M. K. PAUL Gravity Division, Earth Physics Branch, Department of Energy, Mines and Resources, Ottawa, Canada. # A METHOD OF EVALUATING THE TRUNCATION ERROR COEFFICIENTS FOR GEOIDAL HEIGHT #### **Abstract** Neglecting distant zones in the computation of geoidal height using Stokes' formula gives rise to some truncation error. This truncation error is expressible as a weighted summation of the zonal harmonic components of the gravity anomaly. Making use of the well—known properties of Legendre polynomials, a compact method of computing these theoretical coefficients has been developed in this paper. #### Introduction The computation of geoidal height from Stokes' formula involves the integration of the gravity anomaly weighted by Stokes' function over the entire surface of the spherical earth. With usual notation, the formula for such computation is $$N = \frac{R}{4\pi G} \int_{0}^{2\pi} da \int_{0}^{\pi} \Delta g(a, \psi) S(\cos \psi) \sin \psi d\psi$$ (1) where $S(\cos \psi)$ is the Stokes' function, defined by $$S(\cos \psi) = 1 + \csc \psi/2 - 6 \sin \psi/2 - \cos \psi \{ 5 + 3 \log (\sin \psi/2 + \sin^2 \psi/2) \}$$ (2) In most of the practical cases, the integration in (1) is carried out numerically up to a chosen angular distance ψ_0 around the point of computation. This gives rise to a truncation error for geoidal height which is given by $$\delta N = \frac{R}{4\pi G} \int_0^{2\pi} da \int_{\psi_0}^{\pi} \Delta g(a, \psi) S(\cos \psi) \sin \psi d\psi$$ (3) Harmonic expansion of this truncation error is available (Molodenskii et al., 1962) as $$\delta N = \frac{R}{2G} \sum_{n=2}^{\infty} Q_n (\cos \psi_0) \Delta g_n$$ (3') where $$Q_{n}(\cos\psi_{0}) = \int_{\psi_{0}}^{\pi} S(\cos\psi) P_{n}(\cos\psi) \sin\psi d\psi \qquad (4)$$ $\Delta g_n = nth$ order zonal harmonic component of Δg at the point of computation, and P_n = Legendre polynomial of order n. Separation of the gravity anomaly into its harmonic components is rather a standard procedure, using any established method of harmonic analysis. Consequent—ly, the computation of the truncation error of geoidal height using (3') rests mainly upon the computation of Q_n ($\cos \psi_0$) from (4). The present paper is concerned with the method of computation of Q_n ($\cos \psi_0$). Several methods for computation of Q_n ($\cos\psi_0$) are available in the literature. With $\sin\psi_0/2=t$, Molodenskii et al. (1962) developed for $Q_n(t)$ (up to n=8) some power series in t which also involved $\log(1+t)$ and $\log t(1+t)$. The first few of them are $$Q_{0}(t) = -4t + 5t^{2} + 6t^{3} - 7t^{4} + (6t^{2} - 6t^{4}) \log t (1+t)$$ $$Q_{1}(t) = -2t + 4t^{2} + \frac{28}{3}t^{3} - 14t^{4} - 8t^{5} + \frac{32}{3}t^{6} + (6t^{2} - 12t^{4} + 8t^{6})$$ $$\log t (1+t) - 2 \log (1+t)$$ $$Q_{2}(t) = 2 - 4t + 5t^{2} + 14t^{3} - \frac{53}{2}t^{4} - 30t^{5} + 47t^{6} + 18t^{7}$$ $$-\frac{51}{2}t^{8} + (6t^{2} - 24t^{4} + 36t^{6} - 18t^{8}) \log t (1+t)$$ On the other hand, de Witte (1967) integrated the differential equation corresponding to (4) numerically with the initial condition $$Q_n(\cos\psi_0)=0$$ at $\psi_0=0$ Recently Hagiwara (1973) offered another series expansion of $Q_n(t)$: $$Q_n(t) = -4 \sum_{k=0}^{\lfloor n/2 \rfloor} T_{n,k} I_{n-2k}(t)$$ where $$T_{n,k} = -\frac{(n-2k+1)(n-2k+2)}{2k(2n-2k+1)} T_{n,k-1} k > 1$$ $$T_{n,0} = \frac{(2n)!}{2^n (n!)^2}$$ $$I_{m}(t) = -2J_{m}(t) + 3J_{m+1}(t) + K_{m}(t) - 5K_{m+1}(t) - 3L_{m+1}(t)$$ $$J_{m}(t) = \sum_{k=0}^{m} \frac{(-2)^{k}}{2k+1} {m \choose k} (t^{2k+1}-1)$$ $$K_m(t) = \frac{1}{4(m+1)} \{(-1)^{m+1} - (1-2t^2)^{m+1}\}$$ $$L_m(t) = -\frac{1}{4(m+1)} \{ (1-2t^2)^{m+1} - 1 \} \log t (1+t) + \{1+(-1)^m\}$$ $$log(1+t) + 2\sum_{k=0}^{m} \{1 + (-1)^{m-k}\} K_k(t) - 2\sum_{k=0}^{m} (-1)^{m-k} J_k(t)$$ and $$[n/2]$$ = the integer part of $n/2$. From the point of practical computation, it is important to point out some of the limitations of the above methods. As n increases, the number of terms in Molodenskii's expansion for Q_n also increases and the derivation of the corresponding expansion for Q_n becomes more and more involved. As a result, the computations may become rather formidable for sufficiently large values of n. The increase in the number of terms also arises in Hagiwara's formula for Q_n and in his auxiliary functions \boldsymbol{J}_m and \boldsymbol{L}_m , and hence the method confronts similar limitations as with Molodenskii's expansion. On the other hand, de Witte's method gradually accumulates more and more error as ψ_0 increases. This usually occurs with numerical solution of any differential equation. A new method for computation of $\,Q_n\,$ is described below. It will be seen that this method is relatively free from the limitations as mentioned above. # Theory Let us first of all build up some of the mathematical requirements of our solution for Q_n . Making use of the well-known properties of Legendre polynomials, it can be easily shown that $$R_{n,k}(t) \equiv \int_{-1}^{t} P_n(z) P_k(z) dz$$ $$=\frac{\frac{n(n+1)}{2n+1}P_{k}(t)\left\{P_{n+1}(t)-P_{n-1}(t)\right\}-\frac{k(k+1)}{2k+1}P_{n}(t)\left\{P_{k+1}(t)-P_{k-1}(t)\right\}}{(n-k)(n+k+1)}$$ $$k \neq n$$ (5) and $$R_{n,n}(t) \equiv \int_{-1}^{t} P_{n}^{2}(z) dz$$ $$= \frac{(n+1)(2n-1)}{n(2n+1)} R_{n+1, n-1}(t) - \frac{n-1}{n} R_{n,n-2}(t)$$ $$+ \frac{2n-1}{2n+1} R_{n-1, n-1}(t)$$ (6) With the initial values, $$P_0(t) = 1$$ $P_1(t) = t$ $R_{0,0}(t) = t + 1$ $R_{1,1}(t) = (t^3 + 1)/3$ and the recurrence relation $$P_{n}(t) = \frac{2n-1}{n} t P_{n-1}(t) - \frac{n-1}{n} P_{n-2}(t)$$ (8) $R_{n,k}(t)$ $(k \neq n)$ and $R_{n,n}(t)$ can be computed in sequence from (5) and (6) respectively. Now, substituting $\cos \psi = z$ in (4) as well as in the expansion of the Stokes' function in Legendre polynomial (Heiskanen and Moritz, 1967) we have $$Q_n(t) = \int_{-1}^{t} S(z) P_n(z) dz$$ (9) where $$S(z) = \sum_{k=2}^{\infty} \frac{2k+1}{k-1} P_k(z)$$ (10) and $$t = \cos \psi_0 \tag{11}$$ Again, if S(z) in (9) is replaced by the right hand side of (10), the order of summation and integration in the subsequent equation is interchanged and, then, the definitions in (5) and (6) are made use of, we have $$Q_{n}(t) = \sum_{\substack{k=2\\k\neq n}}^{\infty} \frac{2k+1}{k-1} R_{n,k}(t) + \frac{2n+1}{n-1} R_{n,n}(t)$$ (12) The convergence of the infinite summation in the above equation is very slow. As a result, the evaluation of $Q_n(t)$ directly from (12) is rather formidable. This difficulty can be removed by modification of (12) in the following way: Substituting from (5) for $R_{n,k}$ (t) in (12) and then expanding the coefficients of Legendre functions in terms of partial fractions of the form $\frac{1}{k\pm\nu}$, we have $$Q_{n}(t) = \frac{n(n+1)}{(2n+1)(n-1)(n+2)} \left[P_{n}(t) \sum_{\substack{k=1 \ k \neq n-1}}^{\infty} P_{k}(t) \right]$$ $$\left\{ \frac{2(2n+1)}{n(n+1)} \frac{1}{k} - \frac{n+2}{k-n+1} - \frac{n-1}{k+n+2} \right\} \\ + \left\{ P_{n+1}(t) - P_{n-1}(t) \right\} \sum_{\substack{k=2\\k\neq n}}^{\infty} P_k(t) \left\{ \frac{3}{k-1} - \frac{n+2}{k-n} + \frac{n-1}{k+n+1} \right\} \\ - P_n(t) \sum_{\substack{k=3\\k\neq n+1}}^{\infty} P_k(t) \left\{ \frac{2(2n+1)}{n(n+1)} \frac{1}{k-2} - \frac{n+2}{k-n-1} - \frac{n-1}{k+n} \right\} \right] \\ + \frac{2n+1}{n-1} R_{n,n}(t) \tag{13}$$ If we now assume $$U_{n}(t,h) = \sum_{\substack{k=0\\k\neq n-1}}^{\infty} \frac{P_{k}(t)h^{k-n+1}}{k-n+1}, h \leq 1$$ (14) $$n=0,1,2,\ldots$$ then with the well-known relation $$\frac{1}{\sqrt{1-2\,th+h^2}} = \sum_{k=0}^{\infty} P_k(t)\,h^k, \, h \le 1$$ (15) we can easily obtain $$\int_{\epsilon}^{1} \frac{\mathrm{d}h}{h^{n} \sqrt{1-2 \operatorname{th}+h^{2}}} = U_{n}(t,1) - U_{n}(t,\epsilon) - P_{n-1}(t) \operatorname{gn} \epsilon \quad (16)$$ $$0 < \epsilon < 1.$$ Further, integrating $\int_e^1 \frac{dh}{h^{n-2}\sqrt{1-2th+h^2}}$ by parts and performing necessary algebraic simplification, we also obtain $$(n-1) \int_{\epsilon}^{1} \frac{dh}{h^{n} \sqrt{1-2 t h+h^{2}}} - (2n-3) t \int_{\epsilon}^{1} \frac{dh}{h^{n-1} \sqrt{1-2 t h+h^{2}}} + (n-2) \int_{\epsilon}^{1} \frac{dh}{h^{n-2} \sqrt{1-2 t h+h^{2}}} + \sqrt{2-2 t} - \frac{\sqrt{1-2 \epsilon t+\epsilon^{2}}}{\epsilon^{n-1}} = 0$$ (17) Substitution of (16) and making use of (8) reduces (17) to $$(n-1)U_{n}(t,1) - (2n-3)t U_{n-1}(t,1) + (n-2) U_{n-2}(t,1) + \sqrt{2-2t}$$ $$= (n-1)U_{n}(t,\epsilon) - (2n-3)t U_{n-1}(t,\epsilon) + (n-2)U_{n-2}(t,\epsilon) + \frac{\sqrt{1-2\epsilon t + \epsilon^{2}}}{\epsilon^{n-1}}$$ (18) If we then expand the right hand side of (18) in Legendre functions using (14) and the relation $$\sqrt{1 - 2\epsilon t + \epsilon^2} = 1 - \epsilon t + \sum_{k=1}^{\infty} \frac{P_{k-1}(t) - P_{k+1}(t)}{2k+1} \epsilon^{k+1}$$ (19) and repeatedly apply (8), we obtain a greatly simplified recurrence relation for $U_n(t,1)$ which is free from ϵ , $$U_{n}(t,1) = \left[(2n-3)t \ U_{n-1}(t,1) - (n-2) \ U_{n-2}(t,1) - \sqrt{2-2t} + \frac{P_{n-3}(t) - P_{n-1}(t)}{2n-3} \right] / (n-1)$$ (20) Using (20) and the initial conditions $$U_{0}(t,1) = log \left(1 + \frac{2}{\sqrt{2-2t}}\right), t \neq 0$$ $$= 0 t = 0$$ $$U_{1}(t,1) = log \frac{2}{1-t+\sqrt{2-2t}}, t \neq 0$$ $$= 0 t = 0$$ $$(21)$$ the values of $U_n(t, 1)$ can be easily computed. Defining similarly $$V_n(t,h) = \sum_{k=0}^{\infty} \frac{P_k h^{k+n+1}}{k+n+1}, h \le 1$$ (22) $$n = 0, 1, \ldots$$ and following similar steps as above, we obtain the corresponding recurrence relation $$V_{n}(t,1) = [(2n-1)t V_{n-1}(t,1) - (n-1) V_{n-2}(t,1) + \sqrt{2-2}t]/n$$ (23) Using (23) and the initial conditions $$V_{0}(t,1) = 2 n \left(1 + \frac{2}{\sqrt{2-2t}}, t \neq 0\right)$$ $$= 0, t = 0$$ $$V_{1}(t,1) = t V_{0}(t,1) + \sqrt{2-2t-1}$$ (24) and the values of $V_n(t,1)$ also can be easily computed. . The equation (13) can now be re-written in terms of $\,U_{\,n}\,\left(t\,,1\right)\,$ and $\,V_{\,n}\,\left(t\,,1\right)\,$ as $$Q_{n}(t) = \frac{n(n+1)}{(2n+1)(n-1)(n+2)} \left[P_{n}(t) \left\{ \frac{2(2n+1)}{n(n+1)} (U_{1}^{*}(t) - U_{3}^{*}(t)) - (n+2)(U_{n}^{*}(t) - U_{n+2}^{*}(t) - (n-1)(V_{n+1}^{*}(t) - V_{n-1}^{*}(t)) \right\} + \left\{ P_{n+1}(t) - P_{n-1}(t) \right\} \left\{ 3U_{2}^{*}(t) - (n+2)U_{n+1}^{*}(t) + (n-1)V_{n}^{*}(t) \right\} - \frac{2n^{2} + 2n + 1}{(n-1)(2n+1)^{2}} P_{n}(t) \left\{ P_{n+1}(t) - P_{n-1}(t) \right\} + \frac{2n+1}{n-1} R_{n,n}(t), n \ge 2$$ (25) where $$U_{1}^{*}(t) = U_{1}(t,1)$$ $$U_{2}^{*}(t) = U_{2}(t,1)+1$$ $$U_{3}^{*}(t) = U_{3}(t,1)+\frac{1}{2}+t$$ $$U_{n}^{*}(t) = U_{n}(t,1)+\frac{1}{n-1}$$ $$U_{n+1}^{*}(t) = U_{n+1}(t,1)+\frac{1}{n}+\frac{t}{n-1}$$ $$U_{n+2}^{*}(t) = U_{n+2}(t,1)+\frac{1}{n+1}+\frac{t}{n}+\frac{3t^{2}-1}{2(n-1)}$$ $$V_{n-1}^{*}(t) = V_{n-1}(t,1)-\frac{1}{n}-\frac{t}{n+1}-\frac{3t^{2}-1}{2(n+2)}$$ $$V_{n}^{*}(t) = V_{n}(t,1)-\frac{1}{n+1}-\frac{t}{n+2}$$ $$V_{n+1}^{*}(t) = V_{n+1}(t,1)-\frac{1}{n+2}$$ We have thus obtained a formula for $Q_n(t)$ which involves a finite fixed number of terms and this is achieved even without resort to any kind of approximation or any loss of analytical rigour. The involved functions in the present formulation, viz, $P_n(t)$, $R_{n,n}(t)$, $U_n(t,1)$ and $V_n(t,1)$ are also representable by a small finite number of terms, as are evident from the recurrence relations (8), (6), (20) and (23), respectively. A fixed finite term representation of the present formula forms its main advantage over those due to Molodenskii (1962) and Hagiwara (1973). ## Computation From a computational standpoint, the worth of a theoretical formula depends, perhaps, on the extent to which it satisfies the following major conditions: (1) the ease at which the formula can be handled or programmed for a digital computer; (2) the accuracy of the results that can be achieved with it; and (3) optimal computation time. Our formula fulfils these requirements very favourably. A compact program write—up of this formula is of no problem; our version of the program consists of fifty—five Fortran instructions. Since our formula is exact, any inaccuracy in the results is necessarily linked with the "rounding—off" characteristics of a computer. However, as our formula involves a fixed finite number of terms, the cumulative round—off error is expected to be smaller in our cases than in others where the number of terms increases with n, the index of the coefficient. That is why — as we believe — our computed values in Table 1 differ from those of Hagiwara (1973), for large values of n (viz, n=16,17 and 18). Our computation time is also found to be reasonably small; total time of computation in a CDC 6400 computer for 950 coefficients corresponding to $\psi_0=0^{\circ}$ (10°) 180° and $n=0,1,\ldots 49$, is 1.1 seconds only. The results of our computation are shown below in Table 1. As a check on our computed Q_n -values, we have attempted to reproduce the piecewise continuous function $$\overline{S}(\cos\psi,\psi_0) = 0 \qquad , 0 < \psi < \psi_0$$ $$= S(\cos\psi), \psi_0 < \psi < \pi$$ (27) from its well known series representation $$\overline{S}(\cos\psi,\psi_0) = \sum_{n=0}^{\infty} \frac{2n+1}{2} Q_n(\cos\psi_0) P_n(\cos\psi)$$ (28) It has been found that in order to obtain some agreement to an order of 10^{-3} between computed values from (27) and (28), the summation in (28) has to be carried out for at least 500 terms when ψ and ψ_0 is separated by more than 15° . For a smaller distance between ψ and ψ_0 , even higher number of terms are necessary. This besides checking our computation procedure of Q_n ($\cos\psi_0$), also demonstrates the role of Q_n -values for large n. It is expected however, that the computation of δN from (3) will hardly require more than fifty terms in the summation, This is because δN , unlike \overline{S} ($\cos\psi$, ψ_0), is a continuous function over earth's surface. Some preliminary practical computations have also been carried out with these Q_n —values. Using 1969 SAO Geopotential Coefficients to provide the gravity anomaly, the truncation errors of geoidal height have been computed at selected stations over Canada for different values of ψ_0 . Some trivial checks on these computations are that at $\psi_0=0$, the truncation error should be equal to the geoidal height, directly computable from the geopotential coefficients; then as ψ_0 increases, the truncation error should continuously decrease and finally should vanish at $\psi_0=\pi$. Needless to say our computations satisfy these checks fully. 0 0 Table 1 | † 0
(in degree) | Q _n (cos ψ ₀)
(n = 0 to 49) | | | | | | | | | | | | |--------------------|---|---|---|---|---|--|--|--|----------------------------------|---|--|--| | 0.0 | 0.0000
2222
1053 | 0.0000
2000
.1000
.0667 | 2.0000
.1818
.0952
.0645 | 1.0000
.1667
.9909 | .6667
.1538
.0870 | .5000
.1429
.0833
.0588 | .4000
.1333
.0800 | .3333
.1250
.0769 | .2857
.1176
.0741 | .2500
.1111
.0714 | | | | 10.0 | .0513
4137
0864
0247 | 4115
0907
0155 | 1.5928
0904
0071
.0247 | .0476
.5992
0868
.0006 | .0465
.2742
0807
.0073 | .0455
.1177
0729
.0129 | .0444
.0297
0639
.0176
.0151 | .0435
0235
0543
.0212 | 0561
0443
0238
0084 | .0417
0757
0343
.0254
.0050 | | | | 20.0 | .0017
7979
0453
.0030 | 0014
7825
0168
0063
.0089 | 1.2474
.0069
0137 | 0067
.2903
.0245
0185
.0129 | 0089
.0107
.0353
0205
.0125 | 0106
0942
.0397
0198
.0107 | 0119
1272
.0384
0169
.0077 | 0128
1249
.0326
0123
.0041 | 1045
.0238
0966 | 0759
.0135
0008
0034 | | | | 30.0 | 0063
-1.0493
-0284
-0021 | 0083
-1.0102
.0304
.0072
0014 | 0091
1.0620
.0234
.0098
.0017 | 0088
.1604
.0116
.0094 | 0075
0575
0008
.0066
.0052 | 0054
1037
0104
.0024
.0049 | 0028
0868
0153
0020
.0032 | 0501
0152
0053
009 | 0133
0111
0069
0015 | .0048
0046
0065
0033 | | | | 40.0 | 0041
-1.1215
.0174
.0029
.0006 | 0038
-1.0717
.0114
.0011
0003
0005 | 1.0212 | 0006
.1444
0038
0021
0011 | 0508
0070
0022
0008
0002 | 0803
065
0014
0002 | 0573
0035
0001
.0004 | 0238
.0002
.0010
.0008 | .0024
.0029
.0015
.0008 | .0158
.0038
.0013
.0004 | | | Table 1 (cont'd) | *0
in degree) | | | | | Q (coa p | 0) | | | | | |------------------|---|--|----------------------------------|--|--|--|---|---|--|--| | (n=0 to 4a) | | | | | | | | | | | | 50.0 | -1.0157
.0218
0110
.0044 | 9987
0040
0065
.0056
0031 | 1.0439
0208
.0017
.0029 | .1223
0209
.0077
0015
0014 | 0942
0082
.0079
0045 | 1164
.0071
.0028
0042 | 0670
.0150
0035
0011 | 0060
.0119
0068
.0025 | .0334
.0018
-,0652
.0041 | .0401
0079
0002
.0028
0028 | | 60.0 | 7611
0381
.0159
0020 | 8543
9387
.0031
.0065
0055 | 1.0400
0056
0109
.0080 | .0236
.0250
0130
.0017 | 1885
.0270
0026
0056 | 1344
.0045
.0090
0070 | 0091
0180
.0108
0016 | .0690
0203
.0023
.0049 | .0628
0037
0075
.0062
0011 | .0072
.0137
0092
.0014 | | 70.0 | 4106
0264
0147
0100
0069 | 7072
.0312
.0464
.0001 | .9584
.0389
.0169
.0091 | 1300
0066
.0052
.0059 | 2403
0312
0114
0045
0011 | 0531
0188
0120
0083
0057 | .0946
.0139
.0024
0014
0028 | .0811
.0243
.0123
.0068
.0035 | 0151
.0036
.0058
.0057 | 0636
0183
0073
0025
0000 | | 80.0 | 9275
.9506
.9085
9084
9049 | 6082
.0217
0142
0071
.0037 | .8067
0320
0119
.0053 | 2602
0265
.0085
.0082
0015 | 1870
.0174
.0132
0021
0059 | .0733
.0268
0032
0082
0006 | .1106
0059
0126
0008 | 0161
0241
0013
.0073 | 0748
0026
.0110
.0032
0042 | 0095
.0196
.0048
0057
0036 | | 90.0 | .3252
.0064
0012
.0004
0002 | 5766
0385
.0148
0083
.0055 | .6358
0041
.0009
0004 | 3064
.8300
0129
.0075
0051 | 0683
.0028
0007
.0003
0002 | .1283
-:0243
.0114
0069 | .0233
0020
.0006
0003 | 0760
.0202
0102
.0064
0045 | 0112
.0015
0005
.0002 | .0520
-,0171
.0091
0059 | # M. K. PAUL ## Table 1 (cost'd) | † ₀
(in degree) | Q _n (coe ≠ _O) | | | | | | | | | | | | | | |-------------------------------|--------------------------------------|--------|-------|--------|-------|-------|-------|-------|--------|-------|--|--|--|--| | | (m=0 to 49) | | | | | | | | | | | | | | | 100.0 | .5963 | ~.5986 | -5040 | -,2740 | .0243 | .0896 | 0460 | 0336 | -0498 | .0081 | | | | | | | 0315 | .0049 | .0221 | 0113 | 0137 | -0137 | .0065 | 0136 | 0009 | .0118 | | | | | | | 0032 | ~.0091 | -0058 | .9860 | 0071 | 0029 | -0073 | .0001 | 0066 | .0021 | | | | | | | .0052 | ~.0036 | 0035 | .0045 | .0017 | 0047 | .0000 | .0043 | 0015 | 0035 | | | | | | | .0026 | .0024 | 0032 | 0011 | .0033 | 0001 | 0031 | .0011 | .0025 | 0019 | | | | | | 110.0 | .7536 | ~.6375 | .4486 | 2224 | .0489 | .0384 | 0431 | .0876 | .0196 | 0174 | | | | | | | 0017 | .0132 | 0674 | -,0051 | .0091 | 0020 | 0060 | .0056 | .0013 | 0055 | | | | | | | .0026 | .0030 | 0042 | .0002 | .0035 | 0025 | 0015 | .0032 | ~,0066 | 0923 | | | | | | | .0023 | .0006 | 0024 | .0011 | .0015 | 0020 | 0001 | .0019 | 0012 | 6009 | | | | | | | .0017 | 0003 | 0014 | .0012 | .0005 | 0015 | .0065 | .0010 | 0012 | 0002 | | | | | | 120.0 | .7855 | -,6496 | .4311 | -,2084 | .0469 | .0285 | 0346 | .0102 | .0103 | 0130 | | | | | | | .0035 | .0055 | 0066 | .0015 | .0035 | 0039 | .0006 | .0025 | ~.0026 | .000Z | | | | | | | .0019 | 0016 | .0001 | .0015 | 0013 | 0000 | .0012 | 0010 | ~.0001 | .0010 | | | | | | | 0008 | 0001 | .0008 | -,0007 | 0001 | .8807 | 0005 | 0001 | .0006 | 0005 | | | | | | | 000l | .0006 | 0004 | 0001 | .0005 | 0003 | 0001 | .8804 | ~.0003 | 0001 | | | | | | 130.0 | .7068 | -,6834 | .4295 | -,2373 | .0776 | .0189 | 0494 | .0341 | ~.0032 | 0180 | | | | | | | .0215 | 0092 | 0059 | .0136 | 0105 | .0010 | .0073 | 0993 | .0046 | .0024 | | | | | | | 9068 | .0059 | 0012 | 0038 | .0055 | 0033 | 0009 | .0040 | ~.0041 | .0013 | | | | | | | .0021 | 0037 | .0026 | .0002 | 0026 | .0030 | 0013 | 0011 | .0026 | 0022 | | | | | | | .0003 | -9017 | 0024 | .0013 | .0006 | 0019 | .0019 | 0005 | 0011 | .0019 | | | | | | 140.0 | .5489 | -,4913 | .3888 | 2632 | .1395 | 0392 | 0248 | .0564 | 0451 | .0226 | | | | | | | .9929 | 0203 | .0247 | 0174 | .0042 | .0083 | 0149 | .0138 | ~.0068 | 0021 | | | | | | | .0086 | 0106 | .0076 | 0015 | 0045 | .0075 | 0072 | .0035 | .0014 | 0051 | | | | | | | .0063 | 0045 | .0008 | .0029 | 0049 | .0046 | 0022 | 0010 | .0035 | 0042 | | | | | | | .0030 | 0005 | 0020 | .0035 | 0033 | .0016 | .0007 | 0026 | .0631 | 0022 | | | | | # Table 1 (cont'd) | *0 | Q _n (cos ♦ ₀) | | | | | | | | | | | | | | |-------------|--------------------------------------|--------|-------|--------|-------|-------|-------|-------|---------------|-------|--|--|--|--| | (in degree) | (n=0 to 49) | | | | | | | | | | | | | | | 150.0 | -3556 | 3330 | .2908 | 2344 | .1708 | 1073 | .0508 | 0063 | 0233 | .0377 | | | | | | | 6386 | .0301 | 0162 | .0014 | .0107 | 0178 | .0192 | 0155 | .0086 | 0005 | | | | | | | 0065 | .0169 | 0119 | .0098 | 0055 | .0003 | .0044 | 0075 | .0083 | | | | | | | | .0039 | ~.0002 | 0033 | .0056 | 0063 | .0052 | 0030 | -0001 | | 0070 | | | | | | | -0049 | 0041 | .0023 | 0001 | 0021 | .0035 | 0040 | .0034 | .0026
0019 | 0844 | | | | | | 160.0 | -1741 | 1689 | -1590 | 1448 | .1272 | 1072 | .0859 | 0644 | .0439 | 0252 | | | | | | | -0092 | .0036 | 0129 | .0187 | 0213 | -0210 | 0184 | -0142 | 0090 | .0037 | | | | | | | .0613 | 0055 | -6085 | 0101 | -0104 | 0095 | .0076 | 0050 | .0021 | .0007 | | | | | | | 0032 | -0051 | 0062 | .0965 | 9960 | .0049 | 0033 | -0014 | -0005 | 0022 | | | | | | | •0035 | 0043 | -0045 | 0042 | .0035 | 0023 | .0010 | -0004 | 0016 | .0026 | | | | | | 170.0 | .0460 | 0457 | .0450 | 0440 | .0426 | 0410 | .0391 | 0369 | .0346 | 0320 | | | | | | | -0294 | 0266 | .0237 | 6208 | .0180 | 0151 | .0124 | 0098 | .0073 | 0050 | | | | | | | •0029 | 0010 | 0007 | .0022 | 0034 | .0044 | 0051 | -0056 | 0059 | .0060 | | | | | | | 0059 | .0057 | 0053 | .0047 | 0041 | .0035 | 0027 | .0020 | 0013 | .0005 | | | | | | | .000Z | 0008 | -0014 | 0819 | .0023 | 0026 | .0028 | 0029 | .0029 | 0029 | | | | | | 180.9 | .0000 | .0000 | .0000 | .0000 | .0000 | .0000 | .0000 | -0000 | .0000 | .0000 | | | | | | | -8060 | .0000 | -9000 | .0000 | .0000 | -0000 | .0000 | -0000 | .0000 | .0000 | | | | | | | - 9000 | -8000 | -0900 | .0000 | .0000 | .6000 | .0000 | -0000 | .0000 | .0000 | | | | | | | .6060 | .0000 | -0000 | .0000 | .0000 | .0860 | .0000 | -0000 | .0000 | .0000 | | | | | | | .0000 | -0000 | -0006 | . 0000 | .0000 | .0000 | .0000 | -0000 | -8000 | -0000 | | | | | #### REFERENCES - [1] L. de WITTE: Truncation Errors in the Stokes, and Vening Meinesz Formulae for Different Order Spherical Harmonic Gravity Terms. Geop. Jour. Roy. Astr. Soc. 12, 449, 1967. - [2] W.A. HEISKANEN and H. MORITZ: Physical Geodesy, Freeman, 1967. - [3] M.S. MOLODENSKII, V.F. EREMEEV and M.I. URKINA: Methods for Study of the External Gravitational Field and Figure of the Earth. Translated From the Russian by the Israel Prog. for Sc. Transl. Jerusalem, 1962. - [4] Y. HAGIWARA: Truncation Error Formulas for Geoidal Height and the Deflection of the Vertical. Bull. Geodesique, 106, 453, 1973.