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1 . -  Introduction 

This paper proposes an extension of the familiar method of least squares : 
for in addition to the more commonly computed unknowns, the variances of the 
original measurements and the relationships between these variances are estimated 
in this method. 

The method of least squares serves to estimate the unknown magnitudes 
in linear models and the essential prerequisite for this is the knowledge of the 
"weights" of the measured quantities, Frequently, however, these weights are not 
known adequately and to establish them hypothetically inevitably leads to 
systematic deviations in the results, the limits of which are difficult to control. In 
these circumstances it is advisable to estimate the weights simultaneously with the 
other unknowns in the model, And such is the purpose of this method. 

Apart from being regarded as an extended method of least squares, it may 
also be seen as an extension of those ideas of Helmert (1924), who proposed 
estimating the weights within the context of the method of least squares. 

The method discussed in this paper has wide applicability although it was 
especially developed for investigations into geodetic problems : so it may be used 
for example for estimating the weights of direction and distance measurements in 
geodetic networks. It may also be applied to estimate the weights of relative and 
absolute gravity measurements in gravimetric levelling. 

In the next section (2) those basic premises, that are needed for the later 
sections, are stated. Since this proposed method has many similarities to the usual 
method of least squares, the latter is shortly reviewed in section 3. The detailed 
discussion of the extended method is made in section 4. The estimators for the 
weights and the other unknowns in the model are derived by the method of 
maximum likelihood. Two different algorithms for estimating the weights are given. 
The estimators derived from the first algorithm are "biased" for a certain group of 
models. The second algorithm always yields unbiased estimators, however, the 
calculations are often more extensive. To complete the paper a numerical example 
is given in section 5 and serves to illustrate how this method can be used for 
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estimating the weights of direction and distance measurements, within a geodetic 
network. 

2. -- Assumptions and basic relations 

First the assumptions which are needed for the later sections of the paper, 
shall be stated. The following linear model for a physical system is considered : 

A . v + B . x + w  = 0 .  (1) 

The vector v is a vector of random variables [ v l ,  v2 . . . .  vn ] ,  normally 
distributed with mean : E (v) = 0 and variance matrix V (v) = Q. The Vector 
x = [ x l  .... xm]  represents non-stochastic magnitudes. The matrices A and B 
are matrices of known coefficients. The random vector w = [ w l  ... wk ]  is mea-  
surable within this model, which in turn means thas a sample W = [Wl ,  W2 .... Wk] 
of measurements can be taken from w. 

In the following Q will be assumed to be a diagonal matrix of the type 
shown in figure (2). It follows from this figure, that the vector v can be partitioned 
into subvectors v l ,  v2 . . . .  vt, so that the variance of every element in the vector 
vi (i = 1 ... t) is qi. Moreover, no elements in the vector v are correlated. The 
matrix A may be partitioned according t o  v and consequently equation (1) may 
also be written as follows : 

A l . v l + A 2 . v 2 + A 3 . v 3 + . . .  A t . v t + B . x + w  = 0. (3) 

The reciprocals of the variances qi (i = 1 .. t) are usually referred to as 
"weights". 

The model defined by (2) and (3) is valid, for example, in a geodetic 
network were both directions and distances have been measured. In this case v l  
represents the corrections to the direction measurements, v2 represents the 
corrections to the distance measurements and x symbolizes the unknown point 
coordinates in the network. 

Since the random vector v is normally distributed, every linear function 
(T,v + C) of v will be also normally distributed with variance matrix (T*  QT) 
and mean T.E (v) + C (Wilks, 1962, p. 158). 

Consequently the vector w is also normally distributed with the variance 
matrix A Q A *  = N and mean E (w) = B.x,  i.e. 

p r  ( w )  = - -  
1 1 

! 

(2 )k/2 INt 
1 e x p - - ~  ( w + B x ) *  N -1  ( w + B x ) ;  (4) 

J. J symbol for determinant 
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3. - -  The least squares method 

In this familiar method the unknown magnitudes - the vectors v and 
x - are estimated from the measured sample W. The estimators for v and x are 
consequently functions of W and are denoted by "~ = "~ (W) and ~ = ~' (W). 
These least squares estimators are obtained by minimizing the sum of the squares : 

~'* G-1 ~', 

2 
where the matrix G differs from Q by an arbitrary multiple factor Oo . As a 
constraint, the estimators have to satisfy equation (1) : 

A'~' + B'~' + W = O. (5) 

This problem of minimization can be readily reduced to the problem of 
solving the following linear equation system (normal equation system) : 

N . k  + B.'~' + W = 0 

B * . k  = 0 

~ ' =  G A * k ,  " N = A G A *  

(6) 

There the vector k represents Lagrange multipliers which are caused by 
the condition equations (5). The least squares method applied in model (1) is 
referred to as standard problem IV (according to Tienstra, 1956). Another 
commonly used model is : Av + w = 0 (where B is not defined). The least 
square adjustment within this model is referred to as standard problem I ; and the 
least squares method applied in the model Bx + w = v (where A isa unit 
matrix) is called standard problem I1. 

After computing the magnitudes "~,  a factor 

~o 2 = ~ "  G-~ ,; 
f 

( f : degrees of freedom in the problem) 

may be estimated, which, when used with the matrix G, gives an estimated value 
for the variance matrix of v, ~ (v) = ~ .  G.  

However. when using the method of least squares, the weight relations 
between random variables v, or groups of random variables cannot be estimated ; 
for this method the a priori knowledge of the weight relations is required. Frequently 
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they are, however, not known with sufficient accuracy and so it is desirable to 
estimate them too, from the available information. In the following section 
methods for doing this will be presented. 

4. - T h e  extended least squares method 

4.1. The objective of this extended method is to deduce estimators x", v'~ and ~' 
for the magnitudes x, v, and q = [ q l ,  q2 . . . .  qt ] , which are assumed to be 
unknown in the model (1), (2). The estimators are functions of the measurable 
random variables w and they are deduced using the principle of maximum 
likelihood. This principles states that those numerical values are selected for x', ~" 
and ~", that maximize the "likelihood function" 

L = p r (w  = W ; ; , % I .  (7) 

In other words, we choose those values x ~, ~', and ~ which will make it 
most probable that w = W. For numerical reasons, however, the natural 
logarithm of L is frequently made to a maximum instead of L itself, i.e. 

1 1 N-1 I np r (W; ' ~ ,~ , )  = c o n s t , - ~ l n J N J  - ~ - ( W + B ~ ' ) *  ( W + B ~ )  -~max. (8) 

This problem of maximization is identical to problem (7). It is solved by 
equating the first partial derivatives of In pr (W) to zero : 

a In pr (W) a In pr (W) 
= O ;  = O .  (g) 

For computing these derivatives the following theorem must be used : 

Theorem 1 : Let the elements n~ of a matrix N be functions of elements qj 

of the vector q. Further, let N be bounded and assume that both .a N and N-1 
aq 

exist. Then the following relations are valid : 

aN -1 = - N -  1 aN N_ 1 , (10a) 
aq aq 

a'n I ' l  = ,,.(,,-, a,+): (,o+I 
aq a q ,  + 

t r  trace of a matrix ; sum of the diagonal elements of the matrix. 
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Proof : From the definition of the inverse of a matrix : N N -1  -- E 
(E unit matrix) it follows �9 

a N  N - 1  + N  ( ~ N - 1  
�9 = O .  (11) aq aq 

The expression (lOa) can now be readily verified by pre-mult iplying (11 ) 

with N -  1 

The second relation (lOb) derives from the definition of the determinant : 

IN I = ~ n I 2 nm 
o.! n r  . . . . . .  r m " 

a I . . .  r 

Under the above assumptions both I N I and In IN l are differentiable and 
the first derivative of the latter becomes 

a In INI 1 a I NI 1 / 2; a n' = - -  = " l  2 ... nm 

a q  INI aq IN'l ~ =,....,,~ aq " " " ,  "r,, 
+ ... 

+n+ t ~.  i111 a m  o. 1 . . . . .  n m * l  
oz ""era Cm-Z a q 

(12) 

The algebraic sums 

]C n 2 ... n m ; ~ n z ... n moz 
o 2  a l  ' I  m * l  

a4t . . . a  m a m  Ol . . .  O . m . l  

+orr,, ,,,o m,oo  I,,'o,1. " I":ml o , . . o 0  ,,,o o+ or,  
I N ;  I r of the inverse N -1  . Therefore this relation INI are identical to the elements I~ 

(12) may be written as follows : 

1 3 ~n  ~)n a n  m 
a In INI = ~ o.z i ! 4- �9 ~ I 2 + ... 4- ~ " m im 

(3 q "z a q ~zz "2 a q ~ o m a q am 

a N  N _ I ~  = tr  a-q"" / , Q . E . D .  (13) 
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Let us now come back to the original task of evaluating the derivatives 

They follow with (10) to 

a In pr (W) = - B *  ~ - 1  

aT 
B - B *  ~ - l w  = 0 ,  (14a) 

a lnp r (W)  _ 1 "~i* ~ i - - t r ( M i N  -1 )  = 0 ,  (14b) 

";i = + ~ i  . A i * . N  - 1  (B~ + W ) ,  

N = ( A Q A * ) q i  = ql  , M i  = A i A i * .  

The second term in equation (14b) resembles strongly the expectation of 

"~i*~' i ,  which, when evaluated for the theoretical values x and q, is 

E ('~i*~'i/x, q) = qi 2 tr (MiN-1).  

Replacing in this expression qi by ~'i and E (~'i*~'i/x, q) by the symbol 

E= v(~* ~i /x,  q) , it follows 

tr ( M i N -  1 ) = 

and equation (14b) becomes 

~Ji 2 
�9 Ex (~'i* '~i /x,q) 

~ i*  ~'i -- El (~i* "~i/x, q) = 0 (14c) 

The system (14) is equivalent to the following larger system of equations : 

N.k  + B . 3 ( + W  = 0  

B*.k = 0 

Sqi = " f i *  "~i -- Ez (~i* ~'i/x, q) = 0 

(15) 

i = 1  . . . . .  t 
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which contains an additional unknown vector k. The latter system can be readily 
transformed into (14) by merely eliminating the vector k. It resembles slz'ongly the 
normal equations (6) of the method of least squares ; the present system is, 
however, non-l inear and contains also the unknown q~. A non-l inear equation 
system can in most cases only be solved iteratively. Starting from suitable 
approximate values Xo , qo a sequence of better approximations xv , qv , 

(v = 1, 2, 3 ...) is computed, which finally converges to "~' ,~'. In this paper the 
sequence x , ,  qv , will be computed by the Block Gauss..-SeidelMothodfor n o n -  
linear equation systems (see e.g. Varga, 1962 ; Martin and Tea, 1962), which 
possesses the following algorithm : 

computation of x v and k v using the 

given values qu ' (normal equations) : 

Nk~ + Bx~, + W = 0 

8 * k ~  = 0 

(16a) 

Computation of qv-F1-- using the values 

X v , k~ - from the equation system : 

Sqi = ~ ' i * ' ~ i - E ,  ( '~ i *~ i /x ,q)  = 0 ;  i = 1 ..... t 

(16b) 

The algorithm (16) may be interpreted as a repeated least squares 
adjustment, followed by the improvement of the variances q. Details about the 
computation of q v + l  are given in appendix A. The iterative computation is 

stopped as soon as two suc__r~__ive approximations r v and q v + l  no longer differ 

significantly. The approximations computed last serve as final result. 

The stochastical properties of the deduced estimators are derived within 
the theory of maximum likelihood (see e.g. Wilks 1962) and are studied in detail by 
Kubik (1967=). There, it is shown, that the estimators ~" and �9 form minimum 
variance, unbiased estimators assuming the theoretical value of q is known. The 
estimators ~' will converge "in probabil i ty" to the theoretical values q for infinite 
sample size and in this limiting case they will have higher accuracy than any other 
estimator and will also be normally distributed. The estimators ~ will be unbiased 
if the mathematical model (1) does not contain any unknown x, i.e. E (~) = q. 
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For standard problems II and IV, however,~" will be biased, the bias being 

,~. m ~ ~E~ t b(~'i) E (~'i/q) qi V( i , j ) . t r (MjN - t  B(B*N-1B)  - t  B*N -1)  (17) 
|=1 

where V(i , j )  are the elements of the matrix V = 1-1 with I a matrix with the 

elements I (i,j) = 1. tr (N -1 MiN -1 Mj). The bies is caused by unknowns x and 
2 

q being simultaneously estimated and depends mainly on the degrees of freedom 
(redundancy) f in the adjustment. The larger f is, the smaller the bias will be. The 
variance matrix of the estimators ~" may always be approximated by V (q~) = V, 
(Wilks 1962, p. 380). 

4~.. For some applications it may be advisable to find unbiased estimators for q 
also for standard problems II and IV. For this purpose more constraints have to be 
added to the optimization problem (8), in order to ensure that the estimators will 
be unbiased ; this leads then to the following problem 

I n L ( w = W ;  q,E) _~ max 

E ( q / q , x )  = q 

E ( E / q , x )  = x (18) 

In the previous method of estimation (8), the bias of ~" was caused by the 
simultaneous estimation of x and q ; suppose we now estimate x independently 
by 

;t = - - ( B * N  -1 B) -1 B*N - l w ,  (10) 

using an approximation qo to q. We may then ask which estimator of q maxi-  
mizes the likelihood for all samples giving the ascertained value of x, namely ]~. 
The variations of L from sample to sample are now considered in a certain 
subpopulation in which x has a fixed value. The problem is then solved as 
follows : the likelihood function is put into the following form 

InL : InIX(W) = In i x (E )  + Inpr (g) ,  

where IX ( i )  represents the distribution function of the least squares 

(20) 

IX  (E )  = 

estimator i ,  (19) 

1 1 1 
(2~r) m/2 I ( B . N _ I  B)_l l  ~. exp-~ ( E - x ) * B * N  -1 B (h--x) (20a) 
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pr ( ; )  represents the distribution function of the least squares 

estimator 0 = + q . A * . N  -1 ( B ~ + W ) ,  

pr (~) = 

1 
1 I(BN - 1  B) -11 T .  
k - r n  1 

(2  lr)- '~'--  IN I  ~ 

exp - - l W *  (N -1  - N  -1 B(B*  N -1 B) -1  

B* N -1  ) W.  (20b) 

This relation (19) may be readily verified, using the generalized inverse for 
the singular variance matrix Qw. (Bjierhammer 1958). If we maximize the 
likelihood in this form, for simultaneous variation of ~ and ~1, we arrive back at 
(9) and (15), as of course we must. But if i has a fixed value, the logarithmic 
likelihood is then proportional to the second factor in (19), viz, 

I N - I  I I _ N _  I N_ I InL a3-1n I (a" s)-' IN I --~- W * ( N  -1  B(B*  , ) - 1  

B ' N - l )  W 

This factor is maximized by the solution r of the following equation 
system : 

Sqi = l i * i i - -  E2 (~)i* Q i l t ,  q) = 0 ,  (21) 

with 

~i = + eli .Ai*. l~1-1 ( W + B ~ ,  I~1 = (N)  q=q , 

E2 (~*'gi / JZ, q) = I E (0i* (~i I ~. q) } q==~ = I tr (MiN-  1) - tr 5MiN- 1 B (B* N -  1 B) -  1 

B ' N - 1  )} q=~l 

This Cl is - as may be verified - an unbiased estimator for q, if 
theoretical values of q were used for computing i .  Since this was not the case, the 
computation of t( and ~1 has to be repeated with the new approximations 
substituted for q Consequently the computation is iterative, and a sequence of 
values x v and r (v = 1, 2, 3 .... J is computed which finally will converge 
towards the desired estimations i and Cl. The resulting computational algorithm 
is very similar to (16), namely 
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qe (liven I 

Computation of x v end kp using the 

given values qv ,  (normal equations) : 

N.k~ -I- B.xv -I-W = 0  

S ' . k ~  = 0 

(22a) 

Computation of q~-I-1 using the best known 

values X~,  kp from the equation system 

Sqi = ~)i* t?i --  E (~i* ~?i/q, ~)  = 0 

(22b) 

i = 1  ..... t 

The present algorithm differs from (6) only in the computation of o~ 
which is now more elaborate. Details on the computation of qv are given in 
appendix B. The iterative computations (22) are stopped again as soon as two 
su _cce~__'ve approximations qv and r 1 no longer differ significantly. 

The estimators r and i ,  which result from this computation, are unbiased 
and, for sufficiently large sample size, normally distributed. In the limiting case 
(sample size tending towards infinity), the estimator r will have higher accuracy 
than any other estimator, For standard problem I the estimators ~ and (I are 
identical as may be verified by neglecting in the algorithms (16) and (22) all terms 
containing the matrix B. The variance matrix of ~1 may be approximated by the 
expression V (r ---" V with V defined in (17). 

4.3. In both cases considered so far the extended least squares method consists of 
repeatedly carrying out the usual method of least squares, followed by improving 
the values qi. The algorithms, which were derived for standard problem IV, may be 
readily specialized for standard problem I (by neglecting all terms containing B), 
and for standard problem II (by setting Ai equal to a unit matrix E(il). This is 

partly elaborated in appendices A and B. For all algorithms published in this 
paper computer programmes are available in ALGOL 60 language. 

This method may still be extended to adjustment problems, in which Q 
possesses a more general structure than in figure (2) and where, for example, some 
of the non-diagonal elements of Q are unknown. The formulas for this ~ were 
given by Kubik (19672) ; here, however, the number of unknown coefficients 
should always be limited in order to obtain reasonably accurate estimators. A large 
sample for w is necessary in order to obtain significant estimators of the co -  
variances. The extension of the presented method to the matrix Q, (2), where the 
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unit matrices E(i ) are replaced by diagonal matrices with known coefficients, may 
be readily derived from what has been already discussed and will not be treated 
here. 

It is possible that one or more of the estimated variances Cl become 
smaller than zero. This" may be the case for a small sample size or for models which 
do not properly describe the actual situation. In these cases, the inaqualiw 
constraints qi >_ 0, (23) have to be added to the optimization problems (8) and 
(18) in order to obtain results which do not contradict the theory of probabiliW. 
This necessitates a small modification of the iterative algorithms (16) and (22). The 
necessary conditions of a local optimum under the inequality constraints (23) have 
been given by Kuhn and Tucker (1950). For the present problem they may be 
written as follows : 

q i _ >  0 

~)lnL < 0 
a qi - -  

~ ) l n L  
q i .  - 0 .  

a qi 

If now after one iteration step a value qi smaller than zero is found, it is 
a l n L  

made equal to, and kept at, zero until becomes > 0 ; then qi may vary 
a qi 

again. This ensures that a solution of q will be found which is within the feasible 
region qi > 0. 

5.  --  A numerical example : 

The theory presented will now be illustrated by a numerical example. A 
geodetic net, in which both directions and distances have been measured, has to be 
adjusted. The measured quantities and the configuration of the points in the net 
are shown in figure 24. The standard deviations for distance measurements and 
direction measurements are assumed to be o s = 1.5 r and o r = 5 dmg 
respectively. Due to refraction influences, however, the relationship between these 
two quantities is not accurately known and this relationship still has to be improved 
during the adjustment. 

Algorithm (22) of thsextended least squares method, standard problem II, 
is applied to yield unbiased estimators for both the point coordinates and the 
variances os 2 and Or 2. The results of the computations are summarized in table 25 

and 26. Table 25 gives a list of the successive approximations to o: prop. o and 

o~ prop. o .  They are together sums squares v l v l ,  listed with the of and 
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-2 v* Q-1 ~ In table 26 the estimated point the estimated variances factors o o - f 

coordinates obtained from the first and last iterative steps of the computation and 
their estimated variance matrices are compared. The first iteration step corresponds 
to the usual least squares method. It is seen clearly that the use of the extended 
least squares method yields more reliable results than the common least squares 
method. This improvement will be even more noticeable in those ~ where the 
weights are less accurately known. 

6.  - -  F ina l  remarks  

The use of this method interferes with the usual statistical tests which may 
be done after the least squares adjustment for detecting gross errors. It is therefore 
advisable to perform these tests after the first or second stage of the iterative 
computation of the extended method. In this method the decision whether a 
particular measurement is affected by a gross error or not is more critical ; because, 
if a doubtful measurement is accepted, then a larger variance will be estimated for 
it or for the corresponding group of measurements. This problem of the interaction 
of statistical tests with this extended estimation method still needs a more detailed 
study. 

There are a few practical restrictions to this method. Only a limited 
number of parameters can be estimated from one sample of w. The more free 
parameters which are estimated from a given sample, then the larger their variance 
and their correlation will be. Consequently only a small number of parameters qi 
in the Q matrix should be regarded as unknown, in order to yield small variances 
for their estimators. 

So the theory presented will be especially valuable in those cases where 
little is known about the weights in an adjustment problem and where not too 
many - say 2 to 4 - parameters of the Q matrix are regarded as unknown. 

0 

0 0 
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Appeedix A : 

Numerical solution of the equation system (6b). Since the equation 
system (Cob) for qv+t  is still non-linear, it is linearized by a Taylor expansion 

before solving for qv+t  (which corresponds to the execution of one step of 

Newton's iterative method). The linearized equation system for the approximation 
q~+l  is written as 

I H ( q . + l  - -qv ) = ~ 

with Sq* = [ Sql, ~:i2 . . . . .  Sqt ] ,  evaluated for the value ~" = qv,  

(A1) 

H a matrix with the elements H (i, j) = tr (N-  1MiN- 1Mj)- 2 D* N-  I MiN- 1MjN- 1D 

D = W +  B.~" = W - B  (B*N -1 B) -1 B*N-1W 

To simplify the computation of r 1 , the coefficient matrix H may be 

replaced by its expectation E (H/x) = I. This expectation is computed using the 
following theorem : 

Theorem : 

The expectation of an operator D*.T.D, where D is a random vector and 
T is a linear operator, is equal to 

E ( D ' T D )  = t r ( E ( D * D ) . T ) .  

Proof :  The operator D* T D is written in index notation as 

n 

a D p D= Tp 
r 

with De,  T ; ,  D p denoting the individual elements in D*, T and D. Its expecta- 

tion may be written 

n n 

E( ~ D= T ;  D/I) = E ( ~ Dr D ~ T ~)  
r ~=1 o.,p= 1 P ' 

and since this is an algebraic sum, the symbols for sum and expectation may be 
interchanged : 
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n 

2; E (D e D ~) T~ 
a , ~ = l  

This expression is identical to tt (E (D* D) T ) ,  Q.E.D. 

From this it follows, that the matrix E (H) is identical to a matrix T 

with the elements I" (i,j) = - tr (N-1MiN -1 Mj). The simplified equation system 
for qp +1 becomes : 

{ T ( q . + l  - -q . )  =Sq.  I (A2) 

This method was proposed by Rao (1952). However, it can only be 
recommended for relatively precise approximate values of qo , since the conver- 
gence behaviour of the computation using (A2) is inferior to using the method of 
Newton (A1). When using imprecise values qo , this method will often diverge. A 
very simple form of the equation system (6b) results in the case of standard 
problem II. The elements qiv+ 1 of the vector qv+l  can there be computed one 
by one from the equations 

t qiv+ l  = f qu 

with f the degree of freedom in the adjustment problem. 

Appendix B : 

Numerical solution of the equation system (22b). The solution of (22b) 
for qw+l by linearising (22b) cannot be recommended since the expressions 

involved are very complex. The writer is experimenting at present with other 
methods of solution (Powells conjugate directions method, see Powel 1964). Only 
in standard problem II can r be computed with reasonable effort, by the 
algorithm 

H.dp = S q  

qip+l  
q'v 

1 + dp (i). qi v 

(B1) 

i = 1  .... t 

with dp a vector with the elements dp (i) 
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Sq* = [ Sqi ,  Sq2 . . . . .  Sqt ] ,  evaluated for the value q = q~. 

asq 
H - , a matrix with elements : 

;) ( l / q i )  

H (i,i) = - -2 r  Bi N -1  Bj* #j + m.qi 2 . ~ i j  - tr (Bi*  BiN -1  Bj* BjN -1 )  ; 

i j  . . .  Kronecker symbol ; 

m . . . .  number of unknowns ; 

Bi . . . .  submatrices of B (standard problem It), partitioned according to v i .  

N = B * Q - t  B. 

This algorithm is simplified when H is replaced by E (H), namely 

E ( H ) . d p  = Sq 

q i +  1 - 

with E (H) a matrix with the elements : 

qip 

1 + dp (i). qip 

(B2) 

E ( i , j )  = tt  (Bi*  BiN -1  Bj* BiN -1  ) -- 6 i j .q i . t r . (B i *  BiN - 1 )  + ~ij  .n i .qi 2 ; 

n i number of rows in Bi. 

Again this method can only be recommended for fairly precise approx i -  
mate values qo �9 
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Table 25  

Results o f  the itorative computat ion 

of  the extended method o f  least =qua '=  

Ini t ial  values : q l o  = 1 

q2o = 0.64 

First i terat ion : w l  = 
w 2  = 

q l  = 

q2 = 

Second i terat ion : w l  = 

w 2  = 

q l :  = 

q2: = 

Th i rd  i terat ion : w l  = 

w 2  = 

q l  = 

q2 = 

Fourth i terat ion : w l  = 

w 2  = 

q l  = 

q2 = 

Fi f th i terat ion : w l  = 

w 2  = 

q l  = 

q2 = 

Final values : q l  = 

q2 = 

Variance mat r ix  of  q l  , q2 

4.7008 
5.3742 

0.9657 

0.4758 

5.5231 
4.92O6 

1.2170 
0.4000 

7.1560 

4.2610 

1.1676 

0.3924 

7.O622 
4.2922 

1.1634 

0.3927 

7.0448 

4.2981 

1.1634 

0.3927 

1.16 

0.39 

or 

or 

0.372 - 0 . 0 0 4  

--0.004 0.013 

Os = 1.5 cm 

0 r = 5 d m g  

ao = 0.83 

Oo = 0.95 

Oo = 1 .00 

Oo = 1 .00  

(~o = 1 .00  

O s = 1 .6cm 

o r = 4 drag 
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Coordinates : 

Point Y X 
1 1000.000 0.000 
7 1000.000 2065.184 

Measured Distances : 

f rom- to  Distance (m) 
1,3 881.596 
1,11 865.110 
3,5 630.493 
5,7 1149,437 
5,11 1009.659 
7,9 1204.527 
9,11 556,657 

o directions measured 

both direction and 
o distance me_=~,__,red 

Fig. 24 : Configuration o f  the geodetic network 

Q = 

:11 .E( 1 )12.E(~ 

\ 
\ 

\ 
\ 

\ 

Fig. 2 : Type of  matrix Q 

q i scalars, i = 1 . . . . .  t 

E(i) unit matrices of 
various dimensions 
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