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THE COMPUTATION OF LONG GEODESICS ON THE ELLIPSOID 

BY NON-SERIES EXPANDING PROCEDURE 

Al~tract 

In this paper the author shows a procedure to settle the computation of 
very long geodesic lines on the ellipsoid without using the series expansion. The 
integration of elliptic integrals appearing in the procedure is numerically carried 
out by means of a mechanical quadrature-the method of Repeated Interval 
Halving. 

The author also devises formulae for the numerical solution of the 
problem, in order to make the amount of significance error least and determine 
the kind of quadrant for the computation of inverse trigonometric function. 

The anti-podal problem for the direct and inverse solution is rigorously 
solved by this method. 

I . -  Introduction 

The computation of very long geodesic line on the biaxial ellipsoid is one 
of the main problems in geometric geodesy. 

Generally speaking, it is the power series of trigonometric functions with 
intricate coefficients that has so far played a main role in computing geometrical 
quantities on the surface of the ellipsoid, It is true that we can readily compute the 
numerical value of the power series by using logarithmic tables or by desk 
calculators. However, the power series of trigonometric functions used in computing 
the geodesic line is constructed so ingeniously that we cannot easily verify whether 
it is mathematically right or not. Thus, we cannot correct wrong numerals in the 
coefficients of the power series, which may come from printing miss, for example. 
Moreover, the series itself is so complicated that it is extremely difficult ro recast 
it for the solution of such a singular problem as the anti-podal problem. 

On the other hand, it is essential for the computation of very long geodesic 
line to numerically solve the integral equation including an elliptic integral. In the 
world of mathematics there are various methods of numerical quadrature being 
revived by the impact of the use of the electronic computer. In fact, before the 
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advent of the high speed computer, these methods were regarded as the impractical 
for the rigorous computation of mechanical quadrature. 

The author introduces a method for the solution of the integral equations, 
which appear in the Helmert's classical formulae for the computation of very long 
geodesic line by means of the conformal sphere. 

The method of mechanical quadrature is named as Repeated Interval 
Halving. By using this method together with the iterative method for the solution 
of the integral equation, the author makes the procedure of computing very long 
geodesic line brief. Because of the brevity of this procedure, the procedure for 
solving the anti-podal problem is readily derived by slightly modifying the proce- 
dure for the computation of geodesic lines of the ordinary length. 

I I .  - -  Recasting of the formulae for mechanical quadrature 

In this paper we take the Helmert's classical method for the computation 
of a geodesic line on the ellipsoid. By comparing the ellipsoid with its conformal 
sphere, we can describe the relationship of differential quantities on their respective 
surfaces by the following formulae : 

d__ss = M d_~ _ N'  cos ~)' dL  

dO d/~ c o s ~ "  d X ' 
(2.1) 

whose symbols denote as follows : 

~) = geodetic latitude on the ellipsoid, 

= reduced latitude on its conformal sphere, 

ds = differential geodetic distance on the surface of the ellipsoid, 

do= differential angular distance on the conformal sphere corresponding to ds, 

M = the radius of curvature along the meridian of the ellipsoid, 

N' = the radius of curvature along the prime vertical of the ellipsoid at the latitude ~', 

dL=  differential longitude on the ellipsoid, and 

dX= differential longitude on the conformal sphere corresponding to dL. 

From the relationship between geodetic latitude and its reduced latitude 
we can readily derive the following equation : 
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N 'cos~"  = acoS~" 

where a denotes the equatorial radius of the ellipsoid. 

By applying the equation mentioned above to the differential equation 
(2.1), we obtain the following equations : 

d l .  = 1 ds (2.2) 
dX 8 do  

d L =  M d_~ (2.3) 
dX a dE 

Then, by differentiating the equation, tan ~] = (1 -- e.2) ~" tan ~ ,which is 
one of the fundamental relations between geodetic latitude and its reduced latitude, 
by ~}, we obtain the following equation : 

d..._~ = 1 co l :  ~) (2.4) 
dj3 (1--e2) ~ cos2 ~ ' 

where �9 denotes the first eccentricity of the ellipsoid. By plugging (2.4) into (2.3), 
we also obtain the following equation : 

d L Mla cos= ~ (2.5) 

! 

By rewriting the equation, tan ~ = (1 -- e2)3 tan ~ ,  with the notation 

V = (1 -- e 2 cos 2 ~ ) -  ~ ,  we obta in  the following equat ion  : 

a cos j3 = ~ cos ~ , (2.6) 
V 

where �9 denotes the radius of curvature at the pole of the ellipsoid. By applying 
(2.6) to (2.5), we finally obtain the following equation : 

! 

d L  = (1 - � 9  ~ cos 2/~)3" (2.7) 
dX 

Addit ional ly, from (2.2) we can readily derive the following equation : 

BFI~ 1 
"-~-" = a (1 - -  e 2 cos 2 ~)'~', (2.8) 
d e  
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Here, we make the total differential expression from (2.7) as follows : 

dL = (1 --e= cos 2 8) ~" d• (2.9) 

On the other hand, according to Napier's rule we can readily derive the 
following equation from Fig, 2-1 : 

s/n82 = sin ( a t  + or) sinS0 , (2.10) 

where 8o denotes the reduced latitude of the highest point on the geodesic line. 

By denoting the reduced latitude and ot  in Fig. 2-1 about an arbitrary 
point on the geodesic line by 8 and o ,  respectively, we can rewrite (2,10) as 
follows : 

sin 8 = sin (0, + o)sinSo (2.11) 

Here, we can readily rewrite (2.11) as follows : 

cos2 8 = 1 --sin 2 (oz + o)sin= 8o (2.12) 

By plugging (2.12) into (2.8) and by denoting the second eccentricity of 
the ellipsoid by e ' ,  we can readily obtain the following : 

ds _z 
- -  = b (1 + k 2 sin 2 x )  2, where  k 2 = e "2 sin 2 8o . x = oz  -F 0 , (2.13) 
dx  

and b denotes the radius along the minor axis of the ellipsoid. On the other hand, 
from the small spherical triangle PAB in Fig. 2 - 2  we can readily derive the 
following equation : 

d ~cos~ = d (;sin az2 (2.14) 

Because of the conformal condition of the sphere, o. z2, the azimuth of 
the geodesic line on the sphere, is identical to its corresponding azimuth on the 
ellipsoid. Thus, from Fig. 2-1 we can readily derive the following equation : 

sin Gz2 = ,cOS8o (2.15) 
cos81 

By applying (2.15) to (2.14), we obtain the following equation : 

d~, = cos8o dO (2.16) 
CO$2 8 
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By plugging (2.16) again into the total differential equation (2.9), we 
obtain the following �9 

d L  = cos/3o ( l - e =  cos= ~ ) ~  d O  
C0$2 ~0 

(2.17) 

Let us subtract (2.16) from (2.17), and we obtain the following : 

d L - - d X  = c o s ~ o  [ ( 1 -  e= cos= ~] cos 21 ] d ~  (2.18) 

This expression is the final form if a closed formula for expanding into 
series. The author, however, transforms the r ight-hand side of (2.18) for the 
convenience of mechanical quadrature as follows : 

We at first rewrite the terms inside the bracket of (2.18) as : 

( 1  - �9 2 cos 2 ~) ~ 1 ( 1 - e 2 cos = ~) ~ - 1 
= 

cos = cos co= = fJ 
(2.19) 

Let us mult iply both the numerator and the denominator in the r ight -  
.L 

hand side of (2.18) by (1 - e 2 cos 2 ~J) 2 + 1 , respectively, and we obtain 
the following : 

e = cos/3o d o 
d X -  dL  = (2.20) 

I 
(1 - e = cos 2/3) "T + 1 

By applying (2.12) to (2.20), we finally obtain the following �9 

e = c ~ dx  
d X - d L  = (2.21) 

b x ) ~  1 +-~-- (1 + k = s in :  

By integrating (2.13) and (2.21) at an interval from o= to e l  + O,  
respectively, we obtain the followings �9 

p o 14-o 
s = b "o/j (1 + k  2 sin = x) "j" dx  (2.22) 

and 
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o1+ 
X -  L = �9 2 cOS~o _a dx (2.23) 

,t a] 1 + b  (1 + k 2 sin 2 x) 3L 
8 

In order to normalize the interval of the integration, we put an equation 
as follows : 

x = O, + o  t z (2.24) 

Then, by differentiating both sides of (2.24) with respect to x and z , 
respectively, we obtain the following : 

dx = O t dz (2.25) 

By plugging (2.24) and (2.25) into (2.22) and (2.23), respectively, we 
finally ol~tain the following equations : 

1 

= b O r / % / 1  + k  2 s/n = (o l  + O r  z) dz (2.26) S 

, /o 

,•o z dz 
X- -L  = �9 2cos~]o Ot + b  

1 % / 1 + k  2s/n 2 los + 0  tz) 
8 

(2.27) 

;~ = L + �9 2 cos ~o Ot to  

! 
dz 

b % / 1 + k  2s/n: (0, + 0  tz)  1+  a 

(2.28) 

Here, ~e  integration in (2.26) and (2.27) can respectively be carried out 
by a method of mechanical quadrature, which will be described in the next chapter. 

III. - The subroutine of the mechanical quadrature 

We have several ways of computing the definite integrals, which are 
contained in (2.26) and (2.27). The conventional way of computing the integrals is 
to expand the integrands into binomial series and to integrate them term by term. 
This method is simple, but it lacks generality. 

In this paper, we at first construct the subroutine of numerical integration 
for the function of single variable - mechanical quadrature. There are many kinds 
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of formulae about the mechanical quadrature such as Trapezoidal rule, Simpson's 
rule, Gauss' formula, Lobatto's formula, and so on. In view of the convergency, 
however, the method of Repeated Interval Halving is the most suitable for the 
numerical solution of the integrals, which are contained in (2.26) and (2.27). By 
using this method the author constructs the subroutine of the numerical integration. 

The principle of the Repeated Interval Halving is briefly to be described 
as follows : 

In order to evaluate such a definite integral with the normalized interval 
of integration as : 

we make trapezoids such as shown in Fig, 3--1, by halving the interval of the 
abscissa of the coordinate successively. By applying the Trapezoidal rule to each one 
of the subintervals, we can compute the value of the trapezoid area in each step of 
the halving as follows : 

f (0) + f (1) 
TI = 

2 

TI +f ( �89 
T2 = 

2 

T3 =�89 2 +  
2 

,[ T4 = ~  T 3 +  
, §  + ,  + 

4 

f (0) 

~. 1 

Fig. 3 -1  

f (1)  
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Accordingly, in the n- t i t  step of the halving we can express a general 
formula for computing the value of the trapezoid area as follows : 

1 

Tn = Tn.• + i~ t  ~2-'~'-2/ 

with the exception that 

f (o) + f (1) 
Tl  = 

2 

Consequently, we have a sequence of the approximation which tends to 
the value of the integral, provided that the integrand f (x) is a continuous function. 
Then, by constructing a linear combination of Tn_ l  and Tn , we obtain the 

resulting approximation, which is correct even for a quadratic polynomial. For 
example, if the integrand has the following form : f (x) = x 2 , we can easily 
compute the following values : 

I 

~o 1 1 3 ~ . x ~ d x  = ~ ,  T l  = ~ ,  and T2 8 

We make the linear combination of T l  and T2 with weights, which 
denote by p and q , a s f o l l o w s :  

--1 
pTz -I-qT2 =-- -_ , on condition that p + q  = 1.  

3 

By solving the equations mentioned above with respect to p and q, we 
obtain the following results " 

1 4 
p = - - a n d  q = - -  . 

3 3 

Therefore, we can express the integration by using T= and T2 as 
follows : 

4T2 - TI 
S =  

3 

In similar manner, we can derive a general formula, which exactly holds, 
if the integrand f (x) consists of polynomials of third degree, as follows " 
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4 T n  + 1 - -  Tn 
S n = 

3 

To extend the technique of using linear combinations to be applicable to a 
polynomial of higher degree, we try to determine the coefficients of a linear 
combination such as : 

C1 = PSi + q S 2 ,  

the equation of which is exactly correct for polynomials of fourth degree. By 
repeating the way of the manipulation mentioned above, we can derive the 
following formula : 

4 :  S :  - S1 
Cl = 

4 : - 1  

Furthermore, we can describe the general formula as follows �9 

42 Sn + l - Sn 
C n = 

42 - 1 

By continuing these procedures further more, we obtain the following 
formulas �9 

43 Cn.i .  ! - -  C n 44 Dn. i .  1 - D n 
E n = , and 

Dn = 43 - -  1 " 44 - -  1 

4 s E n +  1 - E n 

Fn = 4 s - -1 

These formulas of approximation for the mechanical quadrature can be 
expressed by the following table : 
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11 �9 

4 T2 - T I  
T:  ,S:  : 

4 --  1 

4 T 3  - T 2  4 2 S: - - S !  
T3 ,$2 = , C1 = , 

4 -  1 4 2 - 1 

4 T4 - T3 4 :  Sz - $ 2  4 3 C2 - C l  
T4 ,S3  = , C2 : , O 1 : 

4 - 1  4 : - 1  4 3 - 1 

4 T s  - T 4  4 = $4 - $ 3  4 3 C3 - C 2  4 4 D2 - D]  
Ts ,S4  = , C3 = , D= - , E~ = 

4 - 1 4 = - 1 4 z - 1 4 4 - 1 

The author constructs the subroutine program of the mechanical 
quadrature for the computation, which is based on the integration table described 
above. 

IV .  - Algor i thm for the computation of very long geodesic lines 

Inverse Problem 

In the inverse problem the geographical coordinates of two points on the 
ellipsoid are given to find the length of the geodesic line and azimuths between the 
points. In other words, two geodetic latitudes and the difference of longitudes are 
given to solve an ellipsoidal triangle shown in Fig, 2-1.  

As stated in chapter II, the ellipsoidal triangles can be transferred on the 
surface of the conformal sphere, on which the corresponding azimuths are 
preserved unchanged. To solve the triangle on the sphere, we should at first 
compute the difference of the longitudes on the sphere by using the integral 
equation (2.27), in which the difference of the longitudes denotes by X.  

Since Ot in (2.27) is the implicit function of X,  the equation (2.27) is a 
typical example of non-l inear equation which can be solved by using the method 
of iteration. Therefore, we can express the right-hand side of the equation (2.27) 
as follows : 

~) (X)  : o t f  i d z 

1 + b ~ / 1  +k= ~n 2 (ol +otz) 
a 

(4.1) 

The condition, on which the iterative process to solve the equation (4.1) 
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is convergent, can be described as follows 

d ~ < 1 . (4.2) 
dX 

To begin with, by using the fundamental equation described as follows : 

t a n  ~]! = --b /an %or and tan ~}~ = _b t a n  ~P2 . (4.3) 
a a 

we can convert the given geodetic latitudes into the reduced latitudes on the 
conformal sphere. Here, from the spherical triangle PPI P2 in Fig. 2-1 we can 
easily describe the following equation " 

cos o t = sin fJ, sin ~2 + cos ~ cos ~2 cos X (4.4) 

Furthermore, by applying Napier's rule to the same triangle as described 
above, we can derive the following equation �9 

cos ~o = cos ~1 cos ~= s/. X 
�9 s i n  0 t 

By denoting k by the following equation �9 

k 2 = �9 " 2 s i n 2 ~ o  , 

it should be noted that k is also the implicit function of X .  

We usually use the difference of longitudes on the ellipsoid as the first 
approximation of X in the process of iteration described at the beginning of this 
chapter. Strictly, however, it should be noted that the value of the first approxima- 
tion can arbitrarily be taken, provided that it satisfies the condition of the 
inequality (4.2). 

Obviously, the method of the mechanical quadrature described in 
chapter III is available for the computation of the integral in the right-hand side of 
the equation (2.27). 

Provided that such an inequality as 

I Xi+ -- X i l  < e , (4.7) 

holds in the process of the iteration, it is obvious that Xi converges.within the 
specified interval e .  In practice, in order to avoid the Io~s of significant digits, we 
at first compute the value of X -  L instead of that of X ,  and then we compute 
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the value of X by using the following equation : 

X =  (~ . - L )  + L . (4.8) 

By plugging the converged value of ~. into (4.4) and (4.5), respectively, 
we can directly compute the value of ot and /3o . By using these values of ~o 
and at , the length of geodesic line which we pursue, can readily be derived by 
means of the mechanical quadrature from the integral equation (2.26). Here, it 
should be noted that the value of o! can be computed by using (2.10). that is, 
the following formula can directly be derived from (2.9) : 

( _ 
O! = arcsin ~ sin ~oJ Ot (4.9) 

As for the azimuth, we can compute it by substituting the value of ~]o 
for (2.15). Similarly, the back azimuth can be computed by using the following 
equation : 

cos/3o 
sin 0.21 = - -  (4.10) 

COS ~2 

Direct Problem 

In the direct problem the geographical coordinates of a point, the distance, 
and azimuth from it to another on the surface of the ellipsoid, are given to find the 
coordinates of the second point. In other words, a geodetic latitude, a geodetic 
longitude, the length of a geodesic line, and its azimuth, are given to solve an 
ellipsoidal triangle shown in Fig. 2-1. In similar way to the procedure described in 
the section of the inverse problem, we will solve a triangle on the conformal sphere, 
which corresponds to the ellipsoidal one. 

To begin with, we rewrite the integral equation (2.26) in the following 
form : 

O t = �9 ! 

b "~o ~ 1  +k  2 =/n 2 (0! -I- otz) dz 

by dividing both sides of the integral equation (2.26) by the following : 

(4.11) 

b ~ / ' l+k2s in2(o l+Otz )  dz 

In the equation mentioned above, the length of the geodesic line s and 
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the radius along the minor axis of the ellipsoid b are given in advance. Furthermore, 
k 2 is defined by the following equation : 

k~ = e'2 sin2 ~o , 

where e' denotes the second eccentricity of the ellipsoid,and ~o can be computed 
by the following equation : 

cos #o = =/n a,2 cos Pl (4.12) 

Here, a12 denotes the given azimuth, and I~i denotes the reduced 
latitude which can be computed by using the following equation previously 
mentioned �9 

tan~z =--b tan~01 , 
a 

where ~ol denotes the given latitude on the ellipsoid. 

The equation (4.12) can readily be derived by applying Napier's rule to 
the triangle Po Pz P2 in Fig. 2-1. 

As for ol  in the equation (4.11), we can compute the value of o= by 
using the following equation, which can be derived in similar way as mentioned 
above : 

~n/~z (4.13) tan ot - 
cos O.z2 

Consequently, we can compute the value of ot by applying the method 
of iteration to the equation (4.11). The first approximation of ot in the process 
of the iteration is conveniently taken as =/13 in this paper. The condition for the 
convergency of the procedure of the iteration can be expressed as follows : 

~ o  t < 1  , 

where ~ denotes as follows : 

i (4.14) ~ ( o  t) = 
, 

b ~ /1  + k  2 sin 2 Io l  + o t z )  dz 

In similar manner to the computational procedure of the inverse problem, 
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the iterative computation of the integral equation (4.11) should be carried out, 
until the following inequality holds : 

J O'i+z -- O'i I < e , 

where e denotes the previously specified interval. 

The final value of oi through the process of the iteration is equal to that 
of at shown in Fig. 2-1. By plugging the value of O't into the right-hand side of 
the equation (2.10), we can compute the reduced latitude of the second point. 
Then, we can obtain the geodetic latitude of the second point by using the following 
equation previously mentioned : 

~n ,02 = - "  tan/32 
b 

As for the difference of the longitudes between the first point and the 
second one, we at first compute X , the difference of the longitudes on the 
conformal sphere by using the following equation : 

sin X = sin 0 t sin Gl2 (4.15) 

The equation (4.15) can readily be derived by applying Napier'srule to the 
triangle PP= P2 in Fig, 2-1. 

In order to transform X into L , the difference of longitudes on the 
ellipsoid, we whould compute the value of ~ . -  L by using the equation (2.27) 
with the method of the mechanical quadrature previously mentioned. By subtracting 
the value of ~ - L  from that of X ,  we obtain the value of L as follows: 

L = ~,-  ( X -  L) (4.16) 

It should be noted here that the right-hand side of the equation (2.27) does 
not contain the unknown X-- L ,  so the method of iteration previously mentioned 
need not be applied. 

Finally, the longitude of the second point can be derived by using the 
following, brief equation : 

L2 = LI + L , (4~17) 

where Ll denotes the longitude of the first point. 

In the similar way as that of the inverse problem we can compute the 
value of back azimuth by using the equation (4.10). 
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V. - Procedure  to  avoid the loss of significant digits 

Generals 

In this section we consider the arrangement of algorithms for the purpose 
of avoiding the loss of significant digits in computing very long geodesic lines. The 
loss of significant digits in the process of computation is usually called significance 
errors. It is clear that the significance error usually arises in subtracting operation 
between two nearly equal numbers due to the finite length of stored numbers in 
computers. For example, we take such numbers as : 

X = 0 . 1 3 6 5 9 4 7 6  

y = 0 , 1 3 6 5 4 1 2 5 .  

Here, we set these two numbers of eight decimal places in the storage of a 
computer. By making a subtracting operation about the numbers mentioned above 
in the computer, we obviously obtain the following number : 

x -  y = 0 . 0 0 0 0 5 3 5 1  

Here, it should be noted that the number of significant digits decreases 
from eight decimal places to four through the process of the subtracting operation 
mentioned above. 

As far as the computation of very long geodesic lines is concerned, the 
author devices the following remedies for the loss of significant digits due to the 
subtraction : 

The computation of b/a 

As the indecies of the figure of a reference ellipsoid, an equatorial radius 
and a flattening are usually shown. As for the flattening, it is usually expressed in 
the following form : 

f = 1 / 2 9 9 . 1 5 2 8 1 3 .  i.e. (5.1)  

By making this division, we obtain the following value : 

f = 0 . 0 0 3  3 4 2  7 7 3  1 8 2  , . .  (5.2) 

with the significant digits of ten decimal places. 

On the other hand, we have another formula of the flattening as follows : 

a - b (5.3)  

i l  
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where a denotes the equatorial radius of the ellipsoid. Here, b ,  the radius along 
the minor axis of the ellipsoid is usually defined by the following equation : 

b = a ( 1 - f )  (5.4) 

From the equation mentioned above we can readily derive the following 
equation : 

Ida = 1 - f (5.5) 

By substituting the numerical value in (5.2) for f in the equation (5.5), 
we obtain the following value : 

Ida = 0 .996  657  2 2 6  817  (5.6) 

Actually, however, the number of the last two digits 17 in the right-hand 
side of the equation (5.6) is to be lost through the operation of the electronic 
computer, for the length of floating-point number in the storage of the computer 
is fixed ten decimal places. In other words, the number of the first two digits 99 
in the equation (5.6) can substantially be equivalent to numbers 00.  Generally, 
the row of zeroes at the head of floating-point number is eliminated in the 
storage of computers, and the digit of tl~e number is slid to the left-direction. 
Therefore, the number of the last digits there does not vanish. On the other hand, 
the row of nines in the storage of computers is not eliminated. So that the row of 
nines at the heed of the number is one of factors for the loss of significant digits. 

A remedy for the loss of the significant digits is as follows : 

Since the flattening previously mentioned is usually given in the following 
form : 

f =  1 / r  . 

where f" is a number, nearly 300, the quantity Ida can obviously be expressed 
in the following form : 

Ida = ( r - 1 ) / r  (5.7) 

Here, f" - 1 , the numerator in the right-hand side of the equation (5.7) 
is not affected by the significance error, for the value of f" of the reference 
ellipsoid is generally far larger than one. Therefore, it is obvious that the formula 
(5.7) is free from the significance error. 

The computation of ~ eccentricities 

In case that we compute the value of the eccentricity of ellipse by using 

356  



THE COMPUTATION OF LONG GEODESICS 

the following formula : 

e= : f ( 2 - f )  , (5 .8)  

it is possible that the significance error arise through the process of the computation. 
The mason is that the term 2 -- f generally the value 1,996 . . . .  so the length 
of significant digits of the value of �9 2 decreases comparing with that of the 
flattening f .  

However, the following formula, which is identical to that mentioned 
above : 

e= = 2 f -  f2 (5.9) 

is, in contrast with the former, not affected by this kind of error. 

The reason is that the value of the first term in the right-hand side of the 
equation (5.9) is obviously far larger than that of the second one. 

The author derives the following formula in order to compute the first 
eccentricity from the flattening : 

e = = ( 2 f - 1 ) I f  2 (5 ,10 )  

Since the value of f '  is nearly 300, the numerator of the right-hand 
side in (5.10) 2 f" -- 1 is obviously not affected by the significance error. 

As for the computation of the second eccentricity, the denominator of the 
following formula is obviously affected by the significance error for the computa- 
tion : 

e "2 = e 2 / ( e  2 - - 1 )  (5 .11)  

The author derives the following formula by dividing both the numerator 
and the denominator of the equation mentioned above by the square of the first 
eccentricity �9 2 : 

Here, the following inequality obviously holds : 

1 1 e  2 > > 1  , 

so that the denominator of the right-hand side of the equation (5,12) is obviously 
not affected by the significance error. 
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Significance errors resulting from the evaluation of  trigonometric functionr 

There is another kind of significance errors resulting from the computation 
of very long geodesic lines. 

Generally speaking, for computing the inverse value of a trigonometric 
function it is necessary to avoid a cosine function, whose argument has a small 
value, and a sine function or a tangent function, the value of which argument is 
nearly 90 ~ . The reason is as follows : 

It is clear that such a trigonometric function as is described above, has a 
value of 0 . g 9 9 . . .  The first several digits of this number 999 consisting of all 
nines, are insignificant for the computation, as is previously described. 

Consequently, the following procedures should be taken : 

1. In case that Ot has a small value, the formula (4.3) 

coSO t = sines sinE2 + cos Ez cos E= cos X 

is not suitable to determine the value of o t ,  because the value of the cos Ot is 
0 . g 9 . . .  In this case, the following formula should be used : 

l 

d n o t  = [ (dn~cos~2)= + ( s i n ~ c o $ ~ l _ d n ~ ] c o s E 2 c o s X ) =  ] 2  (5.13) 

However, if the value of ~ is small, or if the following inequality holds, 
cos ~, in (5.13) may be affected by the significance error. Furthermore, in that case 
the quantities in the second parenthesis of the right-hand side of the formula 
(5.13), that is, sin E= cos Ez - sin Ez cos E= cos X,  have also the possibilityof 
being suffered from the significance error. For this reason, the author devises the 
following formula : 

1 

-= = i + cosE, cosE  sin t5.14) 

This formula is also available in such a case as cos a t >_ 0.9. 

2. In similar manner, by using the following formula : 

X 1 - c o s x  = 2s/n2 w =  versx, 
2 

the author devises the following formulas, in each of which the value of the 
argument of the left--hand side is small : 

(i) By applying the formula mentioned above to (4.5), we can readily obtain 
the following formula : 
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sin~_. ~ 
2 

' [  = ~  cos ~z COs~2 (cosXdn AO t - 2sin Xsin 2 ~l'~ o t + 

(5.15) 
! 

+ 2sin2 ----~'-'-P + sin2 ~z cos&~ +cos~z  s in~ l  s inA~J 
2 

where 

~ o  t = o  t - x .  ~ , ~ = / 3 2 - / ~ 1 .  

(ii) We can readily derive the following trigonometric formula : 

cos (01 + O~) = COs ((/a -- OZ) -- 2sin oz sin o= (5.16) 

By applying Napier's rule to the triangle in Fig, 2 -1 ,  Po PPz and 
Po PP2 , respectively, we obtain the following equations �9 

sin oz = sin ~z I cos a . (5.17) 

sin 02 = sin ~2 I cos (z (5.18) 

By substituting both (5.17) and (5.18) for (5.16), we finally obtain the 
following equation : 

COs 2 0 m = COS f / t  - -  2 s in  ~1 s in  ~21 cos2 a , (5 .19)  

where 

0 m = (Oz + 0 2 ) / 2  and o t = o 2 - - o z  . 

If the value of o m is small, or if the following inequality holds : 

c o s 2 2  0 m > 0 .9  , 

the author devises the following formula, by applying similar 
described above to the formula (5.19) : 

t 

$/n O m = ( S/n 2 6rt w + sin ~z sin ~= I cos = a ) = 
2 

procedure as 

(5.20) 

(iii) By applying the procedure mentioned in section (i) to (2.15) and to (4.10), 
respectively, we obtain the following equations : 
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sin 
0,'12 & 8  • 

= csi., + ' . . l s ,  I s i . & 8 / 2 ) '  2 2 
(5.21) 

where 

1 

si,, 0,',,.,, , = (si., ,*8 + . , . i  8, 1.i.,,~8./2)~" 
2 2 

~8  = 8 o - 1 8 , 1  

~8' 28o-18,1 
0,'12 : 9 0 0  - -  0,12 

0,'2! : 90~ 

(5.22) 

It should be noted here that 81 and 82 can be taken as positive 
quantities in the formulas, (5.21) and (5.22), because the cosine functions of 81 
and 82 are absolutely positive. 

(iv) Similarly, the modification of the formula (4.12), 

cos 8o = . ~ n a , 2  00=8, , 

is as follows : 

R_ z_ 
sin ~'~ = [cos" 8, sin" (46 ~  A 8 / 2 )  + (sin = 8 , - s i n  I 8, I cos8, cos ~,8)/2 ] "  (5.23) 

2 

where 

A 8  = O,12-- 8z �9 and 8o is a small angle. 

Furthermore, the left-hand side of the equation (4.12) is absolutely 
positive, so the equation should be expressed as follows - 

co.8o = I s i .=,,  I co.8, (5.24) 

Consequently, the azimuth 0,12 in the formula (4.12) should be 
converted into an angle of the first quadrant, if the sine function of the azimuth 
az2 is negative. 

(v) If the argument of the left-hand side of the equation (2.10) , 

sin ~2 = sinSo sin (o~ + o t )  , 

is nearly equal to 90 ~ , the author devises the following modification : 
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! 

sin~ : [ $in2 ~~ A--~ (c~ ~~ --sin ~~ c~ ~~ sin A ~) / 2] T (5.25) 

where h,~ = [ o l  + o t I - i~o , by means of similar procedure as described above. 

(vi) As for the formula (4.15) , 

smX= 
sin o t sin (z12 

cos/32 

where the value of X is nearly 90 ~ , the author modifies it as follows : 

where 

s in (45~  ~ a - s i n 2  ~ - 2 " = + ( c ~  2 

! 

-sin(z12 cosr sin &o.)12 I Icos~2 T 

A o . =  Or-- la12 I 

(5.26) 

The applicability of these equations mentioned above depends upon the 
following inequality �9 

I I - f ~  (x) I < 0.1 , 

where f (x) represents the term of the left-hand side of these equations. The 
reason is that the form in the left-hand side of the inequality is used for the 
calculation of inverse trigonometric functions. 

(vii) As for the integral formula (4.1), 

(;~) = o t t o  _z 1 dz 
+ b. %/1 +k  2 sin 2 (oz + o t z )  

a 

the value of k 2 sin 2 (o l  + o t z) is obviously a small quantity. 

Therefore, by putting such sequential equations as �9 

u =a rc tan [ ks i n (o l+o t z ) ]  and 

w = a r c t a n {  ~  secu , 
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to numerically compute the value of the integrand in the integral formula (4.1). 

Then, the form of the integrand can be simplified as follows : cos 2 w ,  

which is obviously free from the error of significance. 

V h  - The estimation of  the kind of a quadrant 

Generally speaking, it is quite obvious that the inverse trigonometric 
functions are multi-valued ones. However, for the evaluation of geometrical 
quantities it can safely be defined that they are two-valued functions. Therefore, 
an additional condition is absolutely necessary to find a unique solution of the 
equation, which includes an inversR, trigonometric function in the le f t -hand side of 
the equation. 

The condition can intutively be derived from the construction of the 
figure shown in Fig, 2 -1 .  

1. To begin with, o t should be fixed positive, while ;k is defined as : 

;k = X2 - X I  , 

where ;k2 and ;kl denote the longitudes of the respective stations measured 
eastward from the Greenwich meridian. 

Hence, it is clear that the sign of ;k can not be fixed. Consequently, the 
solution of the equation (4.4) : 

cos o t = dn S~ dn 82 + cos S~ cos S~ cos X , 

can be divided into two categories as follows : 

i. 0 t = arc cos (sin 8z sin 8= + cos 8] cos 82 cos ~ ) ,  if cos 0 t > 0 

ii. 0 t = 180~ sin82 +cosSz cosSz cosX) , if coso t < 0 

iii. o t = 90  ~ , if coso t = O ,  

Therefore, the value of ot  can be restricted as follows : 

180 ~ ~ 0 t =.> 0 ~ 

2. Since 8o denotes the maximum reduced latitude of the point on the geodesic 
line or on its extension, it is clear that the value of 8o can be restricted as follows : 

9o~ _> o ~ 
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Therefore, the equation (4.5) 

cos ~o = cos ~1 cos ~2 sin X I sin a t 

can directly be solved with respect to ~]o as follows : 

~o = arc cos (cos ~= cos ~2 sin ~ l sin 0 t)  

3. Since we have a relationship between o. and ~o as o. = 90 ~ - ~o , we can 
rewrite the formula (4.5) as follows : 

sin a = cos ~z cos ~2 sin X /s in  a t , (6.1) 

where <l is the azimuth of the geodesic line at the point of the intersection 
between the extension of the geodesic line and the equator. However, it is clear that 
we can not estimate the sign of cos o. from the formula (6.1) only. Therefore, we 
should use together with the construction of the figure shown in Fig. 2 - 1  to 
determine the sign of the cosine function. 

By examining the figural construction shown in Fig. 2 -1 ,  we can 
intuitively express the for[owing inequalities : 

i. Provided that ~2 > El , we have c o s r  0 

ii. Provided that ~2 < ~t , we have cos o. < 0 

ii i. Provided that ~2 = ~s , we have cos o. = O. 

4. By manipulating simple trigonometric formulas, we can describe the following 

formulas : 

sin 02 + d n  ol  = 2 sin 02 + o__~__! cos o~ - o~ (6.21 
2 2 

sin 02 -- sin oz = 2 sin Oz -- O: cos ~ 0 2  + Oi (6.3) 
2 2 

By rewriting the formulas mentioned above by using the following 
notations : 

02 + Oj 
0 m = ~  and o t = o2 - -  o l  

2 

we obtain the following formulas : 
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0 t 
ten 0= + ten 01 = 2 ten 0 m cos ~ (6.4) 

2 

sin 02 -- ten oz = 2 cos 0 m sin m Ot (6.5) 
2 

By substituting (5.17) and (5.18) , 

sin B si. ~, 
tEnoz  = _z and . f ina2 = ~  

COs O. COS O. 

for (6.4) and (6.5), respectively, we obtain the following formulas : 

0 t 
tz = (tEn ~2 + tEn ~ l  ) l cos a = 2tEn a m cos m (6.6) 

2 

t= = (dn ~2 - tEn ~z ) l cos a = 2cos 0 m sin Ot 
2 

(6.7) 

In the inverse problem for the computation of very long geodesic lines the 
reduced latitudes of the respective points, ~]1 and /~2 , are exactly obtainable 
quantities by computation. Therefore, we can readily estimate the sign of the 
following terms : 

ten ~= + ten ~z and ten ~2 - sin ~1 �9 

Furthermore, referring to the items in the sections 1. and 3 ,  i t  is obvious 
that we can express the following inequalities : 

180 ~ > o t > 0 ~ , then 90 ~ > o t 1 2  > 0 ~ 

Hence, o t t2  obviously denotes an angle of the first quadrant, so that 

both ten Ot and COs ot m - -  are absolutely positive. In addition, the sign of  cos in 
2 2 

(6.6) and (6.7) can be estimated in such way as described in the section 3. 
Accordingly, i t  is clear that we can determine the signs of cos (7 m and sin Om, 

respectively. On the other hand, we can compute the value of cos 2 (7 m by using 
the formula (5.19) : 

COS 2 G m ---- COS 0 t - -  2 sin ~z sin ~2/COs = a 

Putting cos 2 Om = t ,  we intuitively obtain the following solution of 
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2 o  m by combining the signs of dn Om and cos Om.  Then, in case that 
sin o m > 0 ,  we have the solution of the ecluation (5.19) with respect to 2Ore ,  
which can be described as follows : 

i. Provided that the following inequalities simultaneously hold : 

COS O" m ~> 0 and cos 2 0 m  > 0 ,  20m obviously denotes an angle of 
the first quadrant. Therefore, we obtain the following solution : 

2 0 m = J arc costJ (6.8) 

ii, Similarly, provided that the following inequalities simultaneously hold : 

cos o m < 0 and cos 2 O m <~ 0 , 

we have the following solution : 

2 0  m = 180 ~ + J arc cost J (6.9) 

iii. Provided that the following inequalities simultaneously hold : 

cosO m > 0 and c o s 2 o  m < 0 , 

we have the following solution : 

2 0  m = 1 8 0  = - -  I arc cost I (6.10) 

iv. Provided that the following inequalities simultaneously hold : 

coso m < 0 and c o s 2 o  m > 0 , 

we have the following solution : 

2Ore = 360 ~ - l a r ccos t l  (6.11) 

In addition, in case that sin Om < 0 ,a l l  thevalues of o m mentioned 
above directly change their signs. As for oz , we can obtain its value by using the 
following formula : 

Oz = 2 0 m + O t . 

5, The additional conditions to estimate the quadrants of at2 and a2z in the 
formulas (2.15) and (4.10), 
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sin(z12 = cos ~o l cos ~J l and sin o.2 z = cOs ~o l cos ~2 , 

are expressed as follows : 

tanaz2 = sin Xcos~21(sin~2 cos~l - -cosXsin~z cos~=) (6.12) 

tanO,2z = sin Xcos~z l (s in~2 cos~z cosX--s in~z cos~2) (6.13) 

6. The additional condition to estimate the quadrant of oz for the solution of 
the equation (4.13) with respect to oz , 

tan ol = tan{Jl Icosa12 , 

can be derived by the following way. 

Judging from the figural construction shown in Fig. 2 -1 ,  we can intuitively 
find that the quadrants, to which the angles of a and the azimuth az2 pertain, 
are the same. The reason is that the highest point and the intersection of 
the equator on the geodesic line are obviously placed at the counter--points on 
either side of the starting point of the geodesic line. Thus, it is clear that the sign of 
cos a is equal to that of cos a,~2. Consequently, the sign of the term in the r ight-  
hand side of the equation (5.17). 

sin ox = s inai  I cos a , 

is obviously equal to that of the following : 

sin ,81/cos o.z= . 

Thus, we can estimate the sign of s/n ox by using the known quantity 
o, x2 . As a result, we obtain the additional conditions to the formula (4.13), in 
order to estimate the quadrant of oz . Then, we can express the solutions of" o'~ 
as follows : 

i. Provided that the following inequalities simultaneously hold : 

t a n ~ l c o s a ~ 2  > 0 and s i n ~ l l c o s a l =  > 0 , 

we have the following solution : 

iL 

ol  = arc tan (tan E l / cos  al2) �9 

Provided that the following inequalities simultaneously hold : 

tan~l lcosG12 < 0 and s in~slcosas= > 0 , 
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we have the following solution : 

ol = 180~ (tan(311cosaz=) �9 

iii. Provided that the following inequalities simultaneously hold : 

Can ~z/cos o.z2 > 0 and sin ~, /cos <z~2 < 0 , 

we have the following solution : 

Oz = 180  = + a r c t a n  ( tan/3z I c o s a z 2 )  �9 

iv. Provided that the following inequalities simultaneously hold : 

tan~z Icosa12 < 0 and sin~= IcoscZ12 < 0 , 

we have the following solution �9 

OL = 360  ~ - -a rc  tan (tan ~L /cosa.z2 ) �9 

Vl I. -- Anti--pedal Problems 

In case that the two points which are situated on or almost on the equator 
of the ellipsoid, are separated nearly 180 ~ of longitude apart, the whole 
procedures described above become invalid. The reason is as follows : 

It is quite obvious that the difference of longitudes of the two points on 
the conformal sphere X ,  which is one of the arguments in the right--hand side of 
the equation (4.4), should satisfy the following inequality : 

Jxl =; leo ~ 

Otherwise, the projected arc of the geodesic line on the conformal sphere 
obviously moves on another side of the sphere due to the shortest line definition of 
the geodesic line. However, provided that ~, is equal to 180 ~ of longitude, the 
azimuth of the projected arc of the geodesic line at its intersection of the equator 
of the sphere is obviously indeterminate. In other words, in c~_~ that both ~z and 
~2 are equal to zeroes, and ~ is equal to 180 ~ in the formula (4.4), the value of 
ot should obviously be 180 ~ . Then, the values of the denominator and the 
numerator in the right-hand side of the equation (4.5) simultaneously become 
zeroes ; namely, the value of cos ~o ,  that is, the value of the left-hand side of the 
equation (4.5) becomes also indeterminate. 

Therefore, we should take different procedures from those previously 
described to determine the value of ~o �9 

In order to eliminate ~k from the equations (4.4) and (4.5), we take the 
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following procedures : 

To begin with, we make the following equation from the equation (4.5) : 

sin 0 t = cosSz cos82 sin Xlcos~o (7.1) 

By making the square sum of the equations (4.4) and (7.1), we obtain the 
following equations - 

cos 2 o t + sin 2 o t = (sin 8z sin 82 + cos ~z cos 82 cos ~) 2 + 

+ (cosSz cos82 sin ~)2/cos 2 8o (7.2) 

= 1 . 

By transforming the equation (7.2) to a quadratic equation with respect to 
cos X ,  we obtain the following equation : 

(dn So cos Sz cos82 )= cos= ~ -  2 cos2 80 sin Sz dn 82 cos ~z cos S= cos X + 

+co  s= 8o ( cos= 8z + c~ 8=) - (cosSz cos~]2) 2 (1 +cos 2 80) = 0 (7.3) 

By solving the quadratic equation (7.3) with respect to cos ~ with some 
simplification, on condition that 

sin 8o cos 8z cos 8= ~= 0 , 

we obtain the following dual solutions : 

cos2 8o sin ~z sin ~2 + V ~  
cos ~ = .. , (7.4) 

sin2 8o cos ~z cos ~2 

w h e r e  

D = (cos 2 8z -cos= 80) ( cos2 82 -cos2 80) �9 

By putting 8z = ~2 = 8 in the solution of the quadratic equation (7.4), 
we obtain the following : 

where 

co$ ~. = cos2 8o sin2 8 + Vr-~ (7.5) 

s/n = ~o cop 8 

O : (cop ~ -  cos 2 ~o) : .  

368 



THE COMPUTATION OF LONG GEODESICS 

Since ~o denotes the highest latitude on the geodesic line projected on 
the conformal sphere, we obviously have the following inequaliw : 

cos 2 ~ > cos= ~o ; that is,  

Therefore, the square-root of D 
follows : 

cos = ~ - c o s  2 ~o > O. 

in the equation (7.5) should be as 

-- cos = ~ - c o s  2 ~o 

Then, the solution (7.5) can be transformed into the following forms : 

cos~ = 1,  or cos~ = (cos 2 ~osin 2 ~ -cos  = ~+cos 2 ~]o) I sin2 ~o cos2 ~ (7.6) 

From the former solution in (7.6) we can easily derive the following : 

;~= 0 ~ , 

which is obviously a trivial solution. 

From the latter we can easily derive such a solution as : 

co$~ = --1 , that is,  ~ = 180 ~ , on condition that ~ = 0 .  

Accordingly, we can conclude as follows : 

In case that ~l  = ~= = 0 ~ and ~o #= 0 ,  the solution ~. = 180 ~ 

holds independently of the value of ~o �9 

Provided that the value of ~o is zero, the equation (7.3) simply becomes 
an equation of the first degree such as : 

2 sin ~z sin ~= cos ~l cos ~= cos X + Z cos 2 ~l c ~ ~2 -- ( cos= ~1 + cos= ~= ) = 0 

therefore, the solution of the equation described above can directly be obtained 
as follows : 

cos = #,  + cos =/~= - 2  cos = / ~  cop/~= 
c o s ~  - (7 .7 )  

2 sin ~l sin ~2 cos ~z cos ~= 

Accordingly, provided that l~z = ~= = 0 ~ and ~o = 0~  thevalueof 
obviously becomes indeterminate ; in other words, the value of X is equal to the 

difference of longitudes of the two points on the ellipsoid. 

To take in reverse, let us at first assume that the value of ~]o is equal to 
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zero or 9 0  ~ respectively in the equation (2.27) for the anti-podal points on the 
conformal sphere ; in other words, both the reduced latitudes of the two points are 
equal to zeroes, and the difference of the longitude is 180 ~ thereon. 

Provided that the value of ~o is equal to zero, we can readily derive the 
following equations : 

cos l~0 = 1,  and k :  : e "2sin:~]o = 0 . 

Thus, we can readily transform the right-hand side of the integral 
equation (2.27) as follows : 

! 

=~o  d z  o t  e2 1 8 0  ~ - L = o t �9 - -  = 

1 + -  b 
8 �9 

(7.8) 

By the brief manipulation of the indecies of the ellipsoid, we can describe 
the following equation : 

0 2 
- -  f ~ 

b 
1 + - -  

(7.9) 

Here, since the value of ;~ is 180 ~ independently of the value of ~o , it 
is clear that the value of ot is also equal to 180 ~ 

Thus, we can readily obtain the following solution with respect to L : 

L = 1 8 0  ~ ( l - f )  . ( 7 . 1 0 )  

Provided that the value of ~o is equal to 90 ~ . or the value of cos ~o is 
equal to zero. then we can immediately obtain the solution of the integral equation 
(2.27) as follows : 

L = 1 8 0  ~ ( 7 . 1 1 )  

Speaking conversely, the two points on the equator of the ellipsoid, whose 
angle of the longitudinal interval is between 180 ~ (1 - f) and 180 = , are projected 
as the anti-podal points on the equator of the conformal sphere, whose angle of the 
longitudinal interval is exactly 180 ~ . 

Thus, in order to solve the anti-podal problem, the following procedures 
can be taken : 

If the value of X in the formula (2,28) becomes larger than 180 ~ in the 
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process of the iteration, both the formulas (2.27) and (4.5) should be replaced by 
the following formula for computing the value of ~o : 

180 ~ - L 
(7.12) 

cos/3o : 1 dz 

0"./_ 1 " ~ + b % / l + k  ~sin 2 (O1 + a t z )  

a s 

,v u 
8 

The formula mentioned above can reasilu be derived from the equation 
(2.27) by plugging 180 ~ into )~. The value of o t in the right-hand side of the 
formula (7.12) can be computed in the following way : 

By substituting 180 ~ for X in the right-hand side of the formula (4.4) ,  
we obtain the following equations : 

cos a t = sin ~ 1 sin ~2 - cos p,  cos ~= 

= -  co= ( / ~  + / 3 , )  

Therefore, by taking into consideration of the kind of a quadrant, we 
obtain the solution of the equation described above with respect to ot as follows : 

(7.13) 
a t  = 1 8 0  ~ - ~1 - ~2  

In addition, the value of o1 can also be computed by using the formula 
(2,10) as follows : 

sin ~= = sin ( o l  + a t) sin (3o �9 

Since the terms of k 2 and O1 in the right-hand side of the equation 
(7.12) implicitly include those of cos~o , the equation (7.12) should be solved by 
the method of iteration. 

Here, we take 45 ~ as the first approximation of ~o in the right -hand 
side of the equation (7.12). The reason is that the angle 450 is the mean valueof 
all /3o. 

By plugging the first approximation of ~]o into the right-hand side of the 
equation (7.12), we can determine the value of the second approximation of ~o 
from the left-hand side thereof. The iteration should be converged under the 
condition of the following inequality : 

IdOl < ' .  
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where ~ represents the whole terms of the right-hand side of the equation (7.12). 

If the values of oz , Ot, and ~o, are determined by the iterative process 
described above, the length of the geodesic line and its azimuth can directly be 
computed by using the formulas (2.26) and (4.10). 

As far as the direct problem is concerned, the condition for the solution of 
the anti-podal problem is to restrict the length of geodesic lines. 

Through the iterative process to compute the value of Ot in the formula 
(4.11 ), the value of Ot should be kept less than or equal to 180 ~ . Otherwise, the 
given length of the geodesic line is so long that there should be another geodesic 
line between the points on another side of the ellipsoid. This is the violation against 
the shortest line definition of a geodesic line. 

Consequently, we obtain the necessary and sufficient condition for the 
solution of the direct problem between the anti-podal points on the conforrnal 
sphere as follows : 

O t = 180 ~ 

If the value of ot becomes larger then 180 ~ during the iterative process 
to compute the value of ot in the formula (4.11), the given problem should 
obviously be rejected as a wrong one. 
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