
CPT CLIFFORD W. GREVE 

Advanced Technology Division 
Computer Sciences Laboratory 

US Army Engineer Topographic Laboratories 
Fort Belvoir, Virginia 22060 

DESIGN OF SURVEY SYSTEMS USING 

NONLINEAR PROGRAMMING METHODS 

This paper discu~_~e~__ theory and results of an attempt to use non-linear 
programming methods to arrive at an optimal, in the sense of least cost, solution to 
the design of a survey system to meet specified accuracy. In other words, the 
method determines the combination of various types of observations which will 
yield the required accuracy of control points for a minimum cost. The theoretical 
background of the procedure is discussed, and methods of extension to photo- 
grammetry and other sciences are presented. Much of the paper is concerned with 
discussing results of numerical solutions for the optimal design of several small, but 
typical, mapping problems. 

It is believed that this research is original with the author, as extensive 
literature searches and correspondence has produced no knowledge of prior 
research into this application of nonlinear programming. The method at its current 
state of development appears to be capable of yielding significant improvements to 
the present concepts of survey network design. 

Discussion of Problem 

In experimental science a frequently recurring problem is to determine 
certain non-measurable parameters which are functionally related to measurable 
parameters. In addition, in most cases the ~elating functions are known. If one now 
knew the influence of cost upon the value of  the variance-covarianca matrix of 
the observable parameters, then, by the method of least squares he could arrive at 
the influence of cost upon the accuracy of the non-measurable parameters. One 
may then reverse the problem and ask what would be the minimum cost of 
attaining a specified accuracy for the non-observable variables. This is the problem 
toward which this paper is addressed. It should be noted at this point that the 
mathematics and method presented herein are applicable to all problems of 
optimization of experimental design as outlined above. At any point where a 
method is restricted to the specific problems of geodesy and photogrammetry, 
particularly horizontal control surveys, special mention will be made of this fact. 
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At this point a brief review of the history of attempts of solution of the 
above problem might be in order. The first such attempts consisted of generalized 
specifications. These specifications were generally rigid enough to insure that 
accuracy requirements were met, but often required far more work than actually 
required. 

With electronic computers came the age of computer simulation. By 
choosing the set of measurements to be made before actually making them, the 
error could be propagated and the error for the non-measurable parameters found. 
One would then pick a near optimal solution simply by choosing the least costly 
set of observations from among those sets of observations yielding acceptabl~ 
results for the unknowns. With the advent of the "Kalman Filtering" algorithms, 
which are nothing more than sequential least squares if no time variation is 
involved, the capability for easily adding and deleting observations was realized. 
This facilitated the search for least cost solutions. However, since for most real 
world problems, there is a practical infinity of possible observation sets, the 
distinct possibility still exists that the optimum (least cost) data set might never be 
tried. Thus, although a minimum cost for the set of solutions tried can be obtained, 
the solution giving true minimum cost may not be in the set tried, and therefore 
will not I~e discovered. 

The method proposed herein alleviates this problem of omission of data 
sets, because all possible observations are considered, and the computer picks 
which ones to use to arrive at an optimum configuration. Thus, the solution of the 
design of experiments problem becomes less dependent upon human past experience, 
and more dependent upon analytical methods. 

Summary of Resull= from Error Theory 

Since results for minimum variance and maximum likelihood estimators 
for observation equations of the form AX = L + V ; where A is known coefficient 
matrix, X is vector of parameters, L is vector of observations with variance- 
covariance matrix ~LL  ' and V is vector of residuals with E(V) = 0 ; are well 
documented in the literature [1], only a brief summary of pertinent formulae will 
be presented here. 

If the mathematical model may be represented as AX = L -F V ,  then the 
variance-covariance matrix ~ x x  of the least squares estimates of X (minimum 

variance if E(X) = 0 and variance of X finite, also maximum likelihood if L 

normally distributed) is (A T ~L'-L A ) - !  " Although this is all the statistical 

knowledge which is needed fo r  the method, it would be wise for anyone not 
familiar with statistical methods to study some other references before continuing 
to read the remainder of this paper. 
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Discussion of Linear and Nonlinear Programming 

A mathematical programming problem is defined as any problem requiring 
the maximization or minimization of a function subject to equality or inequality 
constraints. Symbolically the problem looks like 

max or min f(X) 

subject to 

g| (X) ~> bi 

gn (X) ~> b n 

< 
where ~> means that one of the symbols ~ ,  ~ ,  = applies, and X is a vector. The 

gi and f may be any functions of X ,  linear or nonlinear. If they are all linear, the 
problem is termed a linear programming problem. Otherwise it is a nonlinear 
programming problem. 

A practical method for solving the linear programming problem was 
developed by George Dantzig in 1948. This algorithm, called the simplex algorithm, 
consists of an ordered search of the vertices of the feasible solution set (the set of 
all vectors X which satisfy the constraints). The search is ordered such that the 
next vertex looked at is always at least as good (from the viewpoint of maximizing 
or minimizing the function f) as the one before. Since for the linear programming 
problem, the boundaries of the feasible solution sets are hyperplanes in m space 
(if X is an m vector), then there are only a finite number of such vertices, and 
therefore the process must converge in a finite number of iterations, This still 
leaves open the possibility that, for large m and n ,  the number of iterations could 
become a very large finite number, but in practice it has been found that the 
algorithm will normally converge in a very reasonable number of iterations. 

A mathematical description of the simplex algorithm follows. No proofs 
are given, or even hinted at. Proofs may be found in [1], or any good text on linear 
programming. 

Given the linear programming problem 

min ]~Cj X] or C T X 

subject to 
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Z g q X i < bl 

gi] Xj --< b! 

g t + z , j X j  : b i+1  

gnj Xj = b n 

We change the problem into so called standard form by adding so called slack 
variables to each of the first j constraints to transform them into equalities. The 
cost of these slack variables is, of course, zero, so the vector C will not be 
influenced. 

We now have 

min C T X 

Subject to 

~.gziXj  -t- X m +  1 = b! 

~" gij Xj  -!- X m -t- i = bl 

~gi-I-Z,j Xj 4- 0 = bi-F1 

]~grl i Xj -I- 0 = bn 

The above is called the linear programming problem in standard form. 

Changing the notation slightly, we can write the above problem as 

rain C T X 

subject to 

where G is a matrix. 

G X =  B 
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For the problem above, we define a basic feasible solution as any solution X 
having n positive elements. (For any problem, either n will be less than m or 
one or more of the constraints will be redundant). This is not a precise definition, 
but is as close as one can come without assuming a detailed knowledge of convex 
set and linear manifold theory. The interested reader will find this elaborated upon 
in [1]. 

We will now define the simplex algorithm beginning with the assumption 

that we possess one basic feasible solution )( . Define C* to be the costs 

associated with the currant basis vectors in order. Define the vector Z = C *T G. 

Form Z *  = C T - Z .  There are three possible cases to consider. 

1. If Zk*>--O for all k , then X is optimal. 

2. If for some k (not corresponding to one of the positive elements in X) 

Z *  < 0 and Gik > 0 for some i ,  then by replacement of a vector in the basic 
feasible solution, a better value of the objective function may be obtained. The 
vector to come into the basis is chosen by the minimum of all the Z*  , Z ~  
satisfying the above condition, and the vector to leave the basis is chosen as the 

bj 
minimum over j or , subscript called r .  

gjk 

g|k 
- - - - g q  if i #= r ,and  This is accomplished by setting the new gli = gij grk 

b :  �9 , , - r j  
grj = gtj bij = bij.  gik br j �9 i ~ r and brj 

grk grk ark 

One should note that this change of basis vectors is exactly the same as the process 
involved in Gaussian Elimination. In fact, Gaussian Elimination is simply a process 
of changing basis vectors, although it is seldom presented as such. 

3. I f forsome k Z ~  < 0 and gik~-~O foral l  i ,  i = 1  . . . . .  p 

then there exists no lower bound for Z and the problem has no optimal solution. 

The iterative procedure is then continued with the new basis until either 
an optimum solution is found, or the non-existence of a minimum is determined. 

We have assumed that the user has available an initial feasible solution. In 
very few problems will this be the case Therefore, the user will be faced with 
determining a starting point for the simplex algorithm. A method called the 
method of artificial variables has been developed to solve this problem. The method 
consists of appending to the right of the G matrix of the linear programming 
problem in standard form a unit matrix. The cost function is changed so that the 
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costs of the actual variables are zero, and the costs of the new variables introduced, 
called artificial variables, is high, say 1000. Since the real variables cost nothing, the 
simplex algorithm will attempt to drive the artificial variables (which initially 
constitute a basic feasible solution, obviously) out of the basis. Once they have 
been driven out, the cost function may be replaced with the real one, and with the 
artificial variables now deleted from the problem, the simplex algorithm will 
continue on to solve the original problem. Pitfalls which may arise with this method 
will not be discussed here. For a discussion see [1 ] .  

A sample linear programming problem follows : 

Maximize 

Subject to 

Z = x + 5 y  

5x + 6y_30 
3x + 2y_<12 

x>_o 
y>_O 

Y 

0 1 2 3 4"~5  " 6 ~  X 
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Discussion of Nonlinear Programming 

Although on the surface a nonlinear programming problem would appear 
to be much the same as a linear programming problem, there are in reality many 
differences, each of which add to the complexity of the nonlinear problem. 

The first complexity is concerned with the convexity properties of the set 
of feasible solutions. Since convexiw will not be covered here (see [1] ), we will be 
satisfied to say that, in the linear case, convergence to a unique answer is guaranteed 
(if there is any optimum answer) by the convexity of the.set of feasible solutions. 
This convexity is guaranteed by the fact that the constraints are linear inequalities 
and thus define hyperplanes which separate half spaces which are convex sets. 
Without the proper convexity properties, which is a common problem in nonlinear 
programming, solutions leading to local optima can occur, and therefore, the 
solution obtained may not be the global optimal solution. Fortunately, the 
problems addressed to date in this research do not have this difficulty, but it was 
thought pertinent at this point to mention that the problem could occur. 

The other principal problem with nonlinear programming is that in many 
cases the optimum solution will occur not at a vertex of the feasible solution set, 
but along an edge. You will remember that the simplex algorithm depended upon 
searching vertices. It turns out that the guarantee of convergence in a finite number 
of iterations is dependent upon this fact, since there are only a finite number of 
vertices. However, if all possible boundary points are considered as-possible 
solutions, then there are obviously uncountably infinite possible solutions, and a 
mere search, even though ordered, cannot be guaranteed to converge finitely. The 
following will illustrate the nonlinear problem : 

\ 

% - 
\ 
s \  

. 

,;T, 
X 

2 -  [ 

F 
0 

Min Z --- x + y 

Subject to xy ~ 9 

x>_l 

\ \  

\ 
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Assuming that one is faced with solving a nonlinear programming problem 
which has a feasible solution set which is convex, i.e. a unique solution, one method 
for solving the problem is the method of separable programming. This method 
requires that each of the constraint functions, and the objective function, may be 
written as a sum of functions of one variable. Not all problems are of this type, 
however, by manipulation, most can be reformulated in such a way that they are 
separable (see [1] ). 

Given a separable programming problem, it may be reformulated as a 
linear programming problem in the following manner. For each variable, that 
variable axis is partitioned arbitrarily over the range of conceivable values for that 
variable. If one now defines X i such that X = ~ x i X  I ,  ~ X  i = t  and if more 
than one X i is positive, then there can be at most two and these must be adjacent. 
The Xi are interpolative constants, and therefore, if gi = g (Xi) ,  the separate 
functions in the constraints may be written as ~ X I gi .  Therefore, we are left with 
a linear programming problem with the X! as variables, subject to the added 
constraints that the X i for each original variable sum to one, and the condition 
that, for X corresponding to the same original variable, no more than two X i 
may be positive, and these two must be adjacent. The method of artificial variables 
may be used to obtain an initial feasible solution, the same as in normal linear 
programming problems. 

Applications to Least Squares Estimation Problems 

Given a least squares estimation problem with a mathematical model 
AX = L -I- V (possibly the result of linearization of a more complicated model), 
we will now attempt to apply nonlinear programming to the cost optimization of 
the problem of finding a set of observations which will allow the values of the 
propagated errors to fall within certain bounds. Before dealing with specific 
problems, the problem will be discussed in general. 

It has been stated previously that the variance-covariance matrix ~ x x  ' 

for the adjusted coordinates is given by (A T ~E~LL A) -1. The matrix A is, of 

course, constant. However, ~ L L  is a function of several parameters which 

influence the variance of each observation. Let the set of parameters which influence 
the accuracy of the i th observation be denoted by a vector M i . Then one arrives 
at a nonlinear programming problem of the form 

min C i (M i) 

subject to 

(AT ~L"I~ (Mr . . . . .  Mn)A)-I---~ B. 
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Where C i (M i) represents the cost of making the i th observation, and 

~ L ~  (Mi . . . .  Mn) represents the inverse of the variance-covariance matrix 

written as a function of MI , �9 �9 , M n . The reader will notice that, in order to 

arrive at the constraint equations, a matrix of functions must be inverted. As no 
straightforward method for doing this exists to the knowledge of the author, some 
sort of approximate method must be employed. One such method, which met 
with rather limited success, was employed by the author in [1 ] and in a paper given 
on this same topic at the 1969 ACSM-ASP Convention in Washington, D .C. [2 ] .  

The author's research efforts during the past year have been almost 
exclusively directed toward finding a better approximation to this inverse, and it is 
believed that the approximation which will be presented will alleviate all of the 
shortcomings of the previous method, with the added advantage that it is materially 
faster in convergence than the older method. 

The new method is, strangely enough, based upon a common error 
committed in the propagation of variance-covariance matrices for least squares 
estimators involving nonlinear functions. This is to assume that the parameter values 
obtained by using only a rough estimate of the true variance-covariance matrix of 
the observations is correct and to propagate using this information. Thus it is 
assumed that 

" - I  AT " - I  X = (A T ~LL A ) - l  ~LL L 

where ~'LL is the approximation to the variance-covariance matrix. From 

statistical theory we know that, if PQ = T and the variance-covariance matrix of 
Q is ~qq then 

~TT = P ~qq pT.  

Therefore, 

A ~ ~ A 

~xx = (AT ~1~  A } - '  A T ~ 1 ~  ~LL  ~ L L  A (A T ~ L  A ) - '  

Although the above form is theoretically incorrect (it is correct if ~LL --'- ~ L L  ) 

it turns out that, even for rather crude initial approximations ~LL ' that the 

estimate of ]~xx obtained by the above method is surprisingly good. For a small 

problem, this will be shown by the following example �9 
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A = 

M 

~LL = 

0 0 -1 
-178.6 103.1 --1 

.5 366 0 

5 0 0 
0 5 0 
0 0 01 

~LL = .75 .25 0 
.25 .75 0 

0 0 .0001 

for these matrices 

A A ~ 

to four significant figures. 

Consideration of the above phenomenon brings to mind a possible solution 

for the method to be used to approximate the inversion of the matrix (A T. ~L~  1A). 

First one makes a good guess as to what the optimal values of the variables will be 
(it turns out that convergence may be achieved for almost any guess, so the actual 
values of the guess are unimportant). Then one solves the nonlinear programming 
problem, using 

(AT  :Cd A)-' A" A (A" A)-'  

as the left hand side of the constraints (wi th ~ L L  ' of course, written as a matrix 

of functions). The solution vector from this iteration is then used to form a new 
~E~LL for the next iteration. 

In practice it has been found that the algorithm obtains convergence for 
most problems within four to five iterations. The method has never failed to 
converge on a problem. A detailed discussion of how the method can actually be 
used on a rather small survey network will follow in the next section. 

Application to S w e l l  Small Survey Problems 

It was decided to try the method on several small horizontal control survey 
networks combining both direction and distance measurements. There is nothing 
particularly special about this problem ; it simply presents a problem of small enough 
magnitude to be handled without sophisticated programming methods, and yet one 
with enough complexity so as to pose some challenge to the method. 
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Using regression analysis techniques, a model for the variance--covariance 
matrix for a station adjusted set of directions as a function of the number of 
pointings made on each point was derived. The variance of the average of n 
readings on a distance is o2/n,  where (/2 is the variance of one reading, so no 
approximate mathematical model was needed for distances. 

Using these models, one begins by giving the nonlinear programming 
program guesses at the number of times each measurement is made,a set of required 
variances for chosen adjusted quantities, a cost vector telling the cost of each 
repetition of each separate type of measurement, and an observation, or partial 
derivative, matrix for the least squares adjustment (referred to above as A) . 

The program then returns the number of times each observation should be 
made, and the true variance-covariance matrix if the observations are made that 
number of times. 

At present there is no provision for using a nonlinear cost function in the 
program, although such provision could easily be made. For purposes of testing the 
method, such a cost function was deemed unnecessary. 

Four problems were run, and each will be discussed in detail below : 

Problem 1 

(3000, 1 0 0 0 ) ~ ( ~ ) 3 0 0 0 ,  2000) 

)(2000,2000) 

( 1000, 1000) 

A = .71 .71 0 0 
--.71 .71 0 0 

--1. 0. 1 0 
0. 0. 0 1 

The coordinates are given in terms of a north, east coordinate system in 
meters.Distance observations numbered 1,2, 3, and 4 ware made. On all runs it was 
required that the variances of the north and east coordinates for both unknown 
points (the points on the right) be under .5 meter=. It was assumed that the 
variance of a single distance observation was one meter 2. 

With a cost vector C , Cl = cost of each individual observation on 
distance 1, etc.., equal to (1, 1, 1, 1) it was found that to meet accuracy 
requirements,distance 1 must be measured 4 times, two 5 times, three 5 times and 
four 4 times, with total cost 18. 

With C = (1, 1, 10, 10), i.e., distances 3 and 4 being 10 times more costly 
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to observe than 1 and 2, we find the number of necessary observations to be 5, 5, 
5, 4 with total cost 1(30. 

With C = 1, 1, 10, 1 we get 5, 5, 5 , 4 w i t h  total cost 64 and with 
C = 10, 10, 1, 1 we get 5, 3, 15, 4 with total cost 99. 

The above numbers are, in all cases, rounded to the next highest even 
observation, and therefore, some minor changes do not appear. It is, however, 
evident that even for this very simple problem, the optimum would not be achieved 
by measuring all distances the same number of times. It should be noted that, since 
distance four is the only observation determining the east coordinate of the upper 
unknown point, that it must be made the same number of times no matter what its 
cost. This turns out to be true in the results. Also, it should be noted that as the 
cost of the first two observations increase, the number of times they are to be 
measured decreases. Why this does not apply to the third observation to the same 
extent is not known ; however, small changes which are masked by the rounding up 
of the answers did appear. 

Problem 2 was a very simple ~riangulation problem. It consisted of two 
known stations and one unknown station, with three angles observed, 

(3000, 1000) 

~ 12000, 20001 

( 1000, 1000)  

A = 0 0 -1 0 0 

-.71 x 10 - z  .71 x 10 . 3  -1 0 0 

--.71 x 10 . 3  -.71 x 10 . 3  0 -1 0 

0 0 0 -1 0 

--.71 x 10 -3  .71 x 10 -3  0 0 -1 

-.71 x 10 -3  - . 71  x 10 -3  0 0 -1 

with the last three columns coming from the unknown orientation of the sets of 
directions. With the requirement that the variances of the coordinates of the 

unknown point be less than .5 x 10 -4  meters 2 and C = 1, 10, 5 with 02 for a 

single observation equal to 30 secs 2 we get the number of observations to be 
50, 16, 15 respectively with total cost 285 With C = 1, 1, 10 we get 36, 25, 1 
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with total cost 71. With C = 1, loo, 10 we get 50, 15, 25 with total cost 1800. 
With C = 1, 1, 1 we get 25, 37, 3, 5, total cost 65.3. The effect of changing the 
relative costs upon the optimum solution is easily seen here. It must be remembered 
that all of the above combinations of measurements meet the accuracy requirements, 
but that the only differences ware in the relative costs associated with each 
measurement. It is easily seen that measurement costs can greatly influence the 
configuration of the optimum solution. 

P r o b l e m  3 combined direction and distance observations. 

~ . ~ ~ ~ ] ~ ~  (11OO, 20OO) 

~ 0 o o ,  looo) 

The variance of a single direction observation was 3=ec 2 and the variance of a 
single distance observation was 1 m e t e r  2 . The variances on north and east of the 

2 

unknown point .1 x 10- . 

With C = 1, 1, 1, 1, 1 the optimum solution was 15, 1,1,1,1 with total 
cost 19. With C = 10, 5, 5, 1, 1 the solution was 15, 1,21,1,1 with total cost 
167. With C = 200, 100, 1001, 1 the solution was 14, 1,1,25, 25 with total cost 
3050. It is obvious from these results that the directions at the unknown point are 
the most critical observations. Even when they cost 200 times as much as the 
distances, they must still be made 14 times for an optimal solution. Also, it should 
be noted that, especially for this problem the direction observations lend much 
more strength to the network than the distance observations. 

Prob lem 4 was a somewhat more complex combined angle and distance 
measurement problem. 

(1100, ~ (  
1000) ~ 

(loo0, 1000) 

(12OO, 1000) ~ (1200, 3000) 

(1000, 30001 

(11OO, 
4OOO) 

The only condition enforced was that the variances of the north and east 
coordinates of the far right hand point be less than .001 mete rs  2 . The variance for 
a single direction was taken as 3 second= 2 . With C = 1, 1, 1, 1, 1, 1, 1, 1 weget 
5, 5, 5, 1 ,1 ,1,5,  17 with total cost 40. With C = 1, 1, 1, 1, 1, 1,100, 100 we get 
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5, 5, 50, 1, 1, 1, 1, 13 with total cost 1464. With C = 1, 1,4, 1, 1, 1, 100, 100 
we get 15, 15, 15, 1, 1, 1, 1, 14 with total cost 1593. The influence of the cost 
vector upon the optimal solution is obvious in this c~_m. 

The reader will notice that the total cost is increased rather significantly 
by the addition of cost constraints. This is logical, since in most cases, the cost of 
the most critical measurement was increased, and, since this measurement was 
required essentially without respect to cost, the total cost increases. 

It should be mentioned here that we did not allow the values of the 
variables to go to zero, since we incorporated no provision for handling zero weights 
(or infinite variances). Also, since our polynominal approximation ended at 50, no 
value could exceed 50. In only one case does the restriction of 50 enter in ; 
however, the restriction that the variables could not be less than 1 entered into 
several problems. A possible solution to this is discussed in the conclusions. 

As a comparison, for problem 4 the accuracy specified was about one part 
in 100.000. If we assumed C = 1, 1, 1, 1, 1, 1, 1, 1 and used a set of specifications 
telling us to measure each direction 16 times (8 sets of both direct and reverse) and 
to measure each distance 4 times, the total cost would be 104, vs a total cost of 40 
for the oplJrnal solution, but worse than that, the results of the survey would not 
meet required accuracy. This example should make the advantages of this method 
obvious to the reader. 

Discussion of Applicatiom to More General Problems 

The method can be extended rather simply to general problems. For 
problems involving trade offs between various possible methods, one could simply 
set up the problem as if all observations possible were being made and, if the 
variance functions are picked so that if an observation is not made, it will have zero 
weight in the adjustment, then a least cost solution would allow some measurements 
not to be made at all. Thus the method could be used as a decision tool as to which 
measurements should be made, or where control points should be placed, etc.. 
Ideally, in this mode, integer programming techniques should be used, so that a 
binary (0,1) possible range of answers would be possible. This would complicate 
the programming solution somewhat, but it is certainly feasible, 

Another possibility is that the method could be applied separately to each 
of two or more competitive systems to find out the minimum cost of attaining a 
given accuracy with eech. It would than be simple to see which system would be 
least costly for accomplishing a given purpose. This application could save 
considerable expense by eliminating the complete development of two computing 
systems when one is found to be considerably less cost effective than the other. 

It should be realized at this point that the computer programs used to 
apply this method to these larger problems will be rather large and involved. 
Therefore, it is not envisioned at this time that this method will be used to obtain 
an optimum design for each individual project, but only to arrive at an optimum 
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design for a typical project of a class. The other projects in this class could be 
accomplished in a near optimum manner using the experience gained from the test 
project. 

Conclusion 

As can be seen from the sample problem in the last section, the method 
works relatively well for small problems. The difficulties encountered in completely 
deleting measurements are being eliminated by using integer programming techniques. 

The method has been shown to be feasible for ground survey problems. 
The ~uthor believes it to be feasible for larger and more general classes of problems 
both in the mapping field, and in other areas of interest. Of course, the actual 
application of the method may have to be tailored to the individual problem ; 
however, the general concepts will apply. 

It is hoped that, in the next year, larger problems can be attacked and the 
feasibility of the method for totally different problems can be studied. The author 
would like to apply the method to such things as optimal location of control for 
photogrammetric block adjustments, configuration of navigational satellite systems, 
and other problems. 

If the author can be of any assistance to anyone else interested in working 
in this area, he would be more than willing to discuss the matter further. 

O 
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