
Yukio HAGIWARA 
Earthquake Research Institute 

University of Tokyo 
Tokyo, Japan 

A NEW F O R M U L A  FOR E V A L U A T I N G  THE 

T R U N C A T I O N  ERROR C O E F F I C I E N T  

Abstract 

In this paper, a new formula for evaluating the truncation coefficient Q n is 
derived from recurrence relations of Legendre polynomials, The present formula has been 
conveniently processed by an electronic computer, providing the value o f  Q n up to a 
degree n = 49 which are exactly equal to those of  Paul (1973). 

The geoidal height is obtained by performing an integration of gravity anomaly 
weighted by Stokes' function over the whole surface of the spherical earth. When the 
integration is not extended over the whole surface but restricted to a spherical cap, the 
effect of neglecting the remote zones on the computation of the geoidal height should be 
evaluated. The effect is called "truncation error" (de Witte, 1967). Molodenskii et al. 
(1962) developed the effect in a series of zonal spherical harmonics with the truncation 
coefficients Qn (n : degree of polynomial), which have later been called "Molodenskii's 
truncation coefficients" by de Witte (1967). 

Molodenskii at al. (1962) gave Qn up to n = 8 in the forms of power series. 
The higher--degree values of q n' however, are required for their practical applications to 
evaluating the truncation errors for satellite gravity anomaly, Hagiwara (1972) obtained a 
general formula for evaluating Qn, and published a table of Qn up to n = 18.Later, 
Paul (1973) pointed out Hagiwara's values of degree higher than 16 to be somewhat 
invalid due to round-of f  errors cumulative in the computation process. Paul (1973) also 
proposed another formula, by which he computed qn 's  up to n = 49. The main 
achievement with Paul's formula isthat the computation deals with only a fixed and finite 
number of terms for all values of n. 

The present work aims at deriving another convenient expression of Q n from 
recurrence relations of Legendre functions. 

The Stokes function expresses S (x), where _ 1 ( x ~ 1 , as a closed formula 

S(x) = I - 5 x -  3 "~2(1-x)  + ~ .  - 3• /o,g 
2 

. . . . . . . .  (1) 
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This satisfies a differential equation given by 

t dS (x) l 1 ( l - x = )  ~ + 2S (x) = 2 + 9x + 
dx dx ~ (1 - x )  3/2 

, (2) 

which can easily be proved by substituting (1) into the left--hand side of (2). (2) 
corresponds to the following differential equation of a Legendre function 

'l "n("l 
( 1 - x  2 )  ~ + n ( n + l )  Pn  (x )  = O.  

dx dx 
(3) 

Molodenskii's truncation coefficient Q n is expressed as 

,j•t Qn (t) = S (x) Pn (x) dx 
1 

(4) 

where x ' ~ t  ~ 1. 

In the previous paper (Hagiwara, 1972), a series expansion of Pn (x) was 
utilized for performing the above integration; the corresponding formula of Q n involved 
double summations with number of terms increasing with n, which caused round-of f  
error accumulation in the computation process. In the present paper, we integrate the 
differential equation (2) weighted by P n (x) ,  instead of (4). 

Integrating the left-hand side of (2) weighted by P n (x) over an integral 
[ - .1 , t ] ,  then we get 

j~_lt d l dS(x) I ( I - x = )  ~ Pn  ( x )  dx 
dx dx 

+ 2Q n (t) 

i dS(t) = - ( n - t ) ( n + 2 )  Qn ( t ) - n S ( t )  I Pn-I ( t ) - t P n  (t) "F ( t - t 2 )Pn  (t) 
( dt 

. . . . . . . .  (5) 

Here, for the evaluation of the integral in (5), we use recurrence relations of Legendre 
function 

dPn(x) dPn_l (x) 
X ----- n Pn (x) 

dx d x 

dPn(x ~) 
(1 - x 2)  

dx 
= n I Pn_l (x) - x Pn (x) l 

(6) 
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Meanwhile the integration of the r ight-hand side of (2) weighted by Pn (x )  
is evaluated as follows. First, by denoting 

f '  ' I I I n ( t )  = P n ( x )  dx - P n + !  ( t )  - P n - l  ( t )  , (7) 
1 2n+] .  

we have 

' I I Jn ( t )  = XPn(x)dx = - -  ( n + l )  I n ( t)  + nI n (t)  (8) 
t 2 n + l  + 1 - 1  . 

For the case of n = 0, we have Jo = I t .  

Furthermore, we consider the integration of the last term in the r ight-hand 
side of (2 ) ,  such as 

 2f 
' Pn (x) 

K n ( t )  - d x .  ( 9 )  

2 - 1  ( l - x )  3 / 2  

The zero and first-degree integrations are easily performed as 

Ko( t )  = - m ( 1  - ) 
2 

El ( t )  = K o ( t )  - (1 - X / ~ ' t  
2 

(10) 

The di f f icul ty in evaluating (9) is overcome if we obtain a recurrence relation 
between Kn's. From the known values of K o and K l ,  the second and higher-degree 
Kn'S are obtained through such a recurrence relation. 

Applying a recurrence relation of Legendre function 

( n + l )  P n + l  (x) + n P n - !  (x) = ( 2 n + l )  x P n ( x )  (11) 

to (9),  we can derive 

( n + l )  K n + l  (t) + n K n _  1 ( t )  = ( 2 n + l )  

where we define 

l L n (t)  I K n ( t )  - ~ ( 1 2 )  

2 

1 f t  Pn (x) 
L n (t) --- ~ / - 1  dx. (13) 
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Another recurrence relation 

1 l dPn+l  (x) dPn_ 1 ( x ) )  
Pn (x )  = ~ i 

2n+l  dx dx 
(14) 

corresponding to (7) is substituted into (13), then we obtain 

I n ( t )  
Ln(t) = K n + l ( t )  4" Kn_l  ( t ) .  (15) 

"V2(1 - t )  

Eliminating L n from both (12) and (15),a recurrence relation between Kn'S isfinally 
obtained in the form : 

Kn+ 1 (t) - 2 Kn(t)  -I- Kn_ t (t) = - 
I n ( t )  

(16) 

Thus, we arrive at the final expression of Qn for n =/= I , i.e. 

1 ~nS( t )  I pn_i (t) _ tPn(t)  i _ ( l_t2)Pn(t)  dS(t) 
Qn (t) = ( n - l )  ( n+2)  d'---~ 

1 
-F 2 K n ( t )  4" 2 I n ( t )  -I- 9 J n ( t )  / 

. J  

where the derivative of the Stokes function is given as 

, ( 1 7 )  

dS(t) 3 ~ "  1 3 ( ~ - -  ~ V l - t )  
~ = - 8 +  ~ +  -I- 

dt "~1--t " ~ - ( 1 - t )  3,2 ~ / 2  (1 - - t  2 ) 

- 3 l o g  (18) 
2 

It is confirmed that the computation results up to n = 49 by (17)' areexactly 
equal to the results obtained by Paul (1973). The advantage of the present method lies in 
the fact that (17) has a simple mathematical form including terms of the Stokes function 
and its derivatives. 

The truncation for the deflection of the vertical is similarly made on the Vening 
Meinesz integral. This problem was first treated by Cook (1951). In this case, instead of 
Q n, Cook's truncation coefficient 

1 ~ _ t  I ~  dS(x) t 
qn( t )  -- -- Pn (x) dx 

2 1 dx 
(19) 
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is used. The relation between Q n and qn can be readily derived as 

n ( n + l )  1 1 y , t  2 
q n  ( t )  = Q n  ( t )  - - -  S ( t )  P n  ( t )  1 ( 2 0 )  

2 2 

Substitution of (17) into (20) gives us the general formula for evaluating Cook's 
truncation coefficient " 

qn ( t )  = S ( t )  Pn ( t )  - tP  n ( t )  - (1 - t  2) Pn ( t )  - -  
2 (n - 1 ) (n + 2) n + 1 -1  dt 

"1 
+ 2 K n ( t )  + 2 I n ( t )  + 9 .I n ( t )  1 (21) 
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