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ON THE SEARCH FOR R E L I A B L E  C R I T E R I A  

OF THE A C C U R A C Y  OF PRECISE L E V E L L I N G  

BASED ON STAT IST ICAL  CONSIDERATIONS OF THE DISCREPANCIES 

1. Introduction 

In 1867 the European Association of Geodesy decided that a levelling 
could be qualified as precise when the probable error of the difference in height of 
two points distant one kilometre apart generally did not exceed 3 millimetres and 
was never more than 5 millimetres. 

At that time, and for nearly half a century thereafter, the only type of 
error that was envisaged in this specification was the accidental error. For it was 
only in 1912 that Lallemand submitted at the Hamburg meeting of the International 
Association of Geodesy the hypothesis that levelling was affected by two categories 
of errors (i) accidental errors that followed the law of Gauss and could be assessed 
by a probable accidental error per kilometre 77 so that the probable error of the 
difference in height of two bench marks distant D kilometres apart was /7 ~ /D ,  
and (ii) systematic errors acting along the full extent of a sector of length I, so that 
the probable error of height difference was proportional to D , say o D .  The 
coefficient of proportionality O represented the systematic errors and was called 
the probable systematic error per kilometre. Lallemand regarded the variation of 
the systematic error per kilometre from one sector to the other as purely accidental, 
even if the sectors were consecutive, and, hence, admitted that the totality of the 
values of the probable systematic error per kilometre would add up as accidental 
errors did. The I.A.G. adopted Lallemand's hypothesis and the computing formulae 
based on it, and established a category of levelling,called Levelling of High Precision, 
comprising lines which would be levelled once in each direction, and in which 17 
did not exceed one millimetre and O did not exceed 0.2 millimetre. The probable 
systematic error per kitometre o was to be calculated from the cumulative 
discrepancy between the two independent measurements plotted against the 
distance I) for sectors extending some 200 kilometres. A straight line was fitted 
through each set of points departing as little as possible from the broken line 
joining them while balancing the areas on both sides. Denoting by S the difference 
of ordinates of the two terminals of a fitted line, the estimate of the discrepancy per 
kilometre was S / L .  The probable value of the estimate of thesystematicerror thus 
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obtained was calculated from the weighted mean of S 2 / L 2 taking L for the 
weight, thus 

$2 1 S= a2 = 1 E L .  = Z - -  
q ] ~ L  L 2 q~;L L 

The most serious objection to this system of epparaisel of levelling was 
raised at the Stockholm meeting of the I.A.G. in 1930 by de Cifuentes and 
Gil Lasentas and also by Rune. They argued that, for the same method of levelling, 
the value of the probable systematic error per kilometre changed with the average 
length of the sectors into which the network was divided for its estimation. It 
appeared that the larger was the average length, the smaller was the calculated value 
of O. This was considered inconsistent with the definition of o as a probable 
error per kilometre. To evade this difficulty, Vignal [4], in 1936, proposed a 
different classification of the errors of levelling. The class of accidental errors was 
to be retained but they were re-named "erreurs pantophanes", because they acted 
everywhere. They could be represented by a probable error per kilometre 77 so that 
the probable error of the difference in height of two bench marks distant D 
kilometres apart was 17 V ~  . The systematic errors were to be replaced by the 
"erreurs apophanes". These errors could also be represented by a probable error per 
kilometre ~" but its propagation depended on whether the distance D was greater 
or smaller than a certain minimum length Z . If D was greater than Z the 
probable error of height difference was given by ~'~v/'D. If D was smaller than Z 
the influence of the apophane errors was still proportional to ~ but the 
coefficient of proportionality would gradually fall from the value ~" at D = Z to 
zero as D approaches zero. The minimum length Z was the distance at which the 
value of J" calculated from the cumulative discrepancies ceased to depend on D. 
Vignal also suggested that the combined influence of all the errors could be assessed 
by a probable total accidental error per kilometre 

e = V17 2 + ~ 

for lines the average length of which exceeded the minimum Z ,  and that the total 
probable error e should not exceed 2 millimetres per kilometre for levallings of 
high precision or 6 millirnetres per kilometre for levellings of precision. The 
pantophane discrepancies over a distance of r kilometres were not to exceed + (5 

to 8 ~ s~mae aPtPhan,es~tPan; i :  were not to excead +2 to 2.5 ~'[. ~ 
~,A~en s I kilometres" or • 6 to 8 J ' V ~  if L 
was longer. 

These attempts to define and evaluate levelling errors did not escape 
critical comment. Remarking on the hypothesis that the error which was systematic 
throughout each line of the network had random values in different lines, Bomford 
[1], in 1952, wrote "There is no particular reason why this should be so, although 
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there is equally no reason why 'the systematic error should remain constant 
indefinitely, particularly in the mean of the fore-- and back-levelling, and the 
theory behind the formulae is not satisfactory". Recently, in 1968, MOiler and 
Schneider [3] declared that they found no room for the "so--called systematic error 
of classical theory". In their own words "Die Diskrepanz zwischen der Bewertung 
eines Netzes aus Stracken und Linien verschwindet bei Verwendung geeigneter 
Gewichte, wie sie aus dem Exponentialgesetz gewonnen wurden, so class kein Platz 
mehr for den sogenannten systematischen Fehler der klassischen Theorie vorhanden 
ist". 

In the present paper the problem of evaluating the accuracy of high- 
precision levelling is investigated in the light of reseamhes on the application of 
mathematical statistics to the analysis of levelling errors [3, 6--13]. It is hoped to 
show that, while this venture should continue along all conceivable approaches, the 
progress made so far is enough to enable us to define without ambiguity the types 
of error to be reckoned with and the method of estimating each, leading to the 
development of more reliable indices of accuracy and satisfactory tolerance 
specifications. These are needed to refine the methods of assessing technical 
improvements and to increase the utility of levelling data for geodetic and 
geophysical researches. 

2. Error model and the estimation of the random component 

Let us set out by supposing that for any position of the levelling instrument 
the discrepancy ~ijk between the direct and the reverse measurements of the 
difference of elevation is composed of a constant c' , an error ~;~ which is 
somehow associated with the levelling lines, changing from one line to the other but 
being constant for one and the same line, and a random component ~ijk of zero 
mean and standard deviation 1". This model of the discrepancy is quite useful. For 
if we could prove that ~:i' is in fact nil we would at once adopt the estimate of the 
random error component as representative of the quality of the levelling network. 
If, on the other hand, K;~ would prove statistically significant we should push the 
analysis further to estimate this component and look for its cause. The mathematical 
model for the analysis of 8 according to this mode of classification of errors is 

= c* 8tj= + + Eiik 

wh~re k denotes the position of the instrument on the j th section of the i th 
line of the network, a section being the stretch between two consecutive bench 
marks. Assuming that the successive instrument positions are equally spaced at, say, 
r metres we have for the discrepancy Pij between the direct and the reverse 
levelling of the j tit section between two bench marks distant Rij on the line i 
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Pij = ~k 8ijk - ( R i j / r ) ( c ' + K ~ ) +  k ~ ~ k  

-- R i j ( c ' l ' K i ) +  ~k ~i]k 

Denoting the discrepancy per kilometre of the length of the section by 
Wij we have 

wij = P i j /R i j  = c + ~ : i + ( 1 / R i j )  ~k ~ijk 

1 
e 

]~ /;ijk has zero mean and standard deviation (R i j / r )  2 . 1-'. Hence, the last term 
in the expression for wij has zero mean and standard deviation ( l / R i j )  

1 

(Rij / r) 3" �9 t" ' ,  or 1"/(Rij)~. The model for wij , therefore, takes the form 

! 

2 
wij = C-FK i + ~ij (0 ,  T/Ri j  ) 

Levelling networks are according!y expected to feature the following : 

(i) a significant linear regression of Pij on Rij , 

(ii) no significant regression of wij on Rij and 

(iii) an inequality of the within-line variances of wij that can be eliminated 
or effectively reduced by weighting wij proportionally to Rij �9 

Let us examine the evidence of the levelling networks which have been 
subject of analysis by statistical methods, The analysis of the levelling network of 
the Nile delta [6] and the analysis of the Second and the Third Precise Levellings of 
the Netherlands [11, 13] give ample data for a discussion of the regression of p 
on R .  In each case, the Sum of the Squares of the differences of wij from the 
respective line-means was broken up into two sums of squares, one is due to linear 
regression and the other is due to the deviations from the line of regression. 
Writing 

B' = Z I; ( w i j -  wi) 2 
i j 

C' = ]; ]; (wij - wi)  (Rij - Ri)  (2) 

A ' =  F., ~, ( R i j - R i )  2 

we have 
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S.S. due to linear regression = C ' 2 / A '  

S~q. of deviations from regression line = B' - C ' 2 / A '  (3) 

The statistical significance of the regression is indicated by the relative 
values of the mean square due to linear regression and the mean square of the 
deviations from the regression lines. The mean square is obtained by dividing the 
sum of the squares by its degrees of freedom. In the present case the sum of the 
squares due to regression has one degree of freedom and the sum of the squares of 
the deviations from the regression lines has N - m - 1  degrees of freedom, where N 
is the total number of sections and m is the number of lines carrying them. Table 1 
gives the relevant quantities. 

For the Nile delta network the mean square due to regression, 3.0/1 = 3.0, 
is almost equal to the M.S. residual from the regression line. Linear regression is 
therefore not indicated. For the Second Levelling of the Netherlands the M.S. due 
to linear regression is larger than the M.q. deviation from the regression line, but the 
ratio 

C ' 2 / A  ' / n r / a  . . , _ . . . , 2 ,  , = 9.7/1.9 = 5.1 
1 N - m - 1  

with 1 , 4248 degrees of freedom is too small to indicate significance of linear 
regression at'the 1 %  level. The Third Levelling of the Netherlands gave the ratio 
3.9/1.9 = 2.0 with 1 , 4717 degrees of freedom. This value is well below the 
10 % level. We may therefore conclude that the precise levellings in Egypt and in 
the Netherlands support the hypothesis that the variate wij = p i j /R i j  is not 
associated with Rij within the lines of the networks. 

Let us now study" the evidence given by the analysis of the Precise 
Levelling of the German Democratic Republic by M~ller and Schneider [3] in 1968. 
This network comprised 7138 sections on 107 lines. M~llerand Schneider set out 
by calculating the correlation coefficient between the discrepancy p (regardless of 
the sign) end R within each of the lines, using the well--known expression of the 
product-moment coefficient of correlation 

Z ( I p l  - 1 7 1 ) ( R - R )  
~ / � 9  ( Ip l  - I Pl)  2 2 ; ( R - ~ ) '  

The value of the correlation coefficient for each line is quoted in Table 2 
together with the value which would indicate significance at the 1 =/o level. 

The authors noted that 75 o/= of the correlation coefficients were 
significantly different from zero at the probability level ] % and that the 
correlation coefficient for all the ( I P l ,  R) was 0.45 which is highly significant 
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since, for 7136 degrees of freedom, a correlation coefficient equal to 0.09 would 
be significant at the 1% level. The authors further remarked that "taking into 
consideration that the correlation coefficient calculated from the observations is 
considerably suppressed from its true value by the chance deviations of the 
observations, it must be supposed that the correlation between I P I and R is in 
fact much larger than 0 45". All this is good evidence that the association of the 
two variables is in fact linear or can be effectively represented by a linear relationship. 
For when we fit a straight line of regression to data, the sum of the squares of the 
deviations from the line of regression of either variable on the other is equal to 
N 0 2 (1 - k 2 ) , where k is the correlation coefficient and o" is the standard 
deviation of the variable whose regression is sought. If the correlation coefficient is 
1 or - 1  the sum of the squares of the deviations from the regression line is zero. 
Consequently, each deviation is zero, and all the points lie on both lines of 
regression. These two lines then coincide ; and there is a linear functional 
relationship between the variables, giving perfect correlation. The nearer k 2 is to 
unity, the closer are the points to the lines of regression, and the nearer are these 
two lines to coincide. Thus the magnitude of the correlation coefficient may be 
taken as a measure of the degree to which the association between the variables 
approaches a linear functional relationship. 

The equation ] p ~ = 0.47 R ~ 6 which M~ller and Schneider obtained 
from their analysis of the regression of ~ p I on R should not distract our 
attention from the evidence of linearity given by the correlation coefficient, because 
the regression analysis which led to the index 0.6 had not been designed to examine 
the association between p and R within the lines of the network. Let us see how 
the regression was calculated. The 7138 values of I P I were arranged according 
to increasing values of R and divided into 23 classes in such a way that each class 
contained only closely succeeding values of R and roughly equal numbers of 
IP I values, about 360 per class. In this way, to each Rj of a class there 

belonged nj values of I P ~ �9 The weighted mean R was calculated for each class, 
R = ~ nj Rj / ~ nj , and a representative value of I P I was calculated, viz. 
I P l  = ~ (all I Pl of thec less) /~n j .Acurveof theform I P I = o,R~ was 
fitted to the ( I P" I , R) values both graphically and numerically using weights, 
giving ~ ~ i = 0.47 R ~ . This, however, does not describe the behaviour of 
Pij within the lines, because each of the twenty three classes was compiled from 

elements selected from the ]07 lines of the network. The values of p in a class 
thus constituted a mixture from sub-:populations that are likely to be of different 
means. In other words, the process of classification mixed the within-line variation 
with the line effect and hence the resulting regression function describes neither and 
does not confute the argument for the representation of the discrepancy per 
kilometre within the lines by the expression (1). 

Let us now proceed to examine whether the estimates 
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I ~ (Wij -- wi) 2 (4) 
S~ = l l i  _ 1 

of the variance within the lines may be combined to give an estimate of the random 
or accidental error. This would be the case if they formed a homogeneous set. To 
test homogeneity, in the sense of the equality of the estimates of variance, the 
Barlett function 

m 

was calculated for each net, noting that v i = n i - 1 is the number of degrees of 
freedom on which the estimation of si 2 was based. The functic4n M is distributed 

as X 2 with m -  ! degrees of freedom. Table 3 shows the size of M compared 
with the 1 %  value of X 2 . The wi th in- l ine variances are glaringly heterogeneous 
in all three networks. When weights Rij were attached to wij , however, the 
inequality of the within- l ine variance for one-ki lometre sections given by the 
equation 

- 2  1 
S i - Z R i j  ( w i j - w i )  2 (6)  

n i - -  1 

becomes much less significant (Table 4). This shows that weighting reduced the 
inequality of the within- l ine variances in the Egyptian network to insignificance, 
and it did much to stabilize the variance within the Dutch lines although it could 
not quite eliminate the significant heterogeneity. 

At this point of the analysis it repays to scrutinize the data in search of 
outlying values. Let us, for example, examine the set of variances of the Third 
Levelling of the Netherlands (Table 5). Sixteen values exceed 2.0 and two values 
are less than 0 .25.  When these values are set aside, the value of M sharply falls 
from 369 to 202 which does not reach the I O/o level of significance. To 
demonstrate that the sorting out of the outlying values was not carried out too far 
let us calculate the probability of occurrence of an outlying value and compare it 
with the observed frequency. Noting that the casting away of the outlying values 
leads to a reduction of the estimate of the variance to 1.]8 with 159 degreas of 
freedom, and taking 20 for the average number of degrees of freedom that are 
available for the estimation of a wi th in- l ine variance, we should expect no more 
than 1 %  of the values to exceed 2 x 1.18 = 2.36. We may thus expect to find 
one value, possibly two, whereas the actual number of values exceeding 2.36 in 
Table 5 is ] 2 .  We thus come to the conclusion that weighting wij according to 
R|j , possibly followed by the setting aside of a small number of outlying values on 

probability basis, has a very good chance to lead to a set of estimates of the w i th in -  
line variance that shows no excessive heterogeneity. 
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Opinion may, however, be divided on the level of significance at which the 
hypothesis of equality of the within--line variances should be rejected. In this 
respect it is worthwhile to consider the consequences of accepting the hypothesis of 
equality when it should ba rejected, and the other way round. Two points merit 
mention : 

(1) A large value of M ,  indicating inequality, may ensue from the presence of a 
few bad observations or from observations that are too good to belong to the main 
bulk of the data. In such cases the sorting out of a small number of outlying values 
is legitimate provided it is done on probability basis. The variances of the main 
bulk will display moderate differences and the estimation of a common variance 
becomes feasible. The common variance is the measure of the accidental or random 
part of the error and the gauge which can be used to test the significanceof non- 
random effects. 

(2) In case the large M can not be attributed to a small number of outlying 
values we may then conclude that the network is essentially heterogeneous and 
proceed to study the feasibility of breaking it up into two or more homogeneous 
blocks. 

To sum up, the within-line variances 

s~= = 1 ~ - w i )  2 i f  1 2 , .  
n i - I (wij . . . . .  m 

are not expected to be estimates of a common variance unless all the sections are 
equal in length. The estimate of the within-line variance for one--kilometre 
section, denoted by i~ , should be more stable. They are obtained by weighting 
wij proportionally to R i j ,  thus 

-Si 2 = _,,I ~ Ri  j ( w i j _ ~ i ) 2  
n = -  I 

The expected equality of these estimates may however be upset by a small 
number of outlying values. When these are sorted out on probability basis, the rest, 
which constitutes the main bulk of the data, should be homogeneous enough for 
the purpose of estimating a common within-line variance for one--kilometre 
section by pooling the weighted sum of squares. In this way we obtain 

-SR2 = N--1 m ~ Rij (wij -- ~ i )2  (7i 

where m is the number of lines and N is the number of sections on them. it~ is 
based on N -  m degrees of freedom. 
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~L Assessment of the non-random errors 

Let us now proceed to examine the variation of the m line--means of 
wij . Dividing by m -  1 the weighted sum of the squares of the differences 

between the line means and their weighted mean we obtain the Mean Squares 
between line-means 

1 
Z L i (wi - w)' (8) 

m - i  

where L i = ~ Rij is the length of the i th line and 

~ l  = Z Rij w i j /L  i 

w -- Z L i ~i/ Z L t 

If only the common random error existed the MS. between-l ine-means 
would be an unbiased estimate of the variance of the random error and should not 

i l~ derived from the wi th in- l ine variation. If, differ significantly from the estimate 
on the other hand, the M.S. between line-means proves to be significantly larger 

~l~ we can no longer assume that all K i are nil nor than that the all variation in 

the network is accountable by the random error, and we should try to calculate an 
estimate of the variation of h; i . 

The equality of the M~.  between line-means and i l~ is tested by 
calculating the ratio 

I 

m - 1  

and comparing the ratio with the tabulated F at the desired probability level using 
the right number of degrees of freedom. Table 6 gives the relevant quantities for the 
three networks mentioned above. The M,S. between line-means is evidently much 

- - 2  larger than the estimate s R of the variance of the random error. To calculate the 

variance of K i ,  which we denote by i']~, it suffices to work out the mathematical 

expectation of the M~.  between line-means. First, we note that 

L i ( w i - ~ )  2 = Z L i ( ~ i - W c )  2 -  • L i ( ~ - w r  (10) 

We also have 
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= 7,' + 
Li 

E ( z _ . o ) 2  ( - ,  - 2  = s L + ( 1 / Z L i ) .  s R 

Hence, 

E 2 ; L  i ( w i - ~ )  ( ~ L i  ~ ; L ~ /  ~ L i ) . - 2  = - s L + ( m - l ) .  s~ 

It follows that the estimate of the variance of the non-random error, or 
the line effect, is given by the equation 

111 

; ~ = {  Z L i ( w i - w ) ' - ( m - 1 ) . s - ] ~ } /  ( ~ L  i -  ~L~=/  2 ; L  i )  (11) 

with m -  1 degrees of freedom. 

We may wish to ascertain that the significance of the non--random effect 
has not resulted from the casting away of outlying values. This is very unlikely 
unless the lines which have outlying within--line variances happen to have outlying 
line-means. To illustrate this point, the contributions of the sixteen lines of the 
Third Levelling whose s~ = ;~ 2.0 are given in Table 7. The total contribution is 
43.8 which leaves almost unchanged the value of the M~S. between line-means, 
now 472/161 = 2.93. Since the within-line M~S. is now 1.18 in place of 1.30 
the statistical significance of the between--lines effect is accentuated. 

4. Types of non-random error 

Let us now consider the types of error which constitute the line--effect 
estimated by i ]~ ,  in an attempt to tie it up with the idea of systematic error and 

the concept of internal correlations. Let us first cite one of the classical examples 
which showed that the breaking up of the variation into a constant systematic error 
and a random error was grossly insufficient. The experiment, which was conducted 
by Karl Pearson about 1900 , consisted of bisecting a line by eye, the accuracy 
being afterwards checked by measurement. There were three observers, who each 
made about 500 observations. When the observations were taken in groups of 25 
to 30 it was found that the means fluctuated, not by the amounts that would be 
expected of the means of 25 to 30 random errors, but by as much as the means 
of 2 to 15 independent observations should. The non-random error was not 
constant but reversed its sign at irregular intervals. 

Errors of observations in levelling are expected to cause internal 
correlations of the type just described. But one can cite many other causes, for 
practically every fluctuation of the physical or meteorological conditions under 
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which the levelling is carded out is a likely cause of internal correlations, provided 
that it lasts the comparatively short time needed to level a line or the larger part of 
a line. To these should be added the systematic errors proper, a systematic error in 
levelling being appropriately defined as a quantity associated with an observation of 
a height difference which, if its value could be accurately known for one observation 
of a series, would be calculable for all others. 

The collective of systematic errors [2, 5] and other causes of internal 
correlations may be called the non-random error and can be assessed by the 
standard error SL �9 

5. Propagation of the random and the non-random errors in a levelling network 

To obtain the standard value of the random error of the height difference 
over a line of length Lj  kilometres obtained by double levelling we proceed as 

- - 2  follows : The variance of a section of length Rij kilometras is s R / Rij and, hence, 

P~ R i j ) .  - sR 2 . Since Pij is the difference the variance of is ( ~ /  Ri l  = R|j 

between the direct and the reverse measurements of the height difference, the 
variance of the mean of the two measurements is one quarter the variance of p i j ,  

l -  
sl~ �9 R i j .  Adding up the variances of the sections of the i th line we find or 

that the variance of the mean of the direct and the reverse measurements for the 
line is 

I - 2  ~ Ri j 1 -2  Li  (12) SR = ~ SR" 

When the line effect is statistically established, the variance is calculated as 
follows : The quantity Ki is presumably common to all wij of the i th line, 

hence it contributes K i .~ Rij to the total discrepancy Pij on this line and 
J 

1 - 2  I -  st. ( ~; R| j )  2 = ~ s~.. Li  2 (13) 

to the variance of the mean of the direct and the reverse measurements. 

Summing over i we see that the variance of the mean is given by 

P P 
z L} + Z Li) (14) 

4 " ~ 

It follows that the total error, represented by the square root of this 
variance, increases neither with the distance nor with its square root, nor indeed 
with any particular function of the distance. It does not seem presumptuous at the 
moment to submit that the weight function which may rightly be assigned to the 
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heights of bench marks in the process of network adjustment is 

P P 

0 

0 0 
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Table 1 

Insignificance of the regression of w on R 
within 1he lines in three large levelling networks 

Nile Delta Second Levelling of Third Levelling of 
network .the Netherlands the Netherlands 

(1927- 1937) (1926- 1940) (1950- 1959) 

B' 3529.4 8112.5 8877.4 
A' 843.0 1330.I 658.6 
C' 50.2 - 113.5 - 50.7 

C ' 2 / A '  3.0 9.7 3.9 
d.f. 1 1 1 

B' - C '2 / A' 3526.4 8102.8 8873.5 
d.f. 1097 4248 4717 

B , _ C , ~ I A  , 
H - m - 1 3.2 1.9 1.9 

Table 2 

Correlation of p on R 

Line 1 %  level Line 1 ~ level Line 1 %  level Line 1 %  level 

1 0.433 0.21 28 0.356 0.32 55 " 0.265 0.32 82 0.473 0.26 
2 0.413 0.26 29 0.553 0.25 56 0.599 0.27 83 0 .441 0.17 
3 0.191 0.70 30 0.524 0.20 57 0.479 0.35 84 0.493 0.30 
4 0.397 0.28 31 0.460 0.22 58 0.441 0.38 85 0.466 0.37 
5 0.487 0.24 32 0.649 0.44 59 0.517 0.28 86 0.326 0.34 
6 0.535 0.25 33 0.796 0.35 60 0.595 0.51 87 0.550 0.25 
7 0.443 0.32 34 0.449 0.29 61 0.596 0.34 88 0.148 0,31 
8 0.601 0.49 35 0.747 0.56 62 " 0.787 0.60 89 0.438 0.40 
9 0.547 0.30 36 0.633 0.25 63 0.299 0.39 90 0.116 0.37 

10 0.599 0.39 37 0.352 0.37 64 0.425 0.33 91 0.384 0.31 
11 0.411 0.37 38 0.209 0.35 65 0.257 0.24 92 0.471 0.39 
12 0.416 0.34 39 0.306 0.37 66 0.092 0.53 93 0.137 0.55 
13 0.363 0.21 40 0.270 0.41 67 0.398 0.35 94 0.080 0.34 
14 0.506 0.36 41 0.445 0.39 68 0.548 0.28 95 0.519 0.26 
15 0.687 0.46 42 0.413 0.43 69 0 .641 0.25 96 0.485 0.33 
16 0.394 0.29 43 0.436 0.45 70 0.416 0.25 97 0.643 0.47 
17 0.278 0.27 44 0.588 0.67 71 0.607 0.36 98 0.436 0.23 
18 0.539 0.34 45 0.781 0.47 72 0.438 0.26 99 0.413 0.25 
19 0.575 0.35 46 0.640 0.57 73 0.259 0.29 100 0.449 0.20 
20 0.432 0.33 47 0.474 0.34 74 0.415 0.27 101 0.097 0.37 
21 0.504 0.28 48 0.547 0.33 75 0.516 0.40 102 0.387 0.23 
22 0.637 0.58 49 0.347 0.32 76 0.544 0.30 103 0.180 0.36 
23 0.432 0.53 50 0.475 0.29 77 0.248 0.28 104 0.546 0.25 
24 0.400 0.34 51 0.431 0.31 78 0.185 0.29 105 0.334 0.61 
25 0.347 0.54 52 0.419 0.25 79 0.546 0.52 106 0.489 0.25 
26 0.592 0.39 53 0.446 0.24 80 0.560 0.39 107 0.522 0.23 
27 0.276 0.42 54 0.183 0.28 81 0.639 0.34 

Table 3 

Inequality of the within--line variances of the unweighted Wij 

Nile Delta Second Levelling of Third Levelling of 
Levelling the Netherlands the Netherlands 

M 140 622 468 
X 2 .ol 118 289 223 



TaMe 4 
Stabilization of the wi th in- l ine variance by weighting proportionally to Rii 

Nile Delta Second Levelling Third Levelling 
I.evel l ing N e t h e r l a n d s  Netherlands 

M f o r  s~ 140 622 468 
M for s i 102 323 369 

.Table 5 

The wi th in- l ine variances for ona-ki lometre section in the 

Third Levelling of the Netherlands 

- 2  - 2  - 2  - 2  - -2  - 2  
L i n e  v i s i L i n e  Pi si L i ne  u i s L i n e  u i s i L i n e  v i s i L i n e  u i s i 

1 9 3.788 31 14 0.703 61 8 0.321 91 9 0.561 121 32 1.723 151 28 0.641 

2 8 0.591 32 7 0.234 62 6 0.821 92 19 1.418 122 28 1.357 152 28 1.339 

3 18 2.882 33 35 0.841 63 34 1.931 93 26 1.851 123 15 2.706 153 39 0.827 

4 5 3.088 34 27 0.657 64 20 0.962 94 10 0.791 124 36 0.921 154 23 0.963 

5 15 2.672 35 15 1.693 65 14 1.019 95 26 0.907 125 17 1.079 155 39 1.420 

6 17 1.805 36 77 1.044 66 50 0.947 96 16 1.556 126 40 0.805 156 6 0.313 

7 11 0.483 37 31 1.493 67 9 0.666 97 21 1.440 127 43 1.298 157 37 1.397 

8 34 2.368 38 29 3.060 68 17 0.384 98 34 1.613 128 30 1.449 158 14 0.781 

9 17 1.372 39 61 1.332 69 l l  0.430 99 28 2.324 129 17 1.628 159 27 0.847 

10 8 1.528 40 56 1.133 70 19 1.249 100 17 0.908 130 43 1.278 160 32 1.134 

11 13 1.022 41 47 1.472 71 33 1.356 101 48 1.745 131 57 1.133 161 26 1.078 

12 30 1.325 42 32 0.642 72 4 0.091 102 51 2.451 132 15 0.956 162 39 1.442 

13 23 1.362 43 36 1.139 73 23 1.504 103 34 1.456 133 38 0.804 163 58 1.146 

14  13 1.485 44 16 1.319 74 17 1.098 104 12 0.865 134 6 1.290 164 28 0.468 

15 13 1.023 45 34 0.772 75 27 1.538 105 33 1.155 135 28 1.029 165 27 0.900 

16 17 1.015 46 22 0.386 76 10 0.894 106 23 1.226 136 40 1.614 166 23 0.645 

17 6 0.479 47 25 1.150 77 41 1.412 107 42 2.311 137 55 1.023 168 7 0.475 

18 30 0.766 48 20 0.681 78 24 1.283 108 29 2.126 138 39 1.294 169 5 0.613 

19 15 1.721 49 36 0.761 79 26 1.342 109 32 0.952 139 30 1.248 170 43 1.771 

20 19 1.098 50 33 1.158 80 40 1.665 110 50 1.108 140 31 1.198 171 26 1.493 

21 29 1.475 51 17 1.093 81 10 1.324 111 39 1.373 141 54 1.115 173 43 1.517 

22 34 0.619 52 37 1.057 82 5 0.732 112 52 1.613 142 27 0.854 175 19 1.091 

23 23 0.731 53 14 0.772 83 11 0.750 113 38 1.937 143 21 0.998 176 27 0.768 

24 11 0.687 54 35 1.616 84 5 1.505 114 12 0.867 144 32 1.260 177 21 3.451 

25 6 1.269 55 15 1.527 85 16 1.473 115 23 1.076 145 31 0.782 178 8 3.986 

26 10 0.689 56 21 1.105 86 32 1.306 116 26 3.846 146 25 1.625 179 35 0.996 

27 47 0.753 57 12 1.092 87 24 0.868 117 39 1.664 147 38 1.550 180 47 1.406 

28 41 1.052 58 24 1.576 88 46 1.366 118 15 1.260 148 12 0.949 181 37 1.746 

29 20 2.033 59 31 1.122 89 10 1.240 119 37 0.704 149 24 1.297 

30 22 2.805 60 42 1.014 90 45 1.122 120 49 1.355 150 30 1.210 

162 



TaMe 6 

Significance of the between-lines effect 

Nile Delta Second Levelling Third Levelling 
Levelling Netherlands Netherlands 

Calculated ratio 1.71 1.47 2.24 

d.f. 86, 1098 236, 4249 177, 4718 

F.o z 1.41 1.24 1.27 

F.oe z 1.49 1.32 1.37 

Table 7 

Contribution, to the between--lines sum of  squares, 

of lines of large outlying values. 

Line W i L i Li(W i-w-') 2 Line W i L i Li(~i-W) 2 

1 - 0.442 14 2.4 99 + 0.298 30 3.1 

3 - 0.081 23 0.1 102 - 0.239 44 2.0 

4 - 0 . 1 0 6  6 0 107 +0.146 45 1.3 

5 + 0.443 20 4.4 108 - 0.103 22 0.1 

8 +0 .524  42 12.7 116 - 0 . 4 1 2  28 4.2 

29 +0.042 21 0.1 123 - 0.651 18 7.0 

30 - 0 . 2 1 8  27 1.0 177 - 0 . 1 1 8  30 0.3 

38 +0 .163  33 1.2 178 - 0.687 9 3.9 
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