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A METHOD OF EVALUATING THE TRUNCATION ERROR
COEFFICIENTS FOR GEOIDAL HEIGHT

Abstract

Neglecting distant zones in the computation of geoidal height using
Stokes’ formula gives rise to some truncation error. This truncation error is
expressible as a weighted summation of the zonal harmonic components of the
gravity anomaly. Making use of the well—known properties of Legendre polynomials,
a compact method of computing these theoretical coefficients has been developed
in this paper,

Introduction

The computation of geoidal height from Stokes’ formula involves the
integration of the gravity anomaly weighted by Stokes' function over the entire
surface of the spherical earth, With usual notation, the formula for such computation
is

r "
— R .
N—m'/o‘da./o- Ag(a,yY)S(cos Y)sin yd y {1

where S (cos ) is the Stokes’ function, defined by
S(cosY) =1 + cosec Y[2~6sin Y /[2

—cos Y {5+ 3log(sinP/2 +sin* P/2)} (2

In most of the practical cases, the integration in (1) is carried out

numerically up to a chosen angular distance ¥/, around the point of computation.
This gives rise to a truncation error for geoidal height which is given by
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n

R " )
SN = — da Ag(a,Y)S(cosyY)siny d ¢ (3)

vo

Harmonic expansion of this truncation error is available (Molodenskii et
al., 1962} as

R g ’
N =—= T Qu(es¥o)Ag, (@)
where
n
Qu(cosYo) = f S (cos Y) P, (cos Y)sin Yy d ¢ (4)
Vo
Ag, = nth order zonal harmonic component of Ag at the point of

computation,
and P, = Legendre polynomial of order n .

Separation of the gravity anomaly into its harmonic components israther a
standard procedure, using any established method of harmonic analysis. Consequent—
ly, the computation of the truncation error of geoidal height using {3’) rests mainly
upon the computation of Qp (cos Yo) from (4). The present paper is concerned
with the method of computation of Q, (cos ¥q).

Several methods for computation of Q, (cos Ygo) are available in the
literature. With sin Yo /2 = t, Molodenskii et al. (1962) developed for Q, (t)
(upto n = 8) some power series in t which also invoived Jog (1 +t)and
log t (1 +1t). The first few of them are

Qo (t) = — 4t + 5t 4+ 613 —~ 7t* + (6t2—6t*)logt(1+1)

Q, (t) = -~ 2t + 4t? +2—38 t3 —14t* - 8t° +:°‘§Z 18 4+ (612 — 12t* + 8t%)

logt (1 +t)~2log(1 +t)

Q; (1) = 2 — 4t + 5t2 + 14¢3 —-52—3 t — 30t +47t° + 18t7

——1t' +(6t? —241* 4 36t° — 18t%) Jog t (1 +t)
2
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On the other hand, de Witte (1967) integrated the differential equation
corresponding to (4) numerically with the initial condition

Qp(cosYo) =0at Yo =0
Recently Hagiwara (1973) offered another series expansionof Q,, (t):

[n/2]
SHOLELICAE S SING)

where

T, = _(n—2k+1)(n—-2k+2) Top, k> 1
’ 2k(2n-2k+1) ’

Tho = (2n)!

27 (n! )2

In(t) = =-2J,, () +3) 4 ) +K, ()-5K 4, (t)=3Lp4, (V)

m —_2k
In®= 2 2(k2+)1 () @+
K,,,(t)=4(m—‘+l) (DR F - (1-2t7)R Yy
L, (1) = '4(m—l+1') ((1=2t2)"F _ 1} Jogt(1+t)+ {1+ (=)}

log (1 +t) +2 kf:‘o [+ ()™ k) Ky (1) -2 k§ =D)™%5, ()
=i =0

and
[n/2] = the integer part of n/2.

From the point of practical computation, it is important to point out
some of the limitations of the above methods. As n increases, the number of terms
in Molodenskii’s expansion for Q, also increases and the derivation of the
corresponding expansion for Q, becomes more and more involved. As a result,
the computations may become rather formidable for sufficiently large values of n.
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The increase in the number of terms also arises in Hagiwara’s formula for Q, and
in his auxiliary functions J, and L., , and hence the method confronts similar
limitations as with Molodenskii’s expansion. On the other hand, de Witte’s method
gradually accumulates more and more error as Yo increases. This usually occurs
with numerical solution of any differential equation.

A new method for computation of Q,, is described below. It will be seen
that this method is relatively free from the limitations as mentioned above.

Theory

Let us first of all build up some of the mathematical requirements of our
solution for Q, . Making use of the well—known properties of Legendre
polynomials, it can be easily shown that

t

Rpx (V) = f P, (z)Py (2) dz

-1

nZIlll:Il) Pk t) [Pn+1 (t)"Pn-x (t)l'l‘cz%(k_i——}lpn (t) “’k+x (t)"‘Pk-l (t)!
(n-k)(n+k+1)

k#n {5)
and

t

f P} (z)dz

~1

Raa(t)

1)(2n-1 , -1
SR Rasnan 0=

Rn,n-z O

2n-1
2n+1

+

Ryc1,n-1 (V) (6)

With the initial values,
Po(t) =1
P,(t) =t
Ro,o(t) =t+1
Ry () = (t3+1)/3
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and the recurrence relation

- . -1
p.ty=22=tep ) -2=Lp,,® (8)
n n
Ryx(t) (k # n) and Ry ;, (t)  can be computed in sequence from (5) and
(6) respectively.

Now, substituting cos ¥ = z in (4) as well as in the expansion of the
Stokes’ function in Legendre polynomial (Heiskanen and Moritz, 1967) we have

t

Q, (1) = f $(2) Py (2)dz (@
o
where
S(z) = ké: 2::’11 P, (2) (10)
and
t=cosVo (1)

Again, if S (z) in (9) isreplaced by the right hand side of {10}, the order
of summation and integration in the subsequent equation is interchanged and,
then, the definitions in (5) and (6) are made use of, we have

(- -]
2k +1 2n+1
t)= X R t) + R t (12)
Q® = 2 =0 Rye® + = Rya()
ks£n

The convergence of the infinite summation in the above equation is very
slow. As a result, the evaluation of Q, (t) directly from (12) is rather formidable.
This difficulty can be removed by modification of {12) in the following way :

Substituting from (5) for R,y (t) in (12) and then expanding the
coefficients of Legendre functions in terms of partial fractions of the form

——1-—,wehave

kv

- n(n+1) ;
% ) Q2n+1)(n-1)(n+2) [Pn(t)k.l Py (1)

kgn-1
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{2(2n+1)1_ n+2 _ n-1 }
a(n+1) kX k-n+1 k+n+2

o 3 n+42, n-1 }
- t - +
+ [Ppyy () ~Ppy (1)1 kz__:_., Pk(){k_l k—-n k+n+l

k#n
@ 2(2n+1) 1 n+2 n—l}
"Pn(t) k§3 Pk(t){ n(n+1) k=2 k-n-1 k+n
k#n 41
n—-1 }

If we now assume

®  p, (t)hk-n+!

U = 2 —————,h<x<1 (14)
n(t,h) k=0 k—-n+1
k#n-1
n=0,1,2,....
then with the well—known relation
l o0
——=———== X P ()hk,h <1 (15)
V1-2th+h? k=0

we can easily obtain

1 dh

f h? V1 -2th +h?
¢

=U,(t,1)-U,(t,e)-P,_, (t)ne (16)

0<e<l.

dh

1
Further, integrating f
e ™24/ 1-2th+h?

necessary algebraic simplification, we also obtain

by parts and performing
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1
(n~l)f —(2n—3)tf dh
1—2th+h’ e h"'+/1-2th+h?

V1-2€et+e?
+(n-2) f +\/2—2t————— =0 (17)
h"-2 2th+h2 et

Substitution of {16) and making use of (8) reduces (17} to

(n-1)U, (,1)-(2n=-3)t U,_, (1,1)+(n~-2) Un_,(t,1)+~/2—2t

= (n-1)U, (t,€)—(2n=3)t U, _, (t,€)+(n-2)U,_, (t,€) +

Vv1-2et+e?

! (18)

If we then expand the right hand side of {18) in Legendre functions using
{14) and the relation

° Pp_, (1)=Py (1)
Vi-2et+e? =1-et+ T -=X k¥ ek+1 (19)

k=1 2k +1

and repeatedly apply (8), we obtain a greatly simplified recurrence relation for
U, (t,1) which s free from €,

U, (t,1) = [(2n—3)t Up (6,1 = (n=2) U, _, (t,1) =V 22t

Poos()-Pyy (t)]
3 [(n-1) (20)

Using (20) and the initial conditions

2
U, (t,1) = log (1+\/ET2T)’t¢O
14
and Us (t,1) = log ——2— t £ 0
1-t+v2-2t
=0 t=0
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the values of U, (t, 1) can be easily computed.
Defining similarly

00 Pk hk+n+1

=Y ———,h <1 2
V,(t,h) R (22)

n=0,1, ...

and following similar steps as above, we obtain the corresponding recurrence
relation

Vo, = [2a-DtV,_, (t,D)=(a=-1) Vo, (t,1)+V2-2t]/n (23)

Using {23) and the initial conditions

Vo(t,1)=2n(l+—\/_—2_—__.2?-t' L t#0
=0 , t=0 , (24)
and
Vi(t,1) = tVo(t,D+ V2-2t-1

the values of V, (t, 1) also can be easily computed.

The equation (13) can now be re—written in terms of U, (t,1) and

Vn(t‘,l) as
Q (1) = n(n+1) [ 202041) tan 1re
n (1) (2n+1)(n-1)(n+2) P“(t){n (n+l)- (UT (M -U3(®)

~(+ 2D (UL ()~ Ugy, ()= (n— 1) (VE4, ()~ Vi, (t))}
+{Pasts (=P, 0} {302 )-(a+2) UL, ('t)+(n_1)v;(t)}]

__2n*+2n+1 2n+1
(a—1)(2n +1) P, (t){Pn.H t)-P,_, (t)}+ — Rn,n(t),n >2 (25)
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where
ut() =U;(1)
Us() =U;(t,1)+1
U3  =Us(t,1)+3+t

. 1
U3 (t) =Un(t,l)+nT-l

1, t
Uh4, (1) =Uny,y (t,1)+—+l:1
, " (26)
1t 321

Uss, (1) = t,)+— +— + 70—
a+2 (1) = Unya ( )+n+l+n 2(n-1)

t  3t?-1
n+l 2(n+2)

VL () = Vo, (1) =2 -
n

1 t
VE(t =V, (t,1) - — — —
n(t) n(t,1) n+l n+2

1
Ve () =V t,1)— ——
) = Vap (D -—

We have thus obtained a formula for Q, (t) which involves a finite fixed
number of terms and this is achieved even without resort to any kind of
approximation or any loss of analytical rigour. The involved functions in the present
formulation, viz, P, (t) ,Ry ; (t), U, (t,1) and Vy (t,1) arealso representable
by a small finite number of terms, as are evident from the recurrence relations (8),
(6), (20) and (23}, respectively. A fixed finite term representation of the present
formula forms its main advantage over those due to Molodenskii {1962) and
Hagiwara (1973).

Computation

From a computational standpoint, the worth of a theoretical formula
depends, perhaps, on the extent to which it satisfies the following major conditions :
(1) the ease at which the formula can be handled or programmed for a digital
computer ; (2) the accuracy of the results that can be achieved with it ; and (3)
optimal computation time.

Our formula fulfils these requirements very favourably. A compact
program write—up of this formula is of no problem ; our version of the program
consists of fifty—five Fortran instructions. Since our formula is exact, any
inaccuracy in the results is necessarily linked with the “rounding—off"’ characteristics
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of a computer. However, as our formula involves a fixed finite number of terms,
the cumulative round—-off error is expected to be smaller in our cases than in others
where the number of terms increases with n , the index of the coefficient. That is
why — as we believe — our computed values in Table 1 differ from those of
Hagiwara (1973}, for large values of n (viz, n = 16, 17 and 18). Our computation
time is also found to be reasonably small ; total time of computation in a CDC
6400 computer for 950 coefficients corresponding to Yo = 0° (10°) 180° and
n=01,...49, is 1.1 seconds only.

The results of our computation are shown below in Table 1.

As a check on our computed Qn-—values, we have attempted to reproduce
the piecewise continuous function

S(cos ¥, ¥o) = 0 ,0< ¥ < Yo

(27)
=s("°‘w), Wo < l’l<1r
from its well known series representation
Steos ¥, ¥0) = T 2B Qg (cos o) Pa (o8 ¥) (28)
n=o0

It has been found that in order to obtain some agreement to an order of

10~2 between computed values from (27) and (28), the summation in (28) has to
be carried out for at least 500 terms when ¥ and Yo is separated by more than
15° . For a smaller distance between ¥ and ¥, , even higher number of terms are
necessary. This besides checking our computation procedure of Q, (cos Vo) .
also demonstrates the role of Q,—values for large n . It is expected however, that
the computation of 8N from {3) will hardly require more than fifty terms in the
summation, This is because 8N , unlike S(cos ¥/, ¥, ), isa continuous function
over earth’s surface.

Some preliminary practical computations have also been carried out with
these Q,—values. Using 1969 SAO Geopotential Coefficients to provide the gravity
anomaly, the truncation errors of geoidal height have been computed at selected
stations over Canada for different values of o . Some trivial checks on these
computations are that at Yo = 0, the truncation error should be equal to the
geoidal height, directly computable from the geopotential coefficients ; then as
Yo increases, the truncation error should continuously decrease and finally should
vanish at Yo = 7. Needless to say our computations satisfy these checks fully.
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(12 degree)

16.0

3e.0

40,0

%
1a degree)

70,0

9,0

-+0063

-1.06983
«0284
+0021

~a0045
=.0041

-1.1215
0174
«0029
«0006

-.0001

=1.0157
«0218
=.0110
<0040
=+0004

“oT611
=.0381

+0159
~.0020
= 0044

=.4106
=e0264
=a0147
-.0100
~.0069

=.0275
0506

=.0014

-.7825
-.0168
-.0063

«0089
~-.0083

=1,0102
+0306
0072
-.0014
-.0038

-1.97117
«0ll%
0011

-,0001
-.000%

~.6002
0217
0142
-,0071
»,0037

«.5766
-.0385

2.0000
.1818
0952
+064S
0608

1.,5928
=o0904
-,0071

«0247
-.0042

~.0091

1.0620
0234
«0098
0017

-.0025

1.0212

«0031
~.0009
~.0009
~.0006

1.0439
-.0208
«0017
«0029
«e0034

1.0400
- 0056
~.0109

+0080
=-.0013

Table 1

Q, (coa v )
(a = 0 to 49)

-,0088 =.0075 =.0054

1606 -,0575 -,1032
0116 =,0008 =~,0104

-+0006 +0013 0027

Jlbbs -,0508 -,.0803
-,0038 -,0070 ~.006S
-.0021 =,0022 ~.0014
-,0011 -,0008 -~.0002
-,0008 -,0002 0002

Table 1 {coat'd)

Q, (con s o
(a=0 to 4®

1223 =.0942 =,1164
-+0209 ~.0082 «0071
<0077 0079 <0028
*.0015 ~.0045 -,0042
~e0016 .0014 -8031

#0236 =.1885 ~.134a
+0250 .0270 0043
-.0130 -,0026 +0090
#0017 -,0056 =,0070
0039 «0050 <0011

-,1300 =-.0531
-.0006 -.0188
+0052 -.0120
+0059 -.0003
+0054 -, 0087

=-»2602 -,1870 -0733
-.0265 0174 +0268
«008S «0132 =-,0032
0082 -,0021 -.0082
-.8015 -,00%9 -,0006

=.3066 -,068) +128)
»0300 0028 =,0243
-.08129 -,0007 0114
<0075  .0003 -,0069
«.0051 -,0002 <0068
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-.0119
-.1272

-.0028

-.00868
-.0153
-.0020
0032
+0036

-+0573
~.0035
-.0001
0004
«000%

~.0161
=.02641
~.0013
<0073
«0023
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Table 1 (count'd)

"% Q, (cos s
(in degree)
{(o=C to 49)
100.0 <5963 ~.5988 «5040 =.2740 <0243 +0896 =~.0060

=«0137 0137 .006%
~.0071 <-.0029 L0073
«0017 =.0047 ,0000
<0033 -.0001 -.000)

«0489 0384 -,0431
20091 «,.002¢ -.0060
«0038 -.0028 -.001%
20015 ~,002¢ -,0001
«0008 -.0015 .000%

=e0315  ,0049 0221
=e0032 ~,0091 «0058
#0052 ~,0036 -.003S
<0026  ,002¢ -,0032

110.0 7530 ~,6375 M08
-.0017 «0132 -,0074

<0026 L0030 -.0042

<8023 L0006 -.0024

<0017 «,0000 -.0014

~.0012

0469 -.0348 0103 ~.0130

120.0 19035 -0006 ~.0026  .0002
-20013 Je012 -.0001  Joolo

. -0001 --0008 20006 -.000S

-.0008 -.0001  .000S -.0001 ~e0003 -.0001

4295 =, 0776 -.0494 ~.0032 ~.0188

130.0 10889 TI313 -oe108 oom3 <00s6  .002¢
-.0012 -.0038  .0085 -20009 ~.0061  .0013

<0026  .0002 -.0026 -20013 -0026 -.0022

#0003 0017 -,0026 L0013 .0006 -.0019 0019 ~-,0005 -~,001l 0019

140,0 #5489 -,4913 L3808 -,2632 L1395 -.0392 -,0248 0504 ~,0451 0226
<0029 -,0203 L0247 -,0174 L0042 .008) -,0149 .0138 ~.0068 -~-.0021
«0088 -,0106 .0076 =-,001S =-.0048 0078 -.0072 .0033 .0014 -.0051
#0063 -,004S 0008 L0029 -,0069 L0046 -,0022 -.0010 0035 -,0042
#0030 -,000% -,002¢ L0035 -,0033 .00l6 0007 -.0026 0031 -.0022

Table 1 (cont'd)

% Q, (cos » o
{ia degree) (=0 o 49)
150.0 «2556 ~,3330 =e23446 L1708 ~.1073  ,0508 <-.0063 ~.023) 0377
~.0388 «0301 «0014 0107 ~-.0178 «0192 -.015%
=+ 0065 +0109 <0098 «0002 <0084  =,0078
0039 ~,8002 <0056 «0052 =.0030 .0001
«0049 -.0041 ~.0001 «0035 -~.0040 «Q034 =.0019 «0001
160.0 1741 -,1689 =e1448 L1272 =~.1072 L0839 ~.0644 .0439 -,0252
08092 0036 0187 -,021) «0210 ~-.0184 +0162 =.0090 0037
«0013 =-,008% =+0101 +0104 =.0095 «0076 ~.0050 0021 «9007
“+0032 .00%5) <0065 -,0060 0049 <-.0033 .0018 L0005 -.8022
0038 =.0043 -.0042 «003% =.002) .0010 0006 <-,0016 «$026
170.0 e0860  =,0A57 L0450 <=.0440 .0426 =.0410 0391 =.036% <0346 ~.0320
+0294 =.0266 0237 <«.0208 .0180 =-.015F .0124 <~.0098 .0071 -.005¢
«0029 <«,0010 <-.0007 ,0022 =-.0034 0044 =-.0051 <0056 <-.0059 ,0060
=+0059  ,0057 =.0053 L0047 =-.0061 40035 <~.0027 0020 <«.0013 .0805
«0002 <.0008 .0014 =,0019 .0023 =-.0026 .0028 =-.0029 .0029 ~-.8029
180.0 «0000 «0000 «+0000 0000 0000 «0000 «0000 «0000 «0000

«0000 «0000 «0000 +0000 +0000 «0000 L0000 «0800 «$000
«08000  .0000 «0900 +0000 «8000 L0000 .0000 0000 .0000
«0000 «0000 «3000 «0000 «0000 «00800 «0008 .0000 «0000
«8000 #0000 «00006 +9#000 +0000 «0000 .0000 L0000 «+0000
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