to the open water will be shown to be consistent with the model, although isopycnal
and diapycnal diffusion coefficients are spatially constant. In the natural environment
additional diapycnal mixing might be produced near the lake boundary either by the
increase in the velocity shear due to the boundary condition for velocity (e.g. Armi,
1978), by bottom reflection of internal waves (Ericksen, 1985), or by secondary circula-
tion (see Garrett, 1990 and references therein). However, we will show that an increase
of diapycnal mixing is not a requirement for the description of the small vertical gra-
dients in density, temperature, and salinity commonly observed close to the sediment.

For isotropic mixing and impermeable walls Wunsch (1970) and Phillips (1970)
have shown that the density distribution resulting from the mixing process gives rise
to advection. This so-called secondary circulation has been studied theoretically for
the boundary layer in the ocean by numerous researchers (see Garrett et al., 1993
and references therein). However, the theoretical models which mostly focus on 
the boundary layer alone and assume isotropic mixing have only rarely been 
applied for the comparison with experimental measurements of the boundary 
layer. To our knowledge, a circulation model that includes secondary circulation
and describes the development in time of the entire density structure (and as part
of this the development of a boundary layer) of a closed basin under natural con-
ditions does not exist.

The model presented here is purely diffusive and does not consider advective pro-
cesses including secondary circulation. Thus, it should be regarded as a first order
approach in the analysis of the boundary layer development in lakes. The model
however allows for anisotropic diffusive mixing and does not focus on the boundary
layer alone, but includes the entire water body of a closed basin with sloping bound-
aries, i.e. Lake Alpnach. As will be shown below our simplified purely diffusive model
predicts the development of a boundary layer the rough structure of which agrees 
surprisingly well with the experimental data (e.g. thickness of the boundary layer).
This result is remarkable considering the absence of advection in our model.

In the following we present the experimental technique employed and the mea-
surements obtained. Subsequently, the simplified diffusion model for a lake with
sloping boundaries is developed. This is followed by a presentation and discussion
of the results of the model.
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2. Measurements

Experiments were conducted in Lake Alpnach, a subalpine lake in Switzerland 
with a surface area of 4.76 km2 and a maximum depth of approximately 33.5 m. 
At different times in 1992 vertical profiles of temperature, conductivity and tur-
bidity were measured along transects perpendicular to the isopleth. The CTD-
probe employed (Multisonde MS 040, Meerestechnik Elektronik GmbH) provided
a resolution of 0.01 dbar (pressure), 0.001°C (temperature), 0.1 µScm–1 (conduc-
tivity) and 0.1% (turbidity). Salinity was calculated from the conductivity mea-
surements using the method outlined by Wüest et al. (1996a). The resolution of 
salinity is approximately 1 · 10–4 g/kg. The logarithm of turbidity is approximately
proportional to the concentration of suspended particles. Since turbidity depends 
on the distribution of particle size and is not sensitive to the density of the particles
an absolute calibration of sediment load as function of turbidity is difficult. To 
estimate the concentration of suspended particles we have calibrated the turbidity
sensor by resuspending the top layer of a sediment core taken in 1992 in Lake 
Alpnach. According to this calibration a turbidity of 32%, which is typical for the
boundary layer corresponds to 3.1 mg l–1 of suspended particles. Because of the
mounting of the sensors measurements of turbidity, and thus of suspended particles,
are not available for the region 0 – 20 cm above the sediment. The ship position 
was determined with an accuracy of ± 1 m using a microwave positioning system
(Trisponder Systems, Del Norte Technology Inc.).

In the vertical direction temperature, salinity and turbidity are almost constant
near the lake boundary (Fig. 1, shaded area). Above this “boundary layer” of 
about 1 m thickness the gradients in temperature and salinity increase and turbidity
shows a sharp drop to smaller values. These data stem from an experiment conduc-
ted in November, 1992. However, a similar structure of the vertical distribution of the
parameters measured can be observed throughout the year. Figure 2 shows vertical
temperature profiles from May and October in 1992. The thickness of the boundary
layer increases with the depth of the bottom boundary, i.e. towards the centre of the
lake (Fig. 2). The profiles from May were taken in a period of less than 20 minutes.

Density r, thermal and haline expansion coefficients (a and b, respectively), and
stability (N 2) were calculated from temperature T and salinity S by the formulas
given in Chen and Millero (1986). Throughout this paper density is taken at the
pressure at lake surface. The definitions of a, b and N 2 are (the adiabatic tempera-
ture gradient is very small and has therefore been neglected):

1  ∂r
a ≡ – 3 6r  ∂T

1  ∂r
b ≡ 3 6 (1)

r  ∂S

dT dS
N 2 ≡ g · 1a · 5 – b · 52 = N 2

T + N 2
Sdz dz
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and z is defined to be positive in the upward direction. The stability N 2 comprises
of two components: the stabilising contributions due to firstly the gradient in 
temperature NT

2 = g · a · dT/dz and secondly due to the gradient in salinity 
NS

2 = – g · b · dS/dz . Stability is, in good approximation, proportional to the density
gradient.

Similar to temperature and salinity the density of the water column is approxi-
mately constant in a region near the lake boundary (shaded area in Fig. 3a). 
A distinct boundary layer can be identified. The density profile is almost entirely
determined by the vertical distribution of temperature. This is confirmed by the
profile of stability (Fig. 3b) which is nearly independent of the stabilising contribu-
tion of salinity (NS

2). The vertical distribution of temperature dominates the vertical
structure of stability (NT

2 in Fig. 3b). The instability just above the lake boundary is
of the order – 1 · 10–5 s–2. Assuming that our calibration of turbidity is correct, an
increase of turbidity from 31 to 34% within 0.5 m would indicate a gradient of the
concentration of suspended particles of about 1 mg l–1 m–1 which is sufficient to
compensate the instability near the lake boundary. However, this argument is not
entirely conclusive since the gradient of turbidity is not smooth but changes rapid-
ly within the boundary layer. Note that the negative stratification of temperature in
the bottom boundary layer causing the instability discussed above did only occur in
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Figure 1. Vertical profiles of temperature, salinity and turbidity in Lake Alpnach taken in Novem-
ber. The grey area indicates the region which we refer to as boundary layer



November. In May, July and October 1992 the entire water column was stable (see
e.g. the temperature profiles in Fig. 2).

A detailed two-dimensional picture of the boundary layer is shown in Fig. 4. The
spatial distance between CTD-casts (small dashed lines) is less than 10 m. The time
period required to measure all profiles was less than 15 minutes. Thus, variations 
of the boundary layer thickness due to internal seiche motion can be neglected
(during the summer months the period of the first vertical mode is typically larger
than 7 hours; Münnich et al., 1992).The structures of the density and temperature
distribution (Fig. 4a and b) agree with each other, indicating that in Lake Alpnach
salinity does not play an important role in the development of the boundary layer.
The boundary layer at about 25 m depth is approximately 1 m thick and increases
slightly at larger depth. Within the boundary layer significant horizontal gradients
of density and temperature exist.

Within the boundary layer the diapycnal direction is almost horizontal and not
vertical as in the open water. Therefore, the small vertical density gradients close to
the sediment cannot serve as an indication of large diapycnal mixing within the
boundary layer.

Since temperature is not a passive tracer the diffusion of heat causes the direc-
tion of isopycnal and diapycnal mixing to change with time. The modifications
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Figure 2. Vertical profiles of temperature from sites of various depths taken in Lake Alpnach in
May 1992 (a) and October 1992 (b). The bars indicate the approximate boundary layer thickness
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imposed on the diffusion equation by the development of the density distribution is
accounted for in the simple diffusion model discussed below.

3. Model

In the following we assume that the transport of dissolved substances in a lake can
be described as an isopycnal and diapycnal turbulent diffusion process. Advective
processes are neglected. Diapycnal turbulent diffusion is modelled as usual in ana-
logy to molecular diffusion by the Fickian law. In the absence of large scale advec-
tion isopycnal transport can be described in the same way (Carter and Okubo, 1965; 
Peeters et al., 1996).
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Figure 3. The water density profile (a) and stability (b) in Lake Alpnach observed in November
1992. The stabilising contribution due to the salinity gradient NS

2 is small compared to the influence
of the temperature gradient NT

2
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3.1. Turbulent flux

At first we will consider a two-dimensional basin. The coordinates of the iso-dia-
pycnal coordinate system will be designated by (x~, z~) and the Cartesian coordinates
by (x, z). The z-coordinate is chosen to be positive in the upward direction. In the
isodiapycnal coordinate system the diffusion tensor Kiso is diagonal:

Ki 0
Kiso = 1 2 , (2)

0 Kd

where Ki and Kd represent the isopycnal and diapycnal diffusion coefficients, res-
pectively. The turbulent flux FW of a substance with concentration C (x, z) is given 
by:

∂C
5∂x~Ki 0

FW = – Kiso · —W iso C = –1 2 · 1 2 (3)
0 Kd ∂C

5∂z~
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Figure 4. Observed two dimensional distribution of density (a) and temperature (b) near the lake
boundary. Thin vertical dashed lines indicate the position of the CTD-casts
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If the isopycnals are horizontal the diffusion tensor Kx, z in the Cartesian coordina-
te system is diagonal too: 

∂C ∂C
FW = – 1Ki 5 eWx + Kd 5 eWz2 = Kx, z · —Wx, z C . (4)

∂x dz

Note that in the anisotropic case (Ki ≠ Kd) turbulent transport is not necessarily
parallel to the gradient of the concentration.

In a basin with sloping boundaries the isopycnals are usually bent downwards
and almost vertical near the bottom boundary. The reason for this behaviour lies in
the boundary condition for the turbulent flux. The turbulent flux into the basin
walls has to vanish if the walls are impermeable as commonly assumed. If the iso-
pycnals are bent the diffusion tensor in the (x, z) coordinate system cannot be dia-
gonal at all locations.

dr
Along the isopycnals  5= 0  applies, where x~ is parallel to the direction of the 

dx~

isopycnal. The orientation of an isopycnal relative to the Cartesian coordinate
system can be described by the angle b (x, z):

x         x~ cos b + z~ sin b1 2 = 1 2 ,
z         – x~ sin b + z~ cos b

dr    ∂r  dx    ∂r  dz    ∂r               ∂r
0 =  5 = 55 + 55 = 5 cos b – 5 sin b (5)

dx~       ∂x dx~       ∂z  dx~       ∂x              ∂z

∂r    ∂r –1

⇒  b = arctan 55 152 6∂x   ∂z

Following Redi (1982) the diffuson tensor in Cartesian coordinates can be 
calculated by rotating the diffusion tensor given in iso-diapycnal coordinates:

Kx, z = RKisoR–1

Ki cos2 b + Kd sin2 b cos b sin b (Kd – Ki)⇒  Kx, z = 1 2 (6)
cos b sin b (Kd – Ki) Ki sin2 b + Kd cos2 b

From equation 6 the turbulent flux in Cartesian coordinates of a substance with con-
centration C (x, z) can be derived:

FWx, z = – Kx, z —Wx, z C ⇒

∂C                       ∂C                        ∂C                       ∂C
Ki 1cos2 b 5 – sin b cos b 52+ Kd 1sin2 b 5 + sin b cos b  52∂x                      ∂z                        ∂x                       ∂z

FWx, z = – 1 2 . (7)
∂C              ∂C                                ∂C              ∂C

Ki 1– sin b cos b 5 + sin2 b 52+ Kd 1sin b cos b 5 + cos2 b 52∂x               ∂z                        ∂x               ∂z
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3.2. Transport of heat if temperature determines the density distribution

Consider the transport of heat in a lake in which the distribution of density is enti-
rely determined by the temperature distribution. This assumes that the influence of
salinity is negligible, i.e. that salinity is approximately constant in space and time.
Lake Alpnach might serve as an example for such a situation since salinity has no
significant effect on the density distribution: From Fig. 3b one can see that the den-
sity ratio NS

2/NT
2 is about 1 : 10 throughout the stratified water body, indicating that

the influence of salinity on the density gradient is about ten times smaller than that
of temperature. Therefore, in our “first order” approach salinity can safely be
neglected. Under the conditions assumed above r (x, y, z) = r (T (x, y, z)) and the
isopycnals and the isotherms have to be parallel (x~ is along the isopycnal):

dr    ∂r dT    dT
0 = 5 = 5 5 ⇒ 5 = 0 . (8)

dx~       ∂T dx~       dx~

(a) Transport in two dimensions

In the following we neglect the effect of pressure on temperature because this effect
is very small in most lakes due to their shallow depth (e.g. in Lake Alpnach the diffe-
rence between potential and in situ temperature is less than 0.001 °C). Under the con-
dition above the conservation of heat can be written as a conservation equation for
temperature (e.g. Pedlosky, 1987). The turbulent flux of temperature FW T

x, z is given by:

FW T
x, z = – Kx, z · —W T , (9)

where Kx, z is given by equation 6. Thus, the turbulent heat flux FW T
x, z can be descri-

bed by equation 7 with C representing T. Since the isotherms and the isopycnals are
parallel (equation 8) FW T

x, z can be simplified by combining equations 5 and 7. As
result, the turbulent flux of temperature can be written as:

∂T ∂T
FW T

x, z = – Kd · 15 eWx + 5 eWz2 . (10)
∂x ∂z

Using equation 10 the balance equation for temperature is given by

∂T ∂ 2T  ∂ 2T
5= – —Wx, z FW T

x, z = Kd   16 + 72 (11)
∂t ∂x2       ∂z2

This diffusion equation is equivalent to one for isotropic mixing. The temperature
balance is independent of isopycnal diffusion. Therefore, the distribution of tempe-
rature, and also that of density, is only determined by diapycnal diffusion and the
initial and boundary conditions. Note that in general, especially for the flux of pas-
sive tracers, equation 7 applies and consequently isopycnal mixing plays an impor-
tant role for the spatial distribution of the tracer concentration.
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b) Three-dimensional model for a radially symmetric lake

In a basin which is radially symmetric relative to the vertical it is convenient to use
cylindrical coordinates (r, j, z) for the description of concentration distributions
and the turbulent flux. The z-axis is chosen to correspond to the axis of symmetry.
If in addition to the lake geometry initial and boundary conditions are radially sym-
metric the temperature distribution T (r, j, z) has to be independent of j:

dT
5 = 0 . (12)
dj

In this case the turbulent flux of temperature can be described by equation 10 
where the x-coordinate has to be replaced by the r-coordinate. The balance equa-
tion is given by:

∂T 1 ∂ ∂T       ∂ 2T
5 = Kd 134 1r 4 2 + 6 2 . (13)
∂t              r ∂r     ∂r        ∂z2

The temperature balance is independent of the isopycnal diffusion as already dis-
cussed above.

c) Initial and boundary conditions

The turbulent flux perpendicular to the bottom boundary of a basin has to vanish.
In general this results in the boundary condition:

0 = FWr, z · eWs = (Kr, z —Wr, zC) · eWs , (14)

– sin g
where eWs = 1 2 is the unit vector perpendicular to the bottom boundary and

cos g

g (r, z) the angle between bottom boundary and the r-axis.
In the special case of temperature transport and constant isopycnal and diapyc-

nal diffusion coefficients the boundary condition is given by:

∂T            ∂T
Kd 1– 4 sin g + 4 cos g2 = 0

∂r     ∂z
(15)

∂T            ∂T
⇒  4 sin g = 4 cos g .

∂r ∂z

This implies that even if turbulent mixing is anisotropic (Ki ≠ Kd) the isotherms and
thus the isopycnals must meet the bottom boundary at right angles.

If one takes the geothermal heat flux Fgeo into consideration the boundary con-
dition at the lake bottom for temperature transport is given by:
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∂T ∂T
Fgeo = r · cp · FW T

r, z · eWs = r · cp · Kd 1– 4 sin g + 4 cos g2∂r     ∂z
(16)

∂T            Fgeo ∂T  
⇒  4 sin g = – 963 + 4 cos g .

∂r r · cp · Kd ∂z

where cp is the specific heat at constant pressure. The geothermal heat flux Fgeo is
assumed to be spatially and temporally constant. Its dependence on water tempe-
rature is neglected.

Note that the boundary conditions for passive tracers and temperature can have
a different form. For example, if the bottom boundary is impermeable for the 
tracer its flux perpendicular to the bottom boundary must vanish. Since the flux of
a passive tracer is given by equation 7 the isopycnal diffusion coefficient plays a role
in the boundary condition. As a consequence isopycnal mixing influences the verti-
cal distribution of the tracer even far from the boundaries. Therefore, the effective
vertical diffusion coefficient Kz,eff determined from the temporal development of
the vertical variance s 2

z,tracer of a tracer cloud:

1 ∂s 2
z, tracerKz, eff = 3 932 (17)

2 ∂ t

does not necessarily agree with the diapycnal diffusion coefficient.
The upper boundary of the modelled water body can be regarded as the transi-

tion between epilimnion and hypolimnion. The epilimnion is supposed to act as a
heating plate so that the temperature at the upper boundary is the temperature of
the epilimnion. The depth of the epilimnion is assumed to be constant.

Since the lake as well as the initial and boundary conditions are radially symme-
tric isotherms and isopycnals have to be horizontal in the middle of the lake (at
r = 0):

∂T            
4 = 0 thus b (0, z) = 90°. (18)
∂r 

The only requirement for the temperature distribution at time t = 0 is that it has
to be radially symmetric.

d) Numerical implementation

The model equation (equation 13) was solved numerically with the method of lines.
The partial differential equation was transformed into a set of coupled ordinary dif-
ferential equations by approximating the spatial derivatives using 2nd order Taylor
expansion. The points at the sloping boundary were accounted for by considering
additional neighbouring points. The grid size was chosen to provide a resolution of
0.2 m in the vertical and of 5 m in the horizontal. At locations were the slope of the
lake boundary is large the horizontal resolution was increased to guarantee the ver-
tical resolution of 0.2 m. The set of ordinary differential equations was solved using
the algorithm of Hindmarsh (1980).
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3.3. Morphometry and parameters used in the model

The shape of the basin was modelled from the morphometry of Lake Alpnach. A
radially symmetric basin was constructed by assuming the cross-sections in different
depths to be radially symmetric. From the radius corresponding to the area of the
particular cross-sections the angle g (r, z) could be calculated.

The geothermal heat flux was estimated to be Fgeo = 0.12 W m–2 ± 10% by aver-
aging measurements of the geothermal heat flux from Lake Lucerne (Finckh, 1981),
to which Lake Alpnach is directly connected. Finckh (1981) determined Fgeo from
the subbottom temperature gradient down to a maximum depth of 10.5 m below the
lake bottom using a special corer. The distance between measuring sites and Lake
Alpnach is about 10 km. To analyse the influence of the geothermal heat flux on the
development of a boundary layer we have run the model with Fgeo = 0.12 W m–2 and
without geothermal heating (Fgeo = 0).

To show the principal consequences of the model the upper boundary condition
(epilimnion) was modelled by a sinusoidal increase in temperature beginning at 
5 °C and reaching 20 °C after 120 days (T = 5 + 15 · sin (t · p/240) where t is time in
days). Beginning with t = 0 at April 10th this boundary condition reaches a maxi-
mum temperaure of 20 °C in August. It provides temperatures which agree within
1 °C with our measurements from 5 m depth taken on May 13th, July 22nd and
October 15th. Initial temperatures were assumed to be 5 °C everywhere in the lake,
which is a typical situation in spring.

The diapycnal diffusion coefficient was assumed to be constant spatially and
temporally. Using the heat budget method (see Powell and Jassby, 1974) apparent
vertical diffusion coefficients were calculated from our CTD profiles measured in
May, July and October 1992. For the period from mid May to mid October we obtai-
ned apparent vertical diffusivities ranging from 1 · 10–6 and 5 · 10–6 m2 s–1 depending
on depth (depth region between 10 and 33 m). For the period between 22nd of July
and 15th of October 1992 and in the depth range between 15 and 30 m the values
averaged at about 1.5 · 10–6 m2 s–1. The values of the vertical diffusivities observed by
us in 1992 are in good agreement with vertical diffusivities of 2 · 10–6 to 3 · 10–6 m2 s–1

determined from the vertical spread of an artificial tracer, from the heat budget
method and from microstructure measurements in Lake Alpnach in 1989 (Wüest et
al., 1996b).

To demonstrate the effect of the diapycnal diffusivity on the development and
the structure of the boundary layer we have run the model using diffusivities of 
1 · 10–6, 3 · 10–6, and 5 · 10–6 m2 s–1, thus covering the range of values observed ex-
perimentally.

4. Model results and discussion

The simple diffusion model predicts the development of a distinct boundary layer
(Fig. 5). The results presented in Fig. 5 were calculated with a diapycnal diffu-
sion coefficient of Kd = 3 · 10–6 m2 s–1. The small pictures (left in Fig. 5) show the
modelled basin up to its maximum depth where the large pictures illustrate the
structure of the boundary layer in more detail. For short diffusion times this layer is
comparably thick (Fig. 5a) due to the influence of the geothermal heat flux. For 
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Figure 5. Prediction of the simplified diffusion model for the temporal development of the tem-
perature distribution for a diapycnal diffusion coefficient of 3 · 10–6 m2 s–1 and a geothermal heat
flux of Fgeo = 0.12 W m–2. Small pictures show the modelled basin up to its maximum depth while
the large pictures give a more detailed view of the boundary region. The dashed line show the
model results for Fgeo = 0



larger diffusion times the transport of heat from the epilimnion and thus the trans-
port of density towards it becomes dominant and the thickness of the boundary 
layer decreases. The thickness of this layer is of the order of 1 to 2 m which agrees
with the eperimental findings.

Profiles of the modelled temperature distribution from different locations indi-
cate that the boundary layer increases with depth of the bottom boundary (Fig. 6).
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Figure 6. Vertical temperature profiles predicted by the simplified diffusion model for diffusion
times of 60 days (a), 120 days (b) and 180 days (c) using a diapycnal diffusion coefficient of 
3 · 10–6 m2 s–1 and a geothermal heat flux of Fgeo = 0.12 W m–2. The dashed lines show the model
results for Fgeo = 0. The three profiles in each simulation stem from different locations (0 m, 620 m
and 750 m distance from the deepest point of the lake)

a)

b)

c)



This is consistent with our measurements. In the deepest parts of the lake the
modelled temperature and density distribution, respectively, is inversely stratified
especially for short diffusion times. Since advective processes are neglected in the
model, convection cannot occur. However, convection would homogenise the tem-
perature and the density distribution in the vertical and cause the transition from
the boundary layer to the open water to sharpen. This would improve the agree-
ment between model and experiment. Note that the temperature and density 
gradients in the inversely stratified region near the bottom boundary are small,
especially for long diffusion times.

The role of the geothermal heat flux is shown in Figs. 5 and 6. The results of 
the model with Fgeo = 0 (dashed lines) are compared to the results with a flux of 
Fgeo = 0.12 W m–2. Even if the flux of geothermal heat is zero a boundary layer 
develops. The thickness of this boundary layer appears to be smaller than that for 
a heat flux of 0.12 W m–2 (Fig. 5).

The inverse stratification discussed above vanishes if the geothermal heat flux is
zero (Figs. 5 and 6). Since the initial temperature is assumed to be constant in the
entire basin, near the bottom boundary (especially in deep regions of the lake) the
heat flux due to geothermal heat is large compared to the heat flux from the epilim-
nion for short diffusion times or small diffusion coefficients. Thus, the water near
the lake boundary is warmer and less dense than the water above it. The stratifica-
tion is inverse. For longer diffusion times the heat flux from the epilimnion domi-
nates the geothermal heat flux and thus the gradients in temperature and density
become positive. The deeper the lake boundary the longer it takes until the heat
flux from the epilimnion is large compared to the geothermal heat flux. Therefore
geothermal heat especially influences the thickness of the boundary layer in the
deeper parts of the lake.

The influence of the magnitude of the diapycnal diffusion coefficient on the den-
sity distribution is demonstrated in Fig. 7. The diffusion time is 120 days. The geo-
thermal heat flux is Fgeo = 0. In all cases shown (Kz = 1 · 10–6 m2 s–1, Kz = 3 · 10–6 m2 s–1

and Kz = 5 · 10–6 m2 s–1) a boundary layer develops. The thickness of this layer in-
creases with increasing diffusion coefficient. For Kz = 5 · 10–6 m2 s–1 the layer is about
2 times larger than for Kz = 1 · 10–6 m2 s–1. 

In the following we describe a model run with a modified set of initial and
boundary conditions. The initial temperature distribution for the model was taken
from the CTD measurements of the 13th of May. Since the experimental data were
not sufficient to reconstruct the three-dimensional temperature distribution the
vertical temperature profile from the centre of the lake was taken as representative
for all locations. This assumes horizontal homogeneity in May. As upper boundary
condition served the temperature at 18 m depth measured in May, July, October and
November. The temporal development of the temperatures in 18 m depth was
obtained by linear interpolation between the measurements. The depth chosen for
the upper boundary condition corresponds to the epilimnion depth in November 
at the site of our measurements. The model includes a geothermal heat flux of 
Fgeo = 0.12 W m–2. Using a diffusion coefficient of 1 · 10–6 m2 s–1 the model was run
beginning at the 13th of May to predict the temperature distribution at the 6th of
November. The agreement between model predictions and experimental data is
surprisingly good (Figs. 4 and 8).
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Figure 7. Influence of the diapycnal diffusion coefficient on the density distribution predicted by
the model for diffusion times of 120 days. The influence of geothermal heat flux is neglected 
(Fgeo = 0)



Limitations of the model

The most stringent limitations of the model result from the fact that advective pro-
cesses are not considered. In the model the inversely stratified density profiles,
which occur at short diffusion times and for small diffusivities, cannot result in 
convection. This convection would homogenise the density and temperature
distribution in the vertical. This should cause a sharpening of the transition 
between the boundary layer and the region above it, similar to the sharpening of 
the transition between epilimnion and hypolimnion during convective deepening of
the epilimnion in fall.

Horizontal density gradients near the lake boundary give rise to a secondary 
circulation as pointed out first by Phillips (1970) and Wunsch (1970). Secondary 
circulation and the resulting complex current field should alter the structure of the
boundary layer. For example, the transition from boundary layer to interior is 
sharper in the data than in the model output. This could not only be caused by 
convection as discussed above but also by the re-stratifying influence of secondary
circulation. Since our model is purely diffusive, secondary circulation, the complex
current field resulting from secondary circulation and its interaction with the mixing
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Figure 8. a) Prediction of the diffusion model for the two dimensional temperature distribution 
in Lake Alpnach. For the initial condition we used a temperature profile taken on 13th of May.
Temperatures measured in 18 m depth throughout the year served as upper boundary condition.
b) A comparison between predicted and measured temperature and density profiles on the 6th of
November

a)

b)



process which is still discussed controversial (Garrett, 1990) are beyond the scope
of our model.

Gloor et al. (1994) have shown that the thickness of the boundary layer in Lake
Alpnach can change within a couple of hours due to the motion of internal seiches.
From the vertical distribution of temperature and suspended particles they inferred
that vertical mixing within the boundary layer is large. Gloor et al. (1994) suggest
that the short term change in boundary layer thickness is not caused by an increased
mixing near the bottom boundary of the lake but is the result of advection induced
by the internal seiche. Neither the seiche motion nor an increase in mixing near the
boundary are considered in our model. Note however, that the homogeneous verti-
cal distribution of suspended particles within the boundary layer does not imply an
increase in diapycnal mixing but can be explained by our model as will be shown in
the next section.

The isopycnal and diapycnal diffusion coefficients were assumed to be constant
in time. Temporal varying diffusion coefficients could easily be incorporated into
the model. Temporal variation of the diffusion coefficients might improve the
agreement between model and experimental results. However, the simple model
employed in this work using constant diffusion coefficients is sufficient to predict a
boundary layer the structure of which is similar to the observed one.

Implications of the model

Isopycnal diffusion coefficients are considerably larger than diapycnal diffusion
coefficients. In the hypolimnion of lakes Ki typically is of the order 1 · 10–2 m2 s–1

(Peeters et al., 1996) whereas Kd is about 1 · 10–6 to 5 · 10–6 m2 s–1. Consequently the
transport parallel to the isopycnal must be much larger than perpendicular to it.

The measurements have shown that within the boundary layer the isopycnals 
are almost parallel to the vertical direction. According to our model the vertical
transport of substances in the boundary layer is then determined by the isopycnal
diffusion coefficient. Consequently the vertical diffusive flux of chemical substances
or particles should be large, even if the gradient of the concentration is small. This
result of the model can be employed to interpret the homogeneity of the measured
concentration of dissolved particles in the boundary layer. In general, the ratio of
the settling velocity and the vertical component of the diffusive flux determines the
particle distribution. Assuming steady state conditions and the diffusion tensor to
be diagonal in the Cartesian coordinate system near the lake boundary the distri-
bution of suspended particles is given by:

∂Cp ∂2Cpn 6 = K 9 ⇒ Cp (d) = Cp (0) e–d · n /K, (19)
∂d          ∂d 2

where d is the distance from the sediment, K the vertical diffusion coefficient and n
the settling velocity. According to Stoke’s law the latter is smaller than 1 mm s–1 for
quartz particles with a diameter of less than 40 µm. As discussed above vertical 
diffusion within the boundary layer can be approximated by the isopycnal diffusion
coefficient. Thus, the exponent in equation 19 is small (n/K < 0.1 m–1) and Cp (d)
decreases only by 10% per meter distance to the sediment. As result the vertical
particle distribution should be approximately constant within the boundary layer.
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Outside this layer the diapycnal diffusion coefficient applies. In this case the ex-
ponent is large (n/K > 1000 m–1) and Cp (d) is small. This is compatible with the mea-
surement of turbidity the logarithm of which is approximately proportional to the
concentration of suspended particles. Within the boundary layer turbidity was found
to be almost constant and large compared to the region above it (Fig. 2).

According to our model the transport parallel to the lake boundary is caused by
diapycnal mixing and therefore should be comparatively small. If, as in our model,
pure diffusion is considered the concentration of a substance punctually introduced
near the lake sediments should only very slowly spread upslope parallel to the lake
boundary within the boundary layer. However, secondary circulation not con-
sidered in our model is characterised by an upslope current parallel to the lake
boundary and thus particularly influences the transport in this direction. Con-
sequently, tracer experiments could be employed to study the role of secondary 
circulation in relation to pure diffusion.

5. Conclusions

The decrease in temperature and density gradients as well as the vertically almost
homogeneous distribution of suspended particles and dissolved substances near a lake
boundary can be described without requiring an increase in the diapycnal diffusion
coefficient in the boundary layer. A simple diffusion model with constant isopycnal
and diapycnal diffusion coefficients provides a good description of the development
of a boundary layer, the structure of which (e.g. the boundary layer thickness and the
increase of this thickness with depth) is similar to that experimentally observed.

Provided that the isopycnal and diapycnal diffusion coefficients are spatially
constant, the model implies that isospycnal mixing has no influence on the density
distribution. This means that the structure of the density distribution, in particular
the existence of the boundary layer, is only determined by diapycnal mixing and the
initial and boundary conditions.

The model suggests that within the boundary layer, the vertical transport of 
passive tracers is determined by isopycnal diffusion, whereas diapycnal diffusion is
responsible for transport parallel to the bottom boundary of the lake. Then, mixing
is not isotropic within the boundary layer but large in the vertical direction and
small parallel to the lake boundary.

Since advection is not considered in our model it does also not include secondary
circulation which causes an upslope transport parallel and close to the lake bound-
ary. Thus, the observation of transport and spread of tracers upslope, parallel and
close to the bottom boundary might provide an experimental basis in studies con-
cerned with the role of secondary circulation in relation to pure diffusion for the
development of a boundary layer in lakes.
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