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RECURRENCE RELATIONS FOR INTEGRALS OF
ASSOCIATED LEGENDRE FUNCTIONS *

Abstract

Recurrence relations for the evaluation of the integrals of associated Legendre
functions over an arbitrary interval within (0° ,90°) have been derived which yield
sufficiently accurate results throughout the entire range of their possible applications.
These recurrence relations have been used to compute integrals up to degree 100 and
similar computations can be carried out without any difficulty up to a degree as high as
the memory in a computer permits. The computed values have been tested with
independent check formulae, also derived in this work ; the corresponding relative errors

never exceed 10~ 23 in magnitude.

Introduction

In recent times, the use of spherical harmonic techniques is gaining increasing
importance to represent and analyse observed data in the fields of physical and satellite
geodesy. Dependable results for higher degree harmonics are now obtainable from data
collected by various geodetically oriented artificial satellites set into orbits around the
earth. With continuous improvements in computing facilities with respect to speed and
storage capacity, spherical harmonic analysis of surface gravity data up to a degree as
high as 200 has also been recently reported (Nagy, 1977).

At some stage, all such analyses require the evaluation of integrals of the form

Com . cos
S = £(0,7) P, (cos8) i (mA) do , (N

nm pl mn
m=0,1,...n, n=0,1,...N,

where f (6 ,Q) is an observable quantity (such as gravity, elevation, etc.) everywhere
over a unit sphere, 0, representing the model earth, P (cos@) is the associated
Legendre function of degree n and order m, d ¢ = sin 8 d§ dA is the differential area
carresponding to the colatitude 8 and longitude A of the point of observation and N
is the highest degree of the harmonic functions considered in a particular analysis.

When the area of the unit sphere is subdivided into a number of elementary
blocks of reasonable size (viz. 5° x 5°,1° x 1°) and f(8.}) is assumed constant over

* — Contribution from the Earth Physics Branch No.719
Bull. Geod. 52 (1978) pp. 177—-19Q.
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any such block from practical considerations, the equation (1) can be re-written as

nm

S k

nm Ox

cos
1 f P (cos8) an (mA) do (2)

neg =

m=0,1,...n, n=0,1,...N,
with
g = E ak (3)

where f, is the constant value for f (6 ,)) over o, and K is the total number of
blocks.

Again, when g, is reasonably small and N is not too large (not greater than
30, say), the variation of P (cos@). [cos(m}) or sin(mA)] over 0, may be
negligible enough to replace it by a constant value P (cos Gk).[ébs (mx,) or
sin (m\, )] where (8, ,A,) is an appropriate point over g, — possibly, its center.
Equation (2) then reduces to

C K
nm _ cos
= kE=l f Pom (cOs 6,) o (mAy) o (4)
nm
m=0,1,...n, n=0,1,...N.
Until recently, most of the practical computations seldom exceeded 30 for N
and, as such, the use of equation (4) in such computations should be adequate.

On the other hand, with the present trend of carrying out similar computations
for higher values of N, it is essential to work out exact, or at least more accurate,
methods of evaluating

Cinm f cos
S = Pm (cosa)m (mA) do (5)

knm ak
k=1,2,...K, m=0,1...n, n=0,1,...N.

When o, is bounded by parallels (§=60,, and 8 =0,,) and meridians
(A=A, and A=2,y), equation (6) can be factorized as

C J

knm _ _| km {6)
knm *
sknm o Kkm
where
62k .
Liom = —/ P o, (cosB)sin6dd, (7)
81x
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T, A2k cos
m =f  (mA)dA, (8)
Kkm sin

Mg
As equation (8) can be readily evaluated, the only problem is the evaluation of
(7} which, after suppression of the index k and substitutions of t=cos8 , t, =cos8,
and t; =cos 8, , assumes the form

t
g (61012) = B (031 ©

t

Thus, we recognize the necessity of the evaluation of (7} in carrying out a high
order spherical harmonic analysis of any kind of observed data.

Some works on the evaluation of such integrals have been-published previously
in the literature. The method considered by Young (1970) has some problem of
instability around polar regions. Gaussian quadrature methods of Christodoulidis and
Katsambalos (1977) have disadvantages with respect to accuracy and computation time
as N becomes much larger than 60— the highest value they have used. Their
alternative method, which involves the evaluation of the integrals of the form

f sin™ 8 d0 using some series in which the number of terms increases with n, is
computationally inefficient and subject to increasing round - off errors.

The recurrence relations developed below are free from such problems. The
number of terms in these reiations remains unchanged as n increases to higher and
higher values. The instability around polar regions has been eliminated by a special
technique and the question of error in numerical integration does not arise.

The Proposed Method

We start by listing below some of the well - known relationships involving
Legendre polynomials and associated Legendre functions which we are going to use
repeatedly. They can be found in any standard text book dealing with the subject {viz.
Hobson (1955), Heiskanen and Moritz (1967) ).

m 4P (1)

Pm() =y T (10)
P im®=-PF _, n()=(@2n=3)yP _, (V) (1)
Pt O+ (me D (4m)B, () = 2m 2R, () (12
(n-m)P_, o (D +(+m=3)P _, (1) = (2n-3)tP,_, (1) (13)
with

y? =1-1t? (14)
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First we define a set of integrals J_ (t; ,t3) and relate them to the other set

of integrals 1 (ty ,t;) asbelow :

t
(m+l)f2 -;;-an(t)dt

t

Y2 d™P (1)
— (m+1) f y" —2—dy
m
Y=Y1 dt

(m+1)3 (1, ,t2)

t,

—yan (t) +ln,m+1(tl ,tz) (15)

t
Again, integrating (12) with respect to t from t; to t; ,we'can write
2mJ (ty,t) =L pyy (T t) +(n-m+1) (n+m)I __ (ti,t:) (16)

Hence, eliminating I m+1 (ty ,tz) from (15) and (16) we have
ta
(=Dl (111) = (=t DO+m) gy (o6 4y P O | 17
1
Now, substituting (10) and (11) in (13) we can write,

(n-m)P, | o D+ (@4m=-3)P _, (D)
=§[Pn_l'm(t)—Pn_3’m(t)] (18)
which, after integration similar to the above, gives
(n-m)I, _, o, t)+(+m=3)1 . (t;,13)
= Jn_,'m(t, ,tz)—Jn_s'm (ty.t)  (19)
Substitution of (17) in (19) then gives

I _(=3)(a+m-3) |

n-—l,m—l(t"h) n—3,m—1(tl't1)

.n{n~m)
_ (2“—3) 2P t t?.
Py — Y P _im-1 (D) s (20)

Because of the singularity at m =n, the above relation can not be used to
compute I _, |, (t1,t3). Assuch, a recurrence relation for I, _, -1 (ty,t2)

has been derived separately from the relation

180
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Pn—l,n-—l(t)=(2n—3)yPn—2,n—2(t) {(21)

by performing on it integration similar to the above, when we get

In--l,n—l (t1,t2) = (n—l)(zn;3)(2n_5) In—S,n—a(tl yt2)

2n-3

2 ta
+ Y P _2a-5(D) . (22)

1

Let us now examine some of the computational properties of equations {20) and
(22) in polar regions, when y is very small, Then, the magnitudes of Inm and an

are of the ordersof y™ and y™ ~? , respectively. While this does not pose any problem
in dealing with (20), computations with (22) result in addition and subtraction of
numbers of the same order to produce a number smailer than them by an order of y2 .
This will, naturally, cause loss of accuracy in the results if (22) is applied repeatedly as a
recurrence relation. Accordingly, an alternative formula has been developed for polar
regions which is free from such inaccuracy. To obtain this, we consider a second formuia
for P _, -1 (t) intermsof y (y being related to t through (14)) as

P a1 () =(20-3)(2n-5)...3 yr—! (23)
Therefore, with
yio=1-tf
y2 = 1-t2 {(14a)

we can write,

t
(2n-3)(2n-5)...3 f y"—1dt

In-—l,n—l (tl:t2)

y
-(2n-3)(2n-5)...3 f 2y“(1—y’)°+ dy - (24)

Y1

Then, expanding the integrand in the right hand side of (24) in a power series of
Y and performing term by term integration, we obtain

ln_l,n_l(tl’tZ) (25)

2 6 Y2
Yy L3 ¥y o 1.3.5 y¢

= —(2n-3)(2n-5)...3yn+1 L 4 3 +..]
. .6 n47 Y1

1 y* 1.3
n+l 2n+3 2.4 n+5 2.4
which converges rapidly over its proposed range of appiication.

Thus equations {13), (20), (21), (22) and (25) along with the following initial
values will enable us to compute vatues of P m (1) and Lm (ti,t2) up to any

required degree and for all values of 6 :
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3t2 -1
2

Pt;o (W) =1,Po(t)=t, Py (t) =y, Py (t) =

Py (t) = 3ty, Py (1) = 3y?, Ioo(ti,t2) = ta—ty,

2

t? —t, tay, —02 -t 1y, +6,

2

Lo (t1,t2) = » i (ty ,t2) = , (26)

2 2
t1yy —tay:

5 Ja (t,ta) =78 —ys

Io (ty,t2) =

I3 (t,,t3) = 3t -t —3t, +t

Fully Normalised Version

Fully normalised associated Legendre functions and their integrals are related to
the corresponding non -~normalised ones by

ino (t) =Hn0Pn0(t)’ fno(tl!tZ)= Hnolno(tlth))

(27)
P.()=H P (1), T (t,,t;)=H 1 _(t;,t;), m=#0
where
By = V2041, 20
H, =V2Qa+1)(n-m)! [(a+m)! , m+#0

Modifying the results of the previous section according to the above relationships,
we arrive at

1
E.-..m_l(o{w]’ t8, 5 moy (D

n—m)(n+m-2)

. L
3 EZn—l)(n+m—3)(n—m—l)] 7 p _, (), m#n, (13

(2n-5)(n+m-2)(n—m) n-3,m

Pasynot (0 =V@0-1)/@n-2)y P, _, ., (®), (21a)

- L _
In—l,m—] (t1,t2) = __I_EZH-—I)(ZH—G)]z y? Py s mes (t) :z

n [(n-m)(n+m-2) 1

-3 |(2n- - -m-1)]7 ¢
+0 [( n—1)(n+m-3)(n-m-1) 2  (t1,t3), m# n. (20a)

n (2n—5)(n+m—2)(n_m) n-3,m-
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- 1 2n-1 13 .=
In_—l,n (t1,ta) = [(n 1) (n— 2)] y Pn-z,n—a(t) t

1
+ l}n—l)(2::;)(2n—3):lz LGt (22

{(applicabie when 6 is not very small)

- (2n-1)(2n-3)...3]% e
Int,a-1(tita) = l:(2n—2)(2n—4) :|

ta

2 6 y
e R e Er s =T |
{applicable when @8 is very small)
and : ' —_
Poo(t) = 1, B0 (t) = ‘/St, Py (1) = ‘/3)’, Py (1) =°\/7—5 (3t*-1)
Pu(t) = Vist Y » Paa (1) =g¥2 s.foo(tl yta) = ta—t,

V3

_ N
Ixo(tx,tz)-=—2—-(t22—t12),lu(tl,tz)=—2-(t2)’z-02"t1}'1+91)(268)
- V3 i,

I0(t:,t2) = 5 (tl}’l2 —12Y22), Iag (ty,t2) =V S/3 (Y13—)‘23)

Tos (t1.ta) =V5/12 Bty -t -3t +t3)

Check Formulae

- It was felt necessary to devise some formulae to test the accuracy of computed

I am Values, especially when m and n are very large. Accordingly, the following four

check formulae have been worked out :

=cos[(6:+62)/2],
Ty =1, (t, ")+ _(t',ts), (27)

8Ty = T,~I__(t;,t;)=0, m=0,1,...n, n=0,1...N.
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t'=C03(92 _ol)’ y'=3iﬂ(62—01),
T, =V 2n+1[y;{ Yn(n+1)/2 Tn, (1 ,t')—y'f’no (t')}+:,Tno(1,t')], 28
no _ _
;Tz=T1_mEOan(t‘)[nm(tl’t2)=0’ n=0,1,...N, ]
t'=cos(6,-6,), y =sin(8,-8,), ]
Ty =Vt 1y { Va+ D2 T, (1,t) -y B, () -2 T, (1,t)],
(29)
n - -
:T3 =T3—mzopnm(tz)lnm(tl,t2)= 0, n=0,1,..-N, -J
and
t' =cos[(6,—-8,)/2), y =sin[(62-6.:)/2],
tn =cos((82+6,)/2), y, =sin[(0, +6,)/2],

Te=Von+ly [V2n(a+ DI, (1,t)-2y'F ()], (30)

n

5Te = Ty— X P (1, )1 (t;,t2)=0, n=0,1,...N.
m=0 pp—
Of these four sets of equations, {27) follows readily from the relation
that the sum of integrals over two halves of an interval is equal to the integral
over the entire interval, but the derivation of (28}, (29} and (30) is rather involved and,

hence, has been reported separately in the Appendix.
It isimportant to observe some characteristics of these equations. Equations (27)
relate the integrals for a particular value of m , while such relation is true for any integral
besides Inm . In contrast, equations (28), (29) and (30) hold only for these special

integrals, Inm . involving at a time the entire subset corresponding to m=0 te n. As
such, from a strict standpoint, these checks are not conclusive on individual Tnm values,
although it is highly improbable that an fnm value containing significant error can
satisfy all these tests simuitaneously,

The following pair of supplementary formulae which can be readily derived
from the addition theorem of spherical harmonic functions, has been applied to test the

accuracy of computed an values :

Ts 2n+1,
{31)

n
§Ts =Ts~ Z P} ()=0
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Computations

A Fortran sub-program has been developed for the present method and
computations of Inm values have been carried out with a Control Data CYBER 74

eomputer over- intervals (0° ,5°),(0°.03,5°),(45°,50°) and (85°,90°) of @ for
N=100. For economy of space, results for only a few values of m corresponding to
n=60 and 100 have been given in Table 7. The interval (0°.03,5°) has been selected
following Christodoulidis and Katsambalos (1977) who considered this instead of the
interval (0°,5°) where they confronted computational instability. Our method does
not have such problem and our results in Table 7 clearly indicate significant differences
I—nm (cos 0°, cos 5°) and I_mm (cos 0°.03 , cos 5°) values when m is smail.

The sub - program also provides options to apply the check formulae (27), (28),
(29), (30) and (31). Our I and P . values computed by the present method were

thoroughly subjected to these tests and the results are very satisfactory. Relative errors
(8 T,/T;, i=1,2,...5) never exceed 10~?* in magnitude . T; and & T, values
(i=1,2,..5) for some of the cases have been tabulated in Table 2.

It is interesting to compare our results with those of Christodoulidis and
Katsambalos (1977). Of their two sets of In m Values corresponding to their "‘analytical”

and “'numerical’’ methods respectively, the first one has been found to agree better (up to
16 significant digits) with our results over the interval of (45°,50°) , while the other
agrees up to 8 to 14 significant digits only. On the other hand, the nature of such
agreement is just the reverse over the interval of (0°.03,5°). Then our results agree
better (up to 12 to 13 significant digits) with their “numerical’’ results, while the
agreement with their other set is sometimes not even a single significant digit. Over both
the intervals, the agreement between both of their sets is worse than that of one of them
with ours. In the light of established accuracy of our computations through different
checks applied to them, we may infer that the “numerical’’ method of Christodoulidis
and Katsambalos (1977) is applicable only over polar regions while their other formula
works well over non - polar regions. Table 3 compares these results for some specific values
of m and n=60.

Discussion
Our recurrence relations for both -I-nm (t; ,t3) and an (t) are constructed

1 . .

in such a manner that neither t nor (1 —t%)73 appears in the denominators of any of
the terms which is necessary for the stability of computation throughout the interval
(0,1) of ¢t.

_ With respect to m and n, we use the same scheme of computation for
Im (ty,ty) and P (t). For both of them, we keep n fixed and vary m from 0
to n and then repeat n fronl 0 to N. This reduces the storage requirements in the
computer for P (t;) and P (t;) to six vectors corresponding to the present and
the earlier two values of n for _each of them — those required in the recurrence relations
for an (ti), an (tz) and Inm (tl ,tg) B

A numerical quadrature procedure like that of Christodoulidis and Katsambalos
(1977) requires many more values of P (t) over an interval (t; ,t;) than what is
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needed in our computations with the recurrence relations viz. ?nm (t;) and an (t2).

From the standpoint of computation time and storage requirements, this is also another
advantage of the method proposed here.
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M.K. PAUL
APPENDIX

From the addition theorem of spherical harmonic functions for two points in the
same meridian, we have

n
m2= 'ﬁnm(wsﬂc) P (cos8) = 2n+1) P [cos(6-6 )] (Al

Multiplying both sides of (A1) by (— sin @) and integrating with respect to 8
from 8, to 8, , we get

n te
mz=° P (01 (t0,tg) = 2n+ D) [t 1 o (ts,te) -y, f P (t)dy] (A2)
t=1t,
where t=cosf, y=sinf,t,=cosb,,y, =sinb;, ty=cos6,, y,=sinf,,
t =cos@_,y =sinb _,ty=cos(,—-0_) and t, =cos(0; -8 ).

Now,

ta tg
[ nwayayno|t - [y B9

ts t3 dt
=t
=t (A3)
ts
=y P, (t) t I, (ts,te)
3

When {A3]} is substituted in (A2} and the right hand side is reduced to its fully
normalised form, we obtain

n
mEo Pom (1) I (th,t2)
, _ _ . _
=Va2n+1 [y ( Va(n+ /2T, (t3,t) -y P o (1) t:““c'lno (t3,te)] (A4)

Equation (A4) reduces after necessary simplifications to (28), (29) and (30)
when 6 is substituted by 8, ,6, and (6; +03)/2 respectively. Similar substitution
of @ for @_ in (A1) gives equation (31).
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