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KRYLOV SPACE METHODS 
ON STATE-SPACE 
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Abstract. We give an overview of various Lanczos/Krylov space methods and the way in 
which they are being used for solving certain problems in Control Systems Theory based 
on state-space models. The matrix methods used are based on Krylov sequences and are 
closely related to modem iterative methods for standard matrix problems such as sets of 
linear equations and eigenvalue calculations. We show how these methods can be applied to 
problems in Control Theory such as controllability, observability, and model reduction. All 
the methods are based on the use of state-space models, which may be very sparse and of high 
dimensionality. For example, we show how one may compute an approximate solution to a 
Lyapunov equation arising from a discrete-time linear dynamic system with a large sparse 
system matrix by the use of the Amoldi algorithm, and so obtain an approximate Gramian 
matrix. This has applications in model reduction. The close relation between the matrix 
Lanczos algorithm and the algebraic structure of linear control systems is also explored. 

1. Introduction 

Most  computational methods currently used for control problems cannot handle 
very effectively very large problems with hundreds or thousand of  states. In many 
instances, very large state-space models  are constructed from physical  consider- 
ations. In order to manipulate these models effectively, it is usually necessary to 
either form reduced order state-space models or to compute a frequency domain 
transfer function description of  the system. Both of  these methods entail some 
loss of  information. This paper is an attempt to show how techniques designed for 
classic problems of  very large dimensionality in linear algebra may be applica- 
ble to certain problems in control. These techniques allow one to operate directly 
on state-space models  without needing to construct frequency domain transfer 
function descriptions. For example, we may compute a reduced order model  for a 
system in a computationally efficient manner without computing a transfer function 
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description, but operating directly on the original state-space model of possibly 
very large dimensionality. 

Many large Control problems involve state-space representations of large di- 
mensionality. A major problem in Control is to reduce the dimensionality of the 
models ("model reduction") or just to analyze the stability or other properties of 
such large systems [21]. In the literature of computational methods in linear al- 
gebra, much study has been done on methods for solving standard linear algebra 
problems involving large sparse matrix operators: linear equations using conjugate 
gradients, least squares also with conjugate gradients, eigenvalues using Lanczos 
methods, singular values, etc. Many of the techniques are mentioned in [29]. 

It is only recently that the "technology" developed for large sparse linear algebra 
problems has been applied to control problems of large dimensionality [20]. Most 
of the methods are based on the recursive generation of Krylov spaces. These 
methods are based on the idea of projecting the problem onto ever-expanding 
subspaces generated by the matrices occurring in the problem itself. It has been 
shown that for many linear algebra problems, the convergence rate is much faster 
than what would be expected from arbitrary projections. Krylov space methods 
also allow iteration by expanding the dimension of the target space in a very 
natural way. The algorithms based on recursive generation of Krylov spaces can 
be referred to collectively as Lanczos-type algorithms, and are the basis for this 
paper. 

In this paper, we show some existing examples where Lanczos-type algorithms 
have been applied to some standard problems in Control, in particular model re- 
duction and controllability/observability. The rest of this paper is organized as 
follows: In Section 2 we describe the basic Lanczos algorithms, the Arnoldi algo- 
rithm and the block variants. In Sections 3-5 we show how these algorithms may 
be used to solve certain model reduction problems in Control. We also show how 
certain theories of Linear Control Systems actually contribute to our knowledge 
of the behavior of the nonsymmetric Lanczos algorithm. 

2. Krylov sequence methods 

Most iterative methods for large linear algebra problems are based on the recursive 
generation of so-called Krylov spaces of ever-increasing dimensions, and the pro- 
jection of the original matrix operator(s) onto these Krylov spaces. The success of 
these algorithms comes from the fact that as the Krylov space dimension increases, 
the new projection can be obtained very quickly from the previous projection onto 
the next lower dimensional Krylov space. In the domain of Control, the system 
matrix for a model can be projected in this way. In fact this is the idea behind most 
of the methods in this paper. 

In this section, we define a Krylov space and describe some of the basic al- 
gorithms for computing bases for the Krylov space and the projection of a given 
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matrix operator onto these spaces. In the next section, we apply these algorithms 
to some standard control problems. 

A Krylov sequence is a sequence of vectors generated by a matrix as follows. 
Given an (n x n)-matrix A and a vector x, the kth Krylov sequence K(A,  x, k) is 
a sequence of k column vectors: 

K(A,  x, k) =- (x, Ax, A2X ' ' "  Ak-lx). 

AS k increases, we get a sequence of sequences K(A,  x, 0) ------ x, K(A,  x, 1) = 
(x, Ax), . . . .  A block Krylov sequence is generated by a matrix A and an (n • p)- 
matrix X as follows 

K(A,  X, k) - (X, AX,  A2X, . . .  , A k - l x ) ,  

and the corresponding column spae is called the kth Krylov space and is denoted 
by/C(A, X, k). 

The basic theorem for Krylov sequences shows how the rank increases as the 
vectors are appended. 

Theorem 1. Given any (n x n)-matrix A and (n x p)-matrix X, 

rank K(A,  X, k) = rank K(A,  X, k + 1) 

i f  and only if 

rank K ( A , X, k) ---- max rank K ( A , X, j )  ---- rank K ( A , X, n) 
J 

------ rank K ( A , X, oo). 

Furthermore, the space/C(A, X, oo) is invariant under A. 

Proof. If rank K(A,  X, k) = rank K(A,  X, k + 1), then A k x  is a linear com- 
bination of X, . . - ,  Ak-IX.  But then Ak+Jx is the same linear combination of 
AJX,  �9 . . ,  A k + j - I x  for every j > 0. Hence by induction, Ak+Jx is a linear com- 
bination of X, . . . ,  A k - I x  for all j > 0. The maximal rank is achieved in at most 
n steps. [] 

As the vectors X, AX,  A2X, �9 .. are generated and appended to form ever larger 
and larger Krylov sequences, the theorem states that the rank increases at every 
step until it reaches a maximal value. 

The Lanczos-type algorithms are algorithms for recursively generating bases 
for the Krylov Spaces, together with a matrix of recurrence coefficients. This latter 
matrix will be in reduced form, such as tridiagonal, and represents the projection 
of the original matrix operator A onto the Krylov space, typically of smaller 
dimension. 

The Lanczos algorithm was originally proposed by Lanczos [46] as a method 
for the computation of eigenvalues of symmetric and nonsymmetric matrices. 
The idea was to reduce a general matrix to tridiagonal form, from which the 
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eigenvalues could be easily determined. For symmetric matrices, the Lanczos 
algorithm has been studied extensively [17], [52], and the convergence of the 
algorithm, when used to compute eigenvalues, has been extensively analyzed in 
[42], [51], [56], [60], and [68, p. 270ff]. This algorithm is particularly suited 
for large sparse matrix problems. A block Lanczos analog has been studied and 
analyzed in [28], [17], [52]. However, until recently, the nonsymmetric Lanczos 
algorithm has received much less attention. Some recent computational experience 
with this algorithm can be found in [16]. In addition to some numerical stability 
problems, the method suffered from the possibility of an incurable breakdown 
from which the only way to "recover" was to restart the whole process from the 
beginning with different starting vectors [68, p. 388ff]. More recently, several 
modifications allowing the Lanczos process to continue after such breakdowns 
have been proposed in [33], [34], [54], and a numerical implementation has been 
developed in [23]. The close connection between the modified non-symmetric 
Lanczos algorithm and orthogonal polynomials with respect to indefinite inner 
products is discussed in [7], [8], [27]. Recently, in [10], [53] the close relation was 
observed independently between the Lanczos algorithm and the controllability- 
observability structure of dynamical systems. 

All of the above papers address the Lanczos algorithm with single starting 
vectors. Recently, a block nonsymmetric Lanczos algorithm was proposed in [43], 
[44] that is capable of starting with several starting vectors, analogous to the block 
Arn01di algorithm, but so far the breakdown situation has not been addressed for 
the block case. 

The Lanczos algorithm [46] is an example of a method that generates bases for 
Krylov subspaces starting with a given vector. The Arnoldi algorithm [4] can be 
thought of as a "one-sided" method, which generates one sequence of vectors that 
span the reachable space. 

2.1. Arnoldi algorithm 

The first algorithm we will describe is the Arnoldi algorithm [4], [9], [68], which 
is a recursive way to generate an orthonormal basis for the Krylov space generated 
by a given matrix A and vectors X. It will be seen that it is also a way to reduce 
a given matrix to block upper Hessenberg form H. The algorithm proceeds by 
recursively filling in the first few columns in the relation 

AX = XIt subject to XrX = I, (1) 

where X is an (n x rmax)-matrix of orthonormal columns spanning the Krylov 
space of maximal rank rmax and H is an (rmax x rm~) block upper Hessenberg 
matrix. Unless the starting vector is deficient in certain eigendirections (normally 
an unusual circumstance), rmax = n. The following description is taken from [9], 
suitably modified to use modified Gram-Schmidt orthogonalization [29, p. 218] 
as suggested in [59]. 
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Block Arnoldi Algorithm [9]. 

0. Start with (n • n)-matrix A and (n x p)-matrix X. 
{Generate orthonormal vectors X and block upper Hessenberg matrix H} 

1. Factor XoR = QR factorization of X. {normalization} 

2. For k = 1, 2, 3, . - . ,  while Xk has nonzero rank, 

3. Set X~ 0) = AXe_l; {expand Krylov space} 

4. For j = 1, . . . ,  k, {modified Gram-Schmidt orthogonalization} 

y r  y(j-1). {get coeffs, to enforce ortho, cond.} 5. Set H k - j , k - 1  : . ~ k _ j . L k  , 

6. Set X~ j) = X~ j-l) - Xk-jHk-j,k-1, {enforce ortho, cond.} 

7. Factor Xk Hk,k-1 = QR factorization of X~ k); {normalize next columns} 

8. Collect generated vectors X = (X0, X1, . .  -) and coefficients H = (Hij). 

The QR factorization used in steps 1 and 7 is used to compute an orthonormal 
basis for the column space of a given matrix. The particular formulation we use is, 
given an n • m, rank r matrix M with r < m < n, we compute an (n • r)-matrix 
Q of orthonormal columns and an upper triangular (r • m)-matrix R such that 
M = QR. The method used can be either based on a Gram-Schmidt process or can 
be one that applies a series of Givens rotations or Householder transformations 
[29]. With this formulation, the diagonal blocks Hkk will be square of progressively 
smaller (or nonincreasing) dimensions as k increases, and the off-diagonal blocks 
will be rectangular. 

It is useful to explain the steps individually, since the same process is used in 
all the Krylov space algorithms�9 The purpose of step 3 is to generate the next set of 
vectors expanding the Krylov space�9 The purpose of steps 4--6 is to orthogonalize 
the result against all the previous vectors generated. The process used is a modi- 
fied Gram-Schmidt orthogonalization, which is mathematically equivalent to the 
ordinary Gram-Schmidt process, but behaves better numerically [29]. Numerical 
experience [59], [57] has also shown that it is useful to repeat steps 4-6 to ensure 
that the orthogonality condition is satisfied to the precision of the computer�9 The 

(0) rank of X~ k) may be less than that of X t , in which case the matrix block Hkk gen- 
erated by the method will not be square. In fact the method proceeds by reducing 
the dimension of the blocks progressively to zero. Step 7 is used to orthonormalize 
the vectors once they are made orthogonal to the preceding vectors�9 

Let us examine the situation during intermediate steps of the algorithm. We 
denote the items generated after k steps by 

H0o 

Xk -- (Xo, X 1 , . - . ,  Xk-1) and Hk ---- //1o 

0 

H o l  �9 . . H o , k _  1 

Hl l ". Hl , k - I  

Hk-l,k-2 Hk-l,k-I 
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A simple induction argument then demonstrates that at each intermediate stage k, 
the items generated by that stage satisfy 

and 

COLSP Xk =/C(A, X, k), (2) 

T X k AX k = H k, (3) 

AXk = XkHk + XkHk,k-l(O,''', O, I), (3) 

for every k, where the 1 in (4) is a square identity matrix of dimension equal to 
the number of columns in Xk. (Here COLSP M denotes the column space of M.) 
When the maximal rank is reached, the term in (4) involving Xk Hk,k-1 disappears. 

Two special cases for this algorithm are worthy of note. The first is the special 
case when the starting vectors X consist of just a single vector. In this case, the 
QR factorization (used in steps 1 and 7) reduces to a simple normalization of the 
vector to unit norm, and the resulting matrix H will be "scalar" upper Hessenberg. 
The algorithm is considerably simpler, since all the "H-blocks" are just scalars. 
The algorithm then proceeds as long as the result from step 6 is nonzero. This 
algorithm is called simply the Arnoldi algorithm, to distinguish it from the block 
version above. 

The second special case is as follows. If the matrix A is symmetric, then so will 
be the generated H. In other words, H will be (block) tridiagonal. This implies that 
in step 5, Hk-j,k-1 will be zero for j > 3, so that the loop in steps 4-6 need be 
carried out only for j = 1, 2. However, numerical experience has shown that it is 
often necessary to reorthogonalize the vectors against all the previous vectors when 
computing in approximate floating point arithmetic (see the extensive literature 
reported in [29, Ch. 9]). The resulting algorithm is the Lanczos algorithm, and 
indeed it is historically the first recursive Krylov sequence method proposed [46]. 

2.2. Nonsymmetric Lanczos algorithm 

If one starts with the symmetric Lanczos algorithm and relaxes the condition that 
the generated vectors be orthonormal, but maintains the condition that the gener- 
ated matrix of coefficients be tridiagonal, one obtains the nonsymmetric Lanczos 
algorithm, capable of reducing most any matrix to tridiagonal form. 

We present three variations of the nonsymmetric Lanczos algorithm. To aid in 
the exposition, we first present the version assuming no breakdown occurs. Then 
we present the modifications necessary to handle breakdowns. Finally we present 
the generalizations to obtain the "block" algorithm. The simple scalar algorithm 
starts with a general matrix A and two starting vectors Xo, Yo such that yrxo # 0. 
The method then proceeds to generate two sequences of vectors 

Xk = (X0, Xl , ' ' ' ,Xk-1)  and Yk = (Yo, Y l , ' " , Y ~ - I )  (5) 
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such that for any k we have the following bases for the Krylov spaces 

COLSP Xk = ](:(A, xo, k), COLSP Yk ---- 1C(A r, Y0, k), (6) 

and the matrix 0) 
y r x  = D r  = ".. (7) 

dk-1 
is nonsingular and diagonal. Condition (7) is called the bi-orthogonality condition. 
The method is based on the recursive application of the identities 

AXk = XkHk + Xk(0, ' " ,  0, 1)/~k, A r Y k  = YkGk + yk(0, " " ,  0, 1)yk, 

and hence 
T T Gk Dk = Yk AXk : DkHk, (8) 

where Hk, Gk are upper Hessenberg matrices of  coefficients hal 0) 
Hk = hll "'.  i 

"'. hk-2,k-1 
l~k-1 hk-l,k-1 

Gk = gll "" 

"" "" gk-E,k-1 
Yk-l gk-l,k-I / 

generated in a manner analogous to that of  the Arnoldi algorithm. Identity (8) 
implies that the resulting matrices H, G will actually take on the above tridiagonal 
form. The resulting algorithm is then taken from [68, pp. 388ff], but uses a modified 
Gram-Schmidt  bi-orthogonalization process analogous to the ordinary process 
used above in the Arnoldi algorithm. 

Simple Nonsymmetric Lanczos Algorithm [68]. 

0. Start with matrix A and two vectors x0, Y0 such that yorXo = do ~ 0 

1. For k = 1, 2, . . . ,  while xk ~ 0 and/or Yk ~ 0 

2. Set x~ 0) = AXk_ 1 {expand Krylov spaces} 

and yCk0) = ATyk_l . 

3. For j = 1, 2 {enforce bi-ortho, cond.} 

4. Set h,k-j,k-1---- d~-_ljyff_yx~ j - l )  andx~ j) = X~kJ-1) -- Xk-yhk-j ,k-l .  

d - i  x r , ,(j-l) and y~Y) = y~j-1) _ Yk-jgk-j ,~-l-  Set gk-j.k-I = k- j  k-jJk 

5. Set ~kXk = XCk 2) and YkY~ = y~2), 
where hk,k-1 ---- ~k, gk,k-I ~ Yk are scale factors to be chosen. 

6. I f  (yk)TXk ----- 0 then we have a breakdown error. 

7. Set dk = YkrXk. 
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There are two typical choices for the scale factors/~k, Yk. Choice I is to choose 
the factors so that dk = 1, i.e., so that Dk = I.  In this case (8) implies that Gk r = Hk. 
Choice II is to set/~k = 1 and Yk = 1. In this case, it is easily verified from (8) that 
Gk = Ilk. Thus with either choice, the computation of  these coefficients in step 4 
can be cut in half. 

In order to handle the possibility of  a breakdown, the method must be modified. 
Originally a limited recovery method was proposed in [54], but a full recovery 
method was not proposed until more recently in [8], [53]. Numerical implementa- 
tions have been described in [23]. The modification is based on the idea of  gener- 
ating the individual vectors to satisfy (6), but grouping the generated vectors into 
clusters, and enforcing the bi-orthogonality condition only between different clus- 
ters. The clusters are denoted Xo = (x0, - . - ,  Xkl-l), X1 = (Xk I , " ' ' ,  Xk2--1  ) ,  " ' "  

and Yo = ( Y 0 , " ' ,  Yk~-t), Y1 = (Ykl, " " ,  Y k 2 - 1 ) ,  " " .  The resulting method is 
the following, taken from [8], but using the modified Gram-Schmidt algorithm as 
before: 

Clustered Nonsymmetric Lanczos Algorithm [8]. 

0. Start with matrix A, two vectors Xo, Yo 

1. Initialize clusters Xo = (Xo), Yo --- (Yo). 

2. Initialize cluster counter p = 0 and marker ko = 0. 

3. For k = 1, 2 , - . .  while Xk ~ 0 and/or Yk ~ 0 

4. If  Y ff X p is nonsingular then {close current cluster and increment counter} 

5. Set Dp = yT Xp {next diagonal block} 

6. Increment p = p + 1. 

7. Set kp = k {save the index k corresponding to the beginning 
of  cluster p} 

8. Set X (0) = AXk-I {expand Krylov spaces} 
and y(O) k = A T y k - - I  �9 

9. For j = 1, 2 , . . . ,  p {enforce ortho, cond.} 

~ - 1  . . r  (y-l) andx~ y) (y-l) _ Xp_jhp_jk_l. 10. Set h p _ j , k _  1 = U p _ j l p _ j X  k = X k 

- r  r . (j-l) and y(J) = y~j-l) 
S e t  g p - j , k - 1  = D p _ j X p _ j ~ Y  k k - -  Y p - j g p - j , k - 1 .  

11. Set fl~xk = x~ p) - {Xphp.k-1 }, 

and YkYk = Y~P) -- {Ypgp,k-1}, 
where/~k, Fk are scale factors to be chosen, and the braces enclose 
optional terms (see text). 

12. Append to current clusters: 

Xp = (Xp, Xk), 
Yp = (Yp, Y~). 
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In step 10, the vectors of coefficients hp_j,k_l, gp-j,k-1 are chosen so that Xk, 
Yk satisfy the bi-orthogonality conditions 

x / ( ro ,  . - . ,  Yp-1) = o, y ~ ( X o , - . - ,  xp_l )  = 0. 

The coefficients hp,k-1, gp,k-1 in step 11 can be chosen to enforce "internal orthog- 
onality" conditions Xp r Xk = 0, ygTyk = 0 with the result that when the algorithm 

finishes, the individual clusters will satisfy X k r Xk = I = Y~Yk for each k [10]. 
They may also be chosen to be zero [53], in which case each diagonal block Dp 
will be lower anti-triangular with Hankel structure. In the latter case, the terms 
enclosed in braces "{ }" are omitted. 

At each stage k = kp we group the vectors generated into matrices, partitioned 
according to the clusters: 

X k  ~-- (Xo, " �9 �9 , Xk--1) : ( X o , . . . ,  Xp), Y k  = (Yo, "" �9  Y k - 1 )  = ( Y o , ' " ,  Yp), 
(9) 

where the vectors satisfy the clustered bi-orthogonality conditions YirXj = 0 for 
i # j ;  i.e., 

r (10) Yk Xk = Dk = diag(D0, " "", Dp), 
where D i = Yi T Xi. Since each cluster i is filled until the corresponding matrix Di is 
nonsingular, we see that upon termination of the algorithm, all the diagonal blocks 
of Dk will be nonsingular, except the last one, Dp. It will be seen in the next section, 
from considerations in Control Theory, that in fact Dp will be either entirely zero, or 
empty. Hence the rank of Dk will be simply the dimension of diag(Do, . . . ,  Dp-1). 
We also partition the upper Hessenberg matrices of coefficients 

\/ H~ ) 
Hk = ({Hij]Pj=o), with Hij satisfying AXj = ( X o , ' " ,  X j + l ) .  - , 

Hj 1,j 
(11) 

and 

f\/ Go j+ ) 
Gl~ = ({Gij,Pj=o), with Gij satisfying arYj = (Yo, " " ,  Y j + I ) ,  - , 

Gj l , j  
(12) 

where the partitioning of I1  k, G k  into ({Hij}Pj=o), P ({Gij}i,j=o) i s  consistent with 
the partitioning (9). With this partitioning, we have the formula analogous to (8): 

T T Gk Dk = Yk AXk = DkHk (13) 

from which it follows that Hk, Gk are block tridiagonal. That is, Hiy = Giy = 0 
for li - Jl > 1, and this means that (at least in exact arithmetic) in steps 9-11 j 
need take on only the values 1,2; the remaining coefficients are all zero. 

We remark that in floating point arithmetic, the condition of"nonsingularity" in 
step 4 is necessarily replaced with "not too ill-conditioned" where the amount of 
acceptable ill conditioning depends upon a user-supplied parameter. In this case, 
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the last block Dp will no longer be exactly zero. The block tridiagonal structure 
of H, G will remain, but will have to be especially enforced via complete bi- 
orthogonalization. A detailed numerical implementation that addresses most of 
these issues can be found in [23]. 

We note that also for this algorithm, the matrices of generated vectors Xk, Yk 
satisfy (6) for every k. In fact, the clustered Lanczos algorithm is based on the 
idea of generating the vectors one by one so that they satisfy (6) at every stage, 
enforcing (10) at every stage where possible. This is accomplished by filling in the 
identities (11) and (12). 

The block nonsymmetric Lanczos algorithm is a generalization of the simple 
nonsymmetric Lanczos algorithm to take several starting vectors on the left and 
right. No one has yet proposed a clustering scheme to take care of the breakdown, 
so we describe the algorithm assuming breakdowns do not occur. The matrices 
generated will be just block analogs of those generated by the simple nonsymmetric 
Lanczos algorithm, with uniform block sizes: 

Xk = (Xo, X 1 , . " , X k - 1 )  and o=( o 
Hoo Hol 

Hk = /31 H11 "'. 
"..  "..  

0 Bk-1 
Goo 

F1 
Gk = 

0 

601 

Gll 

which satisfy 

I"k-1 

Yk = (Y0, ~ q , ' " ,  rk-1) o). 
Dk-i o), 

Hk-2,k-1 
Hk-l,k-I / 

0 

Gk-2,k-1 
Gk-l,k-1 

AXk = XkHk + XkBk(0, �9 �9 -, 0, I), 

ArYk = YkGk + YkFk(0, . . . ,  0, I), 

r Yk Xk = Dk" 

(14) 

(15) 
(16) 

The algorithm is a block analog of the simple algorithm. The following is the 
form of the algorithm taken from [43], [44], but using the modified Gram-Schmidt 
bi-orthogonalization process. 

Block Nonsymmetr ic  Lanczos  Algorithm [43], [44]. 

0. Start with matrix A and two sets of vectors X, Y such that y r  X is nonsingular 

1. Compute factorizations Xo/30 = X and YoFo = Y. 
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2. For k = 1, 2, .- .  while Xk # 0 and/or Yk ~ 0 

3. Set X~ 0) = AXk-I {expand Krylov spaces} 
and y~0) = Ary~_l. 

4. For j --- 1, 2 {enforce bi-ortho, cond.} 
5.  S e t  H k - j  k - 1  D k l j  T ( J - I )  - - '~  v ( J )  = x ( J - I )  X t r  , = Y k - j X k  miUAk k - -  k - j n k - J ,  k - l "  

Set Gk-j,k-1 = DkljXT_jY(kJ-I) and Y~Y) = y~Y-O _ YkGk-y,k-1. 

6. Set Xkl3k X~ 2) and YkI'k y<2) 
~ ~ k  ' 

where/3/, Fk are matrices chosen to normalize the vector, 
as indicated below. 

7. If  YkrX~ is singular then we have a breakdown error, unless Xk # 0 
orYk -#0. 

8. Set Dk = Y[Xi.  

In steps I and 6, the normalization matrices Bk, Fk are normally chosen to make 
Dk ----- Yk r Xk = I .  To derive them, we write 

I = D k Y:X  k r-Ttv(l)~TY(1)rg-1 (17) 
= = --k ~ ' k  I "~k ~ k  " 

Among all the possible solutions to this equation, the authors of [43] have proposed 
using the particular choice 

T ty( l)~Tv(l)  F k/3 k = LU decomposition of ~ k J "~k , 

and they have further suggested the use of pivoting to enhance numerical stability 
[44]. However, if (y~l))r X~I) should be exactly singular, then we have a breakdown 
condition, and the only "remedy" that has been proposed for the block algorithm 
is to start over with different starting vectors. 

3. Controllability and observability 

In this section we discuss the concepts of controllability and observability and 
the computation of the minimal realization via the Kalman decomposition. We 
show how the Lanczos algorithms of the previous section can be used to compute 
the Kalman decomposition and the minimal realization. We will also see how the 
controllability and observability theory provides understanding about the behavior 
of the Lanczos algorithm. 

Our discussion is based on time invariant linear systems in continuous time: 

x(t) = Ax(t) + Bu(t), y(t) = Cx(t), (18) 

and in discrete time: 

xk+l ----- AXk + BUk, Yk = CXk, (19) 
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where x, u, y are, respectively, an n-vector of internal states, an m-vector of inputs, 
and a p-vector of outputs. The systems (18) and (19) are said to be stable if all the 
eigenvalues of A are, respectively, in the left half plane and within the open unit 
circle. We define the controllable subspace Sc as the subspace of the x-space from 
which one can find an input that will drive the state to zero, and the unobservable 
space S~ as the subspace of the x-space which one cannot detect using the outputs. 

A classical algebraic characterization of these spaces is given by 

Theorem 2 [19]. 

Se ---/C(A, B, o~), 

S~ -- NULLSPACE{ (K (A r ,  C r , or r } ~/C(A r , C r ,  r • 

where S J- denotes the orthogonal complement of the set S. 

(20) 

One may also define the uncontrollable space S~ and the observable space So 
as the complement of S~ and $6, respectively, as well as their mutual intersections: 

Sc~=ScNS6,  S~o=ScNSo,  Se~=SeNS~,  Seo=S~ASo.  (21) 

The Kalman decomposition [25], [40] or (18), (19) is obtained by applying a 
similarity transformation T = (Teo, Te~, Tco, Tea) where each Tab is a basis for the 
corresponding Sab. When T is applied, we obtain the new system (for continuous 
time) 

[~](t) = A~(t) + Bu(t), (22) y(t) = (7~(t), 

where ^ 

o o 
~21 , ~  0 

" 4 = T - I A T =  A31 0 -~co ' 

ti41 /i42 ~43 ~io~ 

The minimal realization for (18 is then 

(23) 

i = Acoz +/~coU, y = Ccoz, (24) 

where x = Tcoz. Analogous statements apply for discrete time systems. 
If we define the spaces Se and So as the orthogonal complements of Sc and ,96, 

respectively, and we use orthonormal bases of resulting intersection spaces in the 
transformation T, then the resulting T is the best conditioned (in the 2-norm) of 
all transformations yielding the Kalman decomposition [6]. 

As shown in [9] it is evident that the Arnoldi algorithm starting with A and 
B computes an orthonormal basis for So. If the Arnoldi algorithm is applied to 
the matrix A T and starting vectors C r, we obtain an orthonormal basis for the 



STATE-SPACE CONTROL MODELS 745 

orthogonal complement of S~. Then the individual spaces (21) may be obtained by 
numerically computing bases for the intersections and orthogonal complements. 
One method to compute the intersection and orthogonal complements of two spaces 
$1, $2 given two respective orthonormal bases T1, 7"2 is described in [30, w 12.4.4]. 
Briefly, one computes the singular value decomposition (SVD) of T1 r T2 (see the 
next section for further discussion on the SVD of a matrix product). If vl, - . . ,  Vr 
are the right singular vectors corresponding to the multiple singular value 1, and 
v,+l, �9 �9 �9 v.~ are all the remaining right singular vectors, then {T2Vl, - �9 �9 T2vr } is 
an orthonormal basis for the intersection space S1 N $2, and {T2vr+l, - - ' ,  T2vs} is 
an orthonormal basis for the subspace within $2 orthogonal to the intersection. 

For single input single output (SISO) systems, a very special structure arises 
from the clustered (or look-ahead) nonsymmetric Lanczos algorithm. The rest of 
this section is devoted to a discussion of this case. To the author's knowledge, 
no one has proposed a block clustered (or look-ahead) Lanczos algorithm that 
would correspond to the multiple input multiple output (MIMO) case. For SISO 
systems, we may apply the clustered nonsymmetric Lanczos algorithm with matrix 
A and starting vectors Xo = B and Y0 = C T. We will see that not only does this 
algorithm yield bases for the various spaces, but the theory behind the controllable 
and observable spaces contributes to our understanding of the behavior of the 
algorithm. If the algorithm is carried out until both Xk* and Yk* are zero, appending 
zero vectors if necessary, then at the termination of the algorithm we will have 
the generated vectors grouped into clusters, which are further grouped together as 
follows: 

Xk. = (X0 XI . "  Xp-I ]Xp.) = (Xf:lXp.), (25) 

= ( to  r, . . .  Y, ._ ,  I r r )  = t r r ) ,  

where/~ is the index k corresponding to the last complete cluster, i.e., k is the rank 
of Dk.. It was shown in [10] that indeed at termination of the algorithm the matrix 
Dk, (10) will have the form Dk. = diag(D0, . . . ,  Dp*-l, 0). This follows from 

Theorem 3 [10], [53]. Let the vectors Xk* --= (Xo-''Xk*-I) and Yk* ------ (Y0"" 
Yk*-l) be the vectors generated by the clustered nonsymmetric Lanczos algorithm 
with matrix A and starting vectors Xo, Y0. Then there exists an index r such that 
the generated vectors can be partitioned in the form 

Xk* ~--- (Xr I ~r) = (X0' ' 'Xr-1 [Xr ' ' 'Xk*-l)  

Yk* ---~ (Yr I Tr) = (Yo" "Yr--I I Yr ' ' "  yk.-1) 
such that Dr T ~r Yk* and are = Yr Xr is nonsingular and both ,~r TrTXk, identically 
zero or empty. 

Proof. Let K = K ( A , Xo, k* ) and L = K ( A r, Y0, k*) be the right and left Krylov 
sequences, respectively, corresponding to this application of the Lanczos algo- 
rithm. Then (6) can be expressed as 

X k , = K U ,  Yk* = L V ,  (26) 
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where U, V are some upper triangular nonsingular (k* x k*)-matrices. Then the 
block diagonal matrix (10) will be 

T �9 Dk* = Yk, Xk = VTLTKU. 

The matrix L r K is a leading principal submatrix of the infinite Hankel matrix 
[K( At,  Y0, o~)] r K(A, Xo, oo) of finite rank r. By the Corollary in [24, p. 206], the 
leading (r x r)-submatrix of this infinite Hankel matrix must be nonsingular. Hence 
k* > r, and Dr, the leading (r x r)-submatrix of Dk*, must also be nonsingular. 

The condition in step 4 of the clustered nonsymmetric Lanczos algorithm is 
equivalent to the condition that Dk = yTXk be nonsingular, which is in turn 
equivalent to the condition that [ K (A r,  Y0, k)] r K (A, Xo, k) be nonsingular. Hence 
for every k for which this condition holds, we have a diagonal partitioning of D/, 
a s  o) 

Dk. = Ak 

with a leading (k x k) part Dk and the remaining part denoted Ak. In particular, 
we have this partitioning for k = r. 

Since rank Dk* = rank Dr, it follows that Ar = 0. [] 

This theorem, together with Theorem 2, implies that at termination of the Lanc- 
zos algorithm, Xr = Too, U,r = Tea, Tr = Teo will be, respectively, bases for the 
spaces Sco, S~6, Sao. The remaining space Sea has a basis Tea which may be com- 
puted as a basis for the orthogonal complement of the other three spaces. Just as 
the transformation T is constructed from the vectors obtained directly from the 
Lanczos algorithm, the resulting transformed system matrix coefficients are ob- 
tained directly from the coefficients generated during the course of the Lanczos 
algorithm. As shown in detail in [10], one can substitute x = Tcoz = Xrz into 
(18), apply Yk r, to extract -4co,/~co, Ceo, and use the identifies (10), (13) from the 
clustered Lanczos algorithm to obtain the minimal realization (24) of the system 
(18): 

z = H r Z + e l u ,  y = (eTDo 0 "-" 0)z, 

where Hr is the leading (r x r) upper Hessenberg matrix of coefficients from the 
clustered nonsymmetric Lanczos algorithm, Do is the leading diagonal block of 
Dr, and el = (1 0 . .- 0) T denotes the initial coordinate unit vector of appropriate 
dimensions. 

4. Model reduction via balanced realization 

The balanced realization [50] is a method for balancing the gains between inputs 
and states with those between states and outputs, and isolating the states with small 
gains. These small gain states can be truncated away without disturbing the system 



STATE-SPACE CONTROL MODELS 747 

= /~21 

as well as the Gramians 

by much [2], [22], [26]. The Lanczos-type algorithms can be used to compute ap- 
proximate balanced realizations for systems of very large dimensionality, whereas 
most other methods are restricted to systems of only modest dimensionality. 

The balanced realization for stable systems (18) is defined in terms of the 
controllability Gramian 

Wc = eAtBBreAr td t  

and the observability Gramian 

Wo = e A r t c r c e A t d t .  

These Gramians are, respectively, the solutions to the Lyapunov equations 

A W c +  WcA T + B B  T = 0 (27) 

and 
ArWo + WoA + C r C  = 0. (28) 

If the transformation T is applied to (18) to obtain the method 

[~](t) = A~(t) + / }u( t ) ,  y(t) = C~(t), (29) 

where 
= T - 1 A T ,  B = T - ' B ,  C = C T  (30) 

then the Gramians will be transformed by contragredient (or congruence) trans- 
formations into 

We = T - 1 W c T  - r ,  Wo = TTWoT.  (31) 

The balanced realization may be computed by the following prescription [47], 
[49]. Define LcL T, LoL T as the Cholesky factorizations of We, Wo, respectively. 

T Compute the SVD of the product Lo r Lc to obtain the factorization U Z V T = L o Lc, 
where U, V are orthogonal matrices, and ~ = diag(al, . . . ,  an) with al > a2 > 
�9 . �9 > an > 0. Then the particular choice T = Lc V E-1/2 will reduce the Gramians 
to the same diagonal form ff'c = I~o = Z [49]. The resulting system (29) with 
this particular choice for T is the balanced realization for the system (18) [50]. 
Effective methods for solving (27), (28) directly for the Cholesky factors without 
forming Wc, Wo and for finding the SVD of a matrix product without forming 
the product have been given in [36] and [38], [5], respectively, thus enhancing the 
numerical accuracy of the results. 

Partition the matrices in (30) conformally as 

o) 
0 E2 ' 
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where Al l ,  ~'~'1 are the leading (r • r) part of the respective matrices, for some 
arbitrary r. Define F (s) --- C (s I - A ) -  1 B = C (s I - ,~  )-1/~ as the transfer function 
for (18) and (29), and Gj (s) = C1 ( s l  - A11) -1 B1 as the transfer function of the 
system obtained when the last (n - r )  states in the balanced realization are truncated 
away. Then it has been shown (e.g., [22]) that 

n 

IIG(s) - Gl(s) l l~ < 2 ~'~ tri, 
r+l 

where the norm II �9 I1~  on functions analytic everywhere except at some poles in 
the left half plane is defined by 

IIG(s)lloo = suptrmaxG(jo)), 
t o  

where jto varies over the entire imaginary axis. Thus the truncation of the balanced 
realization is a reduced order model whose behavior does not differ from that of 
the original system by very much. 

A similar development may be carried out for stable discrete time systems of 
the form (19). In this case, the Gramians are defined as 

Wc = ~ A i B B T ( A T )  i, Wo = ~ ( A r ) i C T C A  i, 
i=0 i=0 

and satisfy the Lyapunov equations 

AWcA r + B B  r = Wc (32) 

A r W o A  + C r C  = Wo. (33) 

When a transformation T is applied to (19) to obtain the transformed system 

Xk-l-1 = /~Xk "q- nUk, Yk = 6"Xk, (34) 

where the matrices are defined by (30), the Gramians are again transformed by 
the same congruence transformations (31). Thus the balanced realization can be 
computed using the same prescription as for the continuous time case [37]. A 
similar error bound for truncated balanced realizations was obtained in [2]. 

It is difficult to solve the Lyapunov equations for very large sparse systems. 
The Arnoldi algorithm may be used to compute approximate solutions to such 
Lyapunov equations (27), (28), (32), (33), which will satisfy certain Galerkin con- 
ditions. We will describe these conditions for the discrete time case. The continuous 
time case is analogous and is treated in [58]. In addition, one can obtain an error 
bound for the discrete time solution. Similar techniques have been proposed for the 
more general Sylvester equation A X  - X B  = C in [55], in which the approximate 
solutions can be recursively generated as the Arnoldi process advances. 

We show how the Arnoldi algorithm yields an approximate solution to (32), then 
we show that it satisfies the Galerkin property and an error bound. If the Arnoldi 
algorithm is carried out with a matrix A and starting vectors X = B, then after 
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k steps, we have the relation (4). We also have that R = X0 r B is the nonsingular 
upper triangular matrix constructed in step 1 of the Arnoldi algorithm. Define 

G = ~-'~(Hk) i (R ~ 0)(nkr) i (35) 
i=0 

so that G satisfies the Lyapunov equation 

n k G n r + ( O ) ( R r  0 ) = G .  (36) 

Then the approximate solution to (32) is I~' = XkGX~.  One can take advantage 
of the recursive nature of the Arnoldi algorithm to use the approximate solution 
obtained after each step of the Arnoldi algorithm to generate subsequent approx- 
imate solutions rapidly, but for the sake of brevity and clarity we do not describe 
that process here. This is the basis of the methods in, for example, [55], [59]. This 
solution satisfies the following theorem, proved in [58] for the continuous time 
case: 

T h e o r e m  4. Define the inner product on n x n matrices as (X, Y) -- t r ( X T  y).  
Define the space G = {XkMXr: Y M  ~ Rk• Then the solution I2V = X k G X  r 
lies in ~ and the residual: 

RES(ff') ~- A W A  r + B B  r - ITV 

is orthogonal to ~ with respect to this inner product. Hence Ii/ satisfies a Galerkin 
condition. 

(Here the notation t r ( M )  stands for the trace of M.) 

Proof. All we must verify is that (XkMXk r,  RES(I~)} = 0 for any M. We make 
use of the identity t r ( M N )  = t r ( N M )  for any matrices M, N and the identity 
(3). We have 

(XkMX T, RES(IV)) T T T ( X k M X T ) B B  T = t r ( ( X k M X  k ) A ( X k G X  k)A + 
T T 

- -  (XkMX~)(XkGX k)) 

T r T M X T B B T X k  = t r ( M ( X  k A X k ) G ( X  k A Xk) + 
T T 

- -  M X  k X k G X  k Xk) 

= t r ( M .  O) 

= 0 .  

[] 
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In addition to the above Galerkin condition, we can also bound the error II Wc - 
ff'll. In order to do this, we need the following theorem from linear algebra. 

Theorem 5. Let p ( A )  denote the spectral radius o f  a matrix A. I f  p (A )  < ~ < 1, 
then there is a constant 0 depending only on A and the choice o f  8 such that for  
a n y k  = 1 ,2 ,3 ,  . . .  

IIAklh _< 08 k. 

Furthermore, i f  A is diagonalizable, then the above also holds for  8 = p ( A ) < 1. 

Proof. One can find a consistent matrix norm such that IIAII. _< 8 [62]. Since all 
norms on a finite dimensional space are equivalent, one can find a constant 0 such 
that IIMII2 < 0 IIMII. for all matrices M. The result follows from 

A k IIAkll2 _ OIIAkll. <_ 011 II. --< 08 k. 

If  A is diagonalizable, then we have A k --- P D ~ P  -1 for diagonal D, which yields 
equality above with 0 = Ilelh " liP -1112 and S = p. []  

We also need the following lemma. 

Lemma 6. When the A rnoldi algorithm is run with a matrix A and starting vectors 
B, then fo r  0 < i < k 

' t i 8  = XkI-I  i) 
where R = Xro B is the upper triangular matrix computed in step 1 o f  the Arnoldi 
algorithm. 

Proof. Choose a k and assume 0 < i < k. Then we have the identity from (4) 

AXkH~ -1 = XkH ~ 

+ XkHLk_~(0, . . . ,  0, I)H~ -1 

since 

If) =xk tl) 
= 0 .  
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The lemma then follows from 

Ai B = AiXk = Ai- tXkHk . . . . .  A~ i) [] 

T h e o r e m  7. Suppose the Arnoldi algorithm is run with matrix A and starting 
vectors B, where p(A)  < 8 < l for  some 3. Suppose alsothatp(Hk)  < 8 < 1. 
Then 

2 22k 
IlWc - wII2 _< 211BII20 8 

1 - 3 2  ' 

where 0 is the constant from Theorem 5. 

Proof,  By Lemma 6, for 0 < i < k, 

A i B B T ( A T ) i X k H ~ ( R ) ( R  T T i T  O)(Hk ) Xk. 

Therefore, we have the identity 

W c - ~ V = ~ ' ~ A i B B r ( A T ) i - x t ~  H~ (R r 0)(HT) i X T 
i=0 i=0 

) m.~AiBBT(AT) i  --Xk~-~ H~ (g T 0)(HT) i X T. 

i=k i=k 

It remains to bound the last sums. 

i=~k Ai B BT (AT) i < U B U 2 ~  IIAill 2 
i=k 
oo 

_< IIBII e E0282i 
i=k 

< [[Bii20e82 k 1 
I - 8 2 " 

We have the same bound for the sum in H~, where II R II = II B II. So the final bound 
on the above sums is as given in the theorem. [] 

Normally, as k increases, i.e., as we carry out the Arnoldi algorithm to more 
steps, the eigenvalues of  Hk should become ever better approximations to those 
of  A, and hence should be bounded by some 8 < 1. So as k increases, the bound 
in Theorem 7 will go to zero, and we obtain ever better approximations to the 
Gramian. 
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5. Model reduction via parameter matching 

An alternative approach to model reduction is to expand the transfer function in 
a Laurent series, and then to create a lower dimensional model for which the first 
few terms of its Laurent series match those of the original model. If  

~o 
F(s) = ~ Fi 

i=0 Si+I (37) 

is a transfer function, then the idea is to construct a smaller model that yields a 
transfer function 

oo /~i (38) 
= 

i--0 

for which Fi = Fi for i = 0, . - . ,  k for some given k. The parameters Fi are called 
the high frequency moments [67] or Markov parameters [39], [61]. It is a simple 
consequence of the matrix identity (Neumann series) 

r 

(1 - -  M )  -1 = ~ M i w h e n e v e r  p(M) < 1 

i=o 

that the transfer function for (18) and (19) satisfies the identity 

F(s) = C(sl - A)-I B = ~ CAi----~B for Isl > p(A). (39) 
s i+l  

i=0 

With respect to (19), if ui = 0, i = 1, 2, . . . ,  and x0 = 0, then the sequence 
{Yi+1 = CAiBuo}, i = 0, 1, 2, .- .  is the impulse response from the impulse Uo. 
The systems (18) and (19) are state-space realizations of the transfer function (39). 

In applications, F(s) may be either the usual case of a finite dimensional system 
of large order or an infinite dimensional system [32]. In either case, the model 
reduction problem is "solved"^.bAy constructing (realizing) a lower order model 
of the form (18) such that CA'B = Fi for i = 0, . . . , k ,  for a given k. In the 
SISO case, such a reduced order realization may be found via computation of a 
transfer function/~(s), expressed as a rational function of polynomials (see e.g., 
[24, Ch. 15, w [18], [31], [41]). Several authors have also looked at the MIMO 
realization problem (see e.g., [63] and refs. therein, such as [3, 14, 45, 69]). Many 
of the algorithms involved are recursive algorithms that are intimately related 
to the clustered Lanczos algorithm (see e.g., [11], [31], [53]). We describe two 
approaches for the MIMO case proposed recently for constructing such a smaller 
state-space model, both based on the use of a large state-space model. 

The first approach was proposed in [32] as a method for finding a finite di- 
mensional approximation to an infinite dimensional system, in the case where the 
transfer function F(s) is given, but not the expansion (37) nor a state-space re- 
alization. In this case, the authors of [32] proposed applying the discrete Fourier 
transform to the sequence F(1), F(og), F(o92), .- �9 , F(o9/v-l) for some N > k, 
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where o9 is an Nth root of unity to obtain approximations to the first N terms 
in the series (37). Next they constructed a triple of matrices ,4, J~, C such that 
~ i ~  = Fi for i = 0, . . . ,  k and t~,~i/1 = 0 for i > k. They chose the triple ,4, 
/~, t~ tobe: 

0 

, ~ =  I ". 
, ,  =(F0 Fl " Fk). 

I 0 

We refer the reader to [32] for the detailed derivations, including how they applied 
further model reduction techniques to the resulting finite dimensional model. In 
particular, they used the balanced realization as described in the previous section�9 

The second approach that we describe was proposed in [43], [44], and is based 
on the theory in [67]�9 In this case, we start with a state-space model of the form 
(18) (or (19)) represented by  the triple A, B, C of large dimensionality and we 
try to find a triple A, B, C for which the corresponding series (38), defined by 
Fi = t~.3, //~, agrees with (37) up to a given number of terms�9 The reduced order 
model is constructed by the use of the block nonsymmetric Lanczos algorithm. 
We assume that we have an initial model (18), and we assume for simplicity in 
presentation that B, C, and CrB  all have full rank. The block nonsymmetric 
Lanczos algorithm is applied with matrix A and starting vectors Xo/30 = B and 
YoFo = C r, using the scaling (17), so that 13o and F0 are also constructed so that 
Y~Xo = I. After k steps, we have the generated vectors (14), which satisfy 

COLSP X k =/C(A, B, k), COLSP Yk = IC( A t ,  Cr, k), and Y[X k = I. 

Then the reduced order model is defined by 

z(t) = ,4z(t) + / ~ u ( t ) ,  y(t) = Cz(t),  (40) 

where 
/ ~  T T YkAXk, / ~ = Y k B ,  ~ ? = C X  k, z = y T x .  (41) 

It remains to verify that ~ i  ~ = Fi for sufficiently many values of i. 

Theorem 8. Given a system (18), together with the results from k steps of the 
block nonsymmetric Lanczos algorithm started with A, B, C using scaling (17), 
and given the reduced order model defined by (40), (41), then 

~,~i~ = C a i B f o r i  = 0 , � 9149  2 ( k -  1)�9 

To prove this, we use the following lemma. 

L e m m a  9 [67]�9 ,~i/~ T i = Yk A B and (,~T)i~T = XT(AT) ic  r for 0 < i < k - 1. 

Proof  of  Lemma 9. The properties (15), (16) are identical to (4), so the proof is 
analogous to that of Lemma 6. 
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Proof of Theorem 8. Choose any i, j such that i < k, j < k. Then A j B 
KS(A, B, k); hence we can write AJB = XkV for some matrix V. It follows that 

T j T XkYkXk V XkV AJB. XkY k A B = = = 

We then use Lemma 9 to establish 

c.~il~J n = CAiXkYT AJ B = CAi AJ B. [] 

The reduced order model obtained by this method exhibits similar transient 
response behavior to that of the original model. In order to obtain a model that 
also exhibits similar steady state behavior, it is necessary to compute a model in 
which the low frequency moments ~ ~ - i -1~ ,  i = 0 , . . . ,  p, match those for the 
original system [67]. One such model is obtained by an oblique projection 

= L r A T z +  LrBu ,  y =  CTz, (42) 

where the columns of matrices L and T include bases for the spaces KS(A -T, 
A -T, C r, p) and KS(A -1, A -I  B, p), respectively [67], where M - r  =--- (Mr)  -1 
-- ( M - l )  r. In order to create models matching both the high frequency moments 
and the low frequency moments, [63] proposed combining the vectors generated 
from the block Lanczos method using A, B, C 2" with those from the Lanczos 
method using A -1, A -1 B, C r. This is based on the following theorem. 

Theorem 10 [67]. If L, T are bases for the spaces 

COLSP((AT)-PC r ... (AT)+qcT), 

COLSP(A-SB . . .  A+tB), 

where L T T = I and p + q = s + t, then the system (42) obtained by the oblique 
projection satisfies 

(CT) (Lr  AT) i (Lr  B) = CAi B for i  = - p  - s - 1 , . . . ,  +q + t + 1. 

The proof is analogous to that of Theorem 8, which is a special case of Theorem 
10. 

This approach has been exploited very successfully in [15], [63], [64] to appli- 
cations in large flexible space structures. One problem with this method is that the 
block nonsymmetric Lanczos algorithm may break down, if the matrix in step 7 of 
the algorithm is singular. In practice, this has not been a problem in the applications 
in [64]. We note that in this use of the algorithm, we do not compute the spaces 
KS(A, B, oo) or ~ ( A  r, C T, oo). Rather, we choose a kmax and run the algorithm 
only that many steps. If kma~ is much less than the dimension of the entire spaces 
KS(A, B, c~) or KS(A r, C r, oo), it is reasonable not to expect breakdowns in the 
first kmax steps. 
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In this paper we have described three variants of the Lanczos algorithm for generat- 
ing Krylov sequences and have given three examples of control theory applications 
where these Lanczos algorithms can be used. These algorithms are particularly 
suited to solving control problems involving state-space models with sparse matri- 
ces of very large order. The development of algorithms for such control problems is 
still in its infancy, especially since many algorithms for "small" dense state-space 
models are also of recent origin [48]. We have illustrated the use of the Lanczos 
algorithms on problems of controllability, observability, and model reduction. The 
Gramians are also useful for other computations in optimal control and 7"/0o theory 
(e.g., finding the H2, 7-(oo, and Hankel norms of plants [12, and refs. therein]), 
hence the methods of this paper can be used to compute approximate solutions to 
those problems. 

We remark that the reduced order systems (42), (40) have transfer functions 
that are rational functions whose Laurent or Macclaurin series expansions agree 
with the series expansions of the original transfer functions of a given number of 
terms. In the space of the transfer functions themselves, the problem of computing 
low degree rational approximations to given meromorphic functions is a classical 
problem in approximation theory in the complex plane. Many methods operating 
directly on the coefficients in the expansions of the form (37) (or more general 
Macclaurin expansions) exist, and many are equivalent to the Lanczos process 
([11], [13], [31], [30], [53], and refs. therein), and many use related algorithms 
on related Hankel matrices, though based on different theory [1], [35], [65]. The 
methods presented in this paper are distinctive in that they are based on the use of 
state-space descriptions, which facilitate the generalization of many SISO methods 
to MIMO systems, and which may often allow one to avoid necessary conversions 
between state-space and frequency domain descriptions and the ensuing compu- 
tational and numerical difficulties. Space does not permit us to explore here the 
relations and equivalences between the state-space approximations and the fre- 
quency domain methods based on optimal Hankel, Hoo, or Pad6 approximations 
(mentioned in some of the references), or the close relations with fast Hankel ma- 
trix factorization methods and orthogonal polynomials. These will be explored in 
a future paper. 
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