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Summary 

Using the orthogonal complement likehood function, an iterative procedure 

for the maximum likelihood estimates of the variance and covariance components is 

derived. It is shown that these estimates are identical with the reproducing estimates of 

the locally best invariant quadratic unbiased estimation of variance and covariance 

components. Successive approximations of the maximum likelihood estimates are given 

in addition. 

1. Introduction 

In September, 1983, when I worked as a Senior Visiting Scientist at the National 
Geodetic Survey in Rockville, Maryland, Allen Pope explained to me his ideas about the 
maximum likelihood estimates of variance and covariance components. I was interested 
in this topic because I saw an application for a problem I wanted to solve, and we agreed 
to cooperate on further investigations. But no progress was made on this subject during 
the last two years. 

As usual, Allen Pope made notes when he explained his ideas. From a copy of 
his notes of September, 1983, the following derivation is taken. It is one example of 
his many brilliant ideas. 

2. Model Space Likelihood and Orthogonal Complement Likelihood 

We start from the model 

~!!_ = E (x) = Hy with D (~:) = ~ = ~ (_~) (2.1) 

where ~ is the n xu matrix of known coefficients with rank ~ = u , f the u x 1 
vector of unknown parameters, r the n X 1 random vector of observations, E (i) = ~y 

the n x 1 vector of expected values of the observations and D (iJ = ~ the n x n 
positive definite covariance matrix of the observations. This matrix is assumed to be a 
function of the k x 1 vector a of unknown parameters, the so-called variance and 

Bull. Geod. 60 (1986) pp. 329-338. 
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covariance components, hence ~ = ~ (a) . Therefore, (2.1) is the Gauss-Markoff 

model with unknown variance and covariance components. 

If the observations y are assumed to be normally distributed, the likelihood 

function L (y; (3, a) of the -observations y with the unknown parameters (3 and a 
is given by - - - - -

L(y;(3 ,a)= 
1 

exp{-.!.(y-1! )' ~- 1 (y-~L )} (2.2) 
2 - -Y - - -Y 

(21T)nf2 (det ~)1/2 

The maximum likelihood estimates of (3 and a are determined such that 

L (X; E_ , ~) assumes a maximum; see, for instance,(Harvilk, 1977; Kubik, 1970). 

The vector 'i. of observations is now transformed by the n x n matrix P 
into the n x 1 vector J.. with 

(2.3) 

so that we obtain instead of (2.2) the likelihood function of y 

L(y;{3,a) = l exp{-.!.(y-~I-)'(P~P')- 1 (Y-fJ.-)} (2.4) 
--- (27T) 0 12(detf~~') 1 1 2 2- -Y --- - -Y 

The matrix f is defined by 

B 
p = (2.5) 

X' ~-1 

with 

BX = 0 (2.6) 

where ~ is a (n- u) X n matrix with rank .!! = n- u. The matrix r ~ E' is positive 

definite, since f is regular, which can be shown by 

!!~ !!' 0 
P~P' = 

0 X' ~-1 X 

Taking the determinants of both sides leads to 

( detf)
2 

= det ~ - 1 det !!~ _!!' det ~~~ - 1 ~ 

The determinants on the right-hand side are positive, so that det E.-=/= 0 . 

x= 

Substituting (2.5) in (2.3) we get with (2.1) and (2.6) 

and fJ.- = 
-Y 

0 
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and instead of (2.4) 

L CY; /3, a) == -----------
- - - (27r)"'2 (det ~~ !r det ~'?;_- 1 ~) 1 1 2 

0 

exp 

0 

or with n :::: (n- u) + u 

(2.9) 

with 

and 

L 2 (_x;~,~) == I exp{-..!_(X'}:- 1 y-X'}:- 1 Xf3)'(X'}:- 1 X)-
(27r)uf2 (det~,~-1 ~)1/2 2 - - - -- -- -- -

(~' ~-1 X._ X' ~-I ~{D} 

The likelihood function (2.9) of the transformed observations y is obtained 
as the product of the two likelihood functions Lt and L2 . The first one, L, , does 
not depend on the unknown parameters /3, but only on the parameters a because of 
~ == L (a). Hence, this likelihood function will be used to estimate the unknown 
variance and covariance components !!. . The second likelihood function, L 2 , in (2.9) 
contains in addition to £ the unknown parameters !!_. If we assume for a moment ~ 
as known so that the matrix L is given, the likelihood function L 2 assumes a maximum 
if -

C2S' ~ -1 X- ~I ~- 1 ~~)' (~' ~-I ~) -1 (~' ~ -1 y - ~ ~ -1 ~~) ::: 0 

which is fulfiled with 

(2.10) 

These are the well-known normal equations of the maximum likelihood estimate in case 
of normally distributed observations, of the method of least squares and of the best 
linear unbiased estimate, applied to the unknown parameters /3 of the Gauss-Markoff 
model. -

As shown by (2.10), the second likelihood function L 2 in (2.9) leads to the 

estimate ~ in the parameter space for /3 , formed by the column space R (X) of the 
model (2-:i). This likelihood function will therefore be called the model space likelihood. 
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With (2.6) and rank B == n- u, it follows that the null space N (X') of X' is equal 
to the column space R (~') of ~~. Hence N (~') == R (~'), so that with 

N (X') == R (X)1 where R (X)1 is the orthogonal complement of the column space 
R(R) ,we get- -

(2.11) 

The first likelihood function L 1 in (2.9) is therefore called the orthogonal complement 
likelihood, and it will be used to estimate !!.. as already mentioned. 

This approach is equivalent to the restricted maximum likelihood estimate, 
which takes care of the loss in degrees of freedom resulting from the estimates of the 
unknown parameters (j . The variance and covariance components a are therefore 
determined by the so::-called error contrasts, which fulfil the conditio; E (a' y) == 0, 
so that .!'X == Q_ with .! being a given vector. Hence, the transformed observations 
By in (2.9) are error contrasts. A set of n- u linearly independent error constrasts 
which have been chosen for the restricted maximum likelihood estimate are the ones 

obtained by the rank factorization of the projection matrix .!_-~(~'~)- 1 X' 
(Harville, 1977, p. 325, Schaffrin, 1983, p. 85). 

A similar representation of the likelihood function by two factors, one for 
estimating the unknown parameters (j, the other for estimating the variance and 
covariance components!!.. can be also fOund in (Kubik, 1970). However, the likelihood 
function (2.9) of the transformed observations leads to simpler formulas. 

3. Estimate of the Variance and Covariance Components 

In order to determine the extreme values of the orthogonal complement 
likelihood function L 1 in (2.9) we take its natural logarithm and obtain 

InL 1 (y;a) == -~In(21T)-.!_Indet B1: B' _ _!(By)'(B1:B')- 1 (By) (3.1) 
- - 2 2 --- 2 -- --- --

For the differentiation we apply the following two rules (see, for instance, Kubik, 1970). 
Let ~ be a regular symmetric m x m matrix, which is a function of.! with .! = (ai), 
hence A == A (a). Then with A. == a A/ a a. we get 

- -- -1 - I 

aindetA/aa. ==trA- 1 A. 
- I - -1 

(3.2) 

and 

(3.3) 

To prove (3.2) we use A = XD: Y' with .Y' .Y = l, where ~ is the diagonal 
matrix of the singular values \ of ~ and Y the matrix of singular vectors. We obtain 

m m 
In det A = In det ~ = In n A.. = 1: In A.J. 

j=l J j=l 

and 
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m 

oln det A/oa. = L A..- 1 ~- = trA- 1 A 
- l j=l J J - -

Furthermore we get from ~ = Y~ Y' 
. . . . 
A = Y ~X' + Y ~ Y' + Y .0- Y' 

and with A- 1 = y ~ - 1 Y' 

However Y' Y + Y' Y = 0 because of Y' Y = I so that 

which gives (3.2). From ~~ - 1 = I we obtain 

which gives (3.3). 

Applying (3.2) and (3.3) and setting the derivative equal to zero we find with 

a=(a.)and oL/oa. =±. from(3.1) 
- I - I -1 

olnL 1 (y_;!!)foai = --}tr(_!!~~)- 1 !!~i!!' 

+.!_(By)'(B};B'r 1 B±. B' (BLB')- 1 (By)= 0 (3.4) 
2 -- --- --1- --- --

By introducing the identity 

p- 1 =LP'(PLP')- 1 
- -- ---

we find with (2.5) and (2.7) 

B 
= I 

X'L- 1 

and therefore 

With 

(3.5) 

we finally obtain 

(3.6) 
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As known, y_' yj y_ gives the weighted sum of the squares of the residuals ~ in the Gauss­

Markoff model which are obtained by 

(3.7) 

Substituting (3.6) in (3.4) we find the equations for the maximum likelihood 

estimates of the variance and covariance components !!.. 

(3.8) 

or 

(3.9) 

(3.8) and (3.9) are nonlinear equations for the unknown parameters !!.. . By introducing 

the kx I vectors g_ = (qi) andy= (vi) weget insteadof(3.8) 

v- q = 0 (3.10) 

with 

4. Newton-Raphson Iteration 

To solve the set of nonlinear equations (3.10) or its equivalent form (3.9} we 

will apply iterations. (3.10) is a function .f.C!!) of .!!. 

(4.1) 

where f.C!I) = (fi (!I)) is a k xI vector. By introducing the k xI vector Q0 of 

approximate values of !!. , by using the Taylor series and restricting it to the linear terms, 

we get 

and 

(4.2) 

with 

H = (h .. ) = (a f. (a) I a a.) I 
_ IJ 1 - J !!. =Q.o 

(4.3) 

leading to the Newton-Raphson iteration 

a =a - H- 1 f(a ) - -o - -o (4.4) 

provided the matrix !! of partial derivatives is regular. 
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By appling (3.3) to (3.6) we get 

and with a±. I a a. = ~-- the elements h .. of the matrix H in (4.3) 
-1 J -IJ IJ -

(4.5) 

We recognize, that the coefficient matrix !! in (4.2) for the equations of the variance 
and covariance components depends on the observations y. In order to fac~litate the 
solution of this system of equations we make two compromises. First, we replace the 
matrix !! by the matrix of expected values, thus eliminating the dependence on l:; 
and second, we neglect the second partial derivatives, so that instead of the matrix H 
the matrix S with S = (s .. ) is obtained. 

- - lJ 

With 

where J1 == X~ and from (3.5) with 
-Y --

W = W!- W and WX = 0 (4.6) 

we get 

and therefore instead of (4.5) 

s .. =trw±. w±. 
IJ --1--J 

(4.7) 

Substituting this result in (4.2) gives 

S(a-a) = q-v 
-- -0 - -

(4.8) 

It should be emphasized that according to (4.2) the matrix ~ and the vectors .9.. and ::!... 

in (4.8) have to be evaluated at the approximate values !!.o . 

At this point we have to specify the parametrisation of the covariance matrix 

~ of the observations z:. In general, ~ = ~ (~) will be a nonlinear function of the 
variance and covariance components. As mentioned, ~ (9: 0 ) is needed. If we use the 
Taylor series and restrict it to the linear terms, we get 

where !!.e == (aei) is the point of expansion. We will assume 
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so that 

(4.9) 

The derivative ~i in (4.8) is therefore given by 

~- = a~(a)/3a.l 
-1 - - I £=!! 0 

(4.10) 

Using (4.9) we can simplify (4.8) because of 

(4.11) 

To show this we compute the element i of the vector § Q
0 

k k k 
~ s .. a . = ~ (trw±. w±.)a . = trw±.w ~ ±.a . j=l IJ OJ j=l --1--J OJ --1-j=J-J OJ 

and obtain with (4.9) and (4.6) 

k 

~ s .. a·. = trW~- W ~ = trW 1:. = v. j=l IJ OJ --1-- --1 I 

Substituting (4.11) in (4.8) we finally get the system of equations for the estimates a 
of the variance and covariance components !!. 

(4.12) 

As already mentioned, the matrix S and the vector q have to be evaluated at the 
approximate values a . According to (4.4) the estimates (4.12) have to be applied in -o 
iterations. By using the estimates to compute new approximate values, we can iterate 
until at the point of convergence the estimates reproduce themselves, which means 

A 

a= a 
- -0 

With this result we get from (4.11) and (4.12) 

sa = v =sa = q 
--0 - -- -

(4.13) 

(4.14) 

This equation fulfils (3.10) so that at the point of convergence the maximum likelihood 
estimate is obtained. 

Very often it is assumed that the covariance matrix ~ is a linear function of the 
variance and covariance components .Q 

k 

~ = ~ V. a. 
j:J -1 I 

(4.15) 

336 



MAXIMUM LIKELIHOOD ESTIMATE OF ..... 

with 

where Yi and Ii are symmetric matrices and a
0

i are approximate values of the 

products a 
0 

i a i , so that the values of the unknown variance and covariance components 

are a$Sumed to be close to one. With (4.15) ~i in (4.12) is given by 

1:. = v. 
-1 -1 

(4.16) 

and the matrix 1: evaluated at the approximate values !!.o is obtained by 

(4.17) 

By substituting (4.16) and (4.17) in (4.12) the locally best invariant quadratic unbiased 
estimate of the variance and covariance components is obtained, see for instance (Koch, 
1980, p. 211), which is identical with the MINQUE-estimate (Rao, 1973, p. 304). 

The name locally is chosen because the estimates a depend through 1: (a ) - - -o 
on the approximate values .!!.o. By using the estimates to compute new approximate 

values, we can iterate until at the point of convergence the estimates reproduce 
themselves. At this point (3.1 0) is fulfiled so that the reproducing estimates of the 
locally best invariant quadratic unbiased estimation are also maximum likelihood 
estimates. It should be noted here, that the iterated estimates might not be unbiased 
anymore. 

5. Successive Approximations 

To obtain successive approximations for the reproducing estimates computed 
with (4.12), (4.14) can be used. We replace the k x k matrix~ by the k x k diagonal 
matrix D = diag (di) 

so that 

(5.1) 

This result is substituted in .QQ. = q, and we obtain 

a.= (q.fv.)a. 
1 1 1 01 

(5.2) 

or for the model (4.15) 

(5.3) 

By using the estimates to improve the approximate values, (5.2) or (5.3) are applied 
successively, until at the point of convergence the estimates reproduce themselves, so 
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that (3.10) is fulfilled. Hence, at the point of convergence the maximum likelihood 
estimates and the reproducing estimates of the locally best invariant quadratic unbiased 
estimation are obtained. (5.3) has already been derived using different approaches by 
(Forstner, 1979). (Persson, 1980, p. 89) or by (Lucas, 1985) who compared for the 
model (4. 1 5) the computational effort to obtain the reproducing estimates when applying 
(4. 1 2) and (5.3). He found the latter method to be more efficient. 

0 

0 0 
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