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Abstract 

Recurrence relations for the evaluation of  the integrals of associated Legendre 
functions over an arbitrary interval within (0 ~ ,90 ~ have been derived which yield 
sufficiently accurate results throughout the entire range of their possible applicationr 
These recurrence relations have been used to compute integrals up to degree 1 O0 and 
similar computations can be carried out without any diff iculty up to a degree as high as 
the memory in a computer permitr The computed values have been tested with 
independent check formulae, also derived in this work; the corresponding relative errors 

never exceed | 0  -23 in magnitude. 

Introduction 

In recent times, the use of spherical harmonic techniques is gaining increasing 
importance to represent and analyse observed data in the fields of physical and satellite 
geodesy. Dependable results for higher degree harmonics are now obtainable from data 
collected by various geodetically oriented artificial satellites set into orbits around the 
earth. With continuous improvements in computing facilities with respect to speed and 
storage capacity, spherical harmonic analysis of surface gravity data up to a degree as 
high as 200 has also been recently reported (Nagy, 1977). 

At some stage, air such analyses require the evaluation of integrals of the form 

Cnm = f f ( O , X )  Pnm (cosO) cos (re.X) do , 
s/n Snm o 

re=O,1 , . . .  n, n=O,! , . . .N ,  

(1) 

where f (0 ,;~) is an observable quantity (such as gravity, elevation, etc.) everywhere 
over a unit sphere, o,  representing the model earth, Pnm (cosO) is the associated 

Legendre function of degree n and order m ,  d o -- sin 0 d 0 d X is the differential area 
corresponding to the colatitude 0 and longitude ;~ of the point of observation and N 
is the highest degree of the harmonic functions considered in a particular analysis. 

When the area of the unit sphere is subdivided into a number of elementary 
blocks of reasonable size (viz. 5 ~ x 5 ~ , 1 ~ x 1 ~ and f ( 0 ,  X) is assumed constant over 
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any such block from practical considerations, the equation (1) can be re-written as 

Cn m K f S, m = k~__l fk Pnm (cosO) sinC~ (mX) do 
ek 

r e = O , 1  . . . .  n ,  n = O , 1  . . . .  N ,  

(2) 

with 
K 

a =  ];  o k 
k = !  

(3) 

where fk is the constant value for f(0,~,) over o k and K is the total number of 
blocks. 

Again, when a k is reasonably small and N is not too large (not greater than 

30, say), the variation of Pnm (cosO). [cos(reX) or sin(mX)] over o k may be 

negligible enough to replace it by a constant value Pnm (c~176 

s/n (mXk )  ] where (0 k , X k ) i s  an appropriate point over a k -possibly, its center. 

Equation (2) then reduces to 

Cn m K 
= 

Snm k = l  
fk Pnm (cOSOk) CO.S (mXk) Ok , $/n 

m = 0 , 1 , . . . n ,  n = 0 , 1  . . . .  N . 

(4) 

Until recently, most of the practical computations seldom exceeded 30 for N 
and, as such, the use of equation (4) in such computations should be adequate. 

On the other hand, with the present trend of carrying out similar computations 
for higher values of N ,  it is essential to work out exact, or at least more accurate, 
methods of evaluating 

Cknm f (COS O) COS 
= Pnm s/n 

Sknm a k 

k = l  ,2 . . . .  K,  

(mX)  do (5) 

m = O , l  . . . n ,  n=O ,1 . . . .  N. 

When o k is bounded by parallels (O=Otk and 0 = 0 = k  ) and meridians 

( X = X t k  and X=X=k ), equation (5) can be factorized as 

Cknm = _Iknm. Jkm 
Sknm Kkm 

(6) 

where 

Iimm = _ f # 2 k  
8tk 

Pnm (cos O) sin 0 d 0 , (7) 
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RECURRENCE RELATIONS FOR INTEGRALS ..... 

f ' g 2 k  Jkm = COS (mX) dX, (8) 
Kkm s/n 

Xlk 
As equation (8) can be readily evaluated, the only problem is the evaluation of 

(7) which, after suppression of the index k and substitutions of t=cos8, tl =cos81 
and t2 =cos02 , assumes the form 

~tz ~ t2 Inm (tl ,t2) = Pare ( t )d t  19) 

Thus, we recognize the necessity of the evaluation of (7) in carrying out a high 
order spherical harmonic analysis of any kind of observed data. 

Some works on the evaluation of such integrals have been-published previously 
in the literature. The method considered by Young (1970) has some problem of 
instability around polar regions. Gaussian quadrature methods of Christodou]idis and 
Katsambalos (1977) have disadvantages with respect to accuracy and computation time 
as N becomes much larger than 6 0 -  the highest value they have used. Their 
alternative method, which involves the evaluation of the integrals of the form 

f sinno dO series in which the number of increases using some terms with n,  is 

computationally inefficient and subject to increasing round-of f  errors. 

The recurrence relations developed below are free from such problems. The 
number of terms in these relations remains unchanged as n increases to higher and 
higher values. The instability around polar regions has been eliminated by a special 
technique and the question of error in numerical integration does not arise. 

The Proposed Method 

We start by listing below some of the wel l -known relationships involving 
Legendre polynomials and associated Legendre functions which we are going to use 
repeatedly. They can be found in any standard text book dealing with the subject (viz. 
Robson (1955), Heiskanen and Moritz (1967)). 

dm Pn (t) 
Pnm (t) = ym (10) 

dt m 

Pn - , ,m  ( t ) -  Pn-3,m (t) = ( 2 n - 3 ) y  Pn -2 ,m- t  (t) (11) 

Pn,m+l ( t ) + ( n - m + l ) ( n + m ) P n , m - i  (t) = 2 m t P n m  (t) 
Y 

(12) 

( n - m ) P n -  l ,m-  1 (t) + (n+m-3)Pn_3,m_ t (t) = ( 2 n - 3 ) t P  n_2,m_ z (t) (13) 

with 

y2 = 1 - t  2 (14) 

179 



M.K. PAUL 

First we define a set of integrals Jnm ( tz  , t2 ) and relate them to the other set 

of integrals Into ( t t  , t 2 )  asbelow �9 

f t t  t2 t p  ( t ) d t  ( m + l ) J n m ( t l  , t2)  - ( m + l )  y am 

f Y2 dm Pn (t) 
= - ( r e + l )  ym dy  

dt m ym'Yl 

= -- Y Pnm (t) 
t z 

+ I n , m +  I ( tz , t2)  (15) 

t l  

Again, integrating (12) with respect to t from t l  to t2 ,wecan write 

2mJnm (tl , t2)  = ln,m+z (t l , t 2 )  + ( n - m + l )  ( n + m ) I n . m _  1 (t t  , t2)  

Henca, eliminating I n , m +  t ( t z  , t2 )  from (15) and (16) we have 

( m -  1) Jnm (t z , t2 ) = ( n - m  + I) (I! +m)  I n .m - t (t z , t2 ) + y Pnm (t) 

Now, substituting (10) and (1 1) in (13) we can write, 

I 
t2 

tz 

(16) 

(17) 

( n - m ) P n -  z.m - = ( t ) +  ( n + m - 3 )  P n _ 3,m - z (t) 

= t  [pa_  l ,m ( t ) _  pn_ 3,m (t )  ] (18) 
Y 

which, after integration similar to the above, gives 

( n - r e ) I n _  l ,m_  I ( t t  , t 2 ) +  ( n + m - 3 )  I n _ 3 , m _  t ( t l  , t2)  

= J n _ l , m ( t l , t a ) - J n _ 3 , m ( t t , t 2 )  (191 

Substitution of (17) in (19) then gives 

In- l ,m - ! ( t l  t2) ( n - - 3 ) ( n + m - 3 )  (tl  t2) ' = ' 

( 2 n - 3 )  y2 Pn (t) [ t2 (20) 
n ( n - m )  - 2 , m  - t  I tz 

Because of the singularity at m = n ,  the above relation can not be used to 
compute I n -  1 , n -  t ( t  t ,  t = ) .  As such, a recurrence relation for I n _ l ,n - z ( t t  , t2 ) 

has been derived separately from the relation 
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Pn- l , n - I  (t) = ( 2 n - - 3 ) y  P n - 2 , n - 2  (t) (21) 

by performing on it integration similar to the above, when we get 

I n _ t , n _  I ( t l  , t2)  = ( n - t ) ( 2 n - 3 ) ( 2 n - 5 )  l n _ 3 , n _ 3 ( t  I , t2)  
n 

2 n - 3  I t2 + ~ y2 Pn-2 ,n -3  (t) (22) 
n t I 

Let us now examine some of the computational properties of equations (20) and 
(22) in polar regions, when y is very small, Then, the magnitudes of Into and Pnm 

are of the orders of ym and ym - 2 , respectively. While this does not pose any problem 
in dealing with (20), computations with (22) result in addition and subtraction of 
numbers of the same order to produce a number smaller than them by an order of y 2 
This will, naturally, cause loss of accuracy in the results if (22) is applied repeatedly as a 
recurrence relation. Accordingly, an alternative formula has been developed for polar 
regions which is free from such inaccuracy. To obtain this, we consider a second formula 
for Pn-  l ,n - 1 ( t )  in termsof y (y being related to t through (14)) as 

P n - t , n - l ( t )  = ( 2 n - 3 ) ( 2 n - 5 ) . . . 3 y n - I  (23) 

Therefore, with 

we can write, 

Y~2 = l - t ~  1 
Y2 I t~ 

(14a) 

f t2 I n -  l ,n  - I ( t t  ,t2) = ( 2 n - 3 ) ( 2 n - 5 ) . . .  3 y n - t  dt 

t l  

= - ( 2 n - 3 ) ( 2 n - 5 ) . . . 3  fY' 
Yl 

Then, expanding the integrand in the right hand side of (24) in a power series of 
y and performing term by term integration, we obtain 

yn ( 1 - - y 2 ) " ~  dy (24)  

i n -  t , n -  l ( t l  ,t2) 

= - (2n-3)(2n-5)... 3 yn+, [_.L +_ 
n+1 

(25) 

I ' y2 1 . 3  y4 I 3 . 5  y6 I 
+ �9 + ~ + . . . ]  

2 n + 3  2 . 4  n + 5  2 . 4 . 6  n + ?  I 
which converges rapidly over its proposed range of application. 

Thus equations (13), (20), (21), (22) and (25) along with the following initial 
values will enable us to compute values of Pnm ( t )  and Into ( t l  , t 2 )  up to any 

required degree and for all values of 8 

Y2 

Yl 
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Poo(t) = l , P l o ( t )  = t ,  P l l ( t )  = y ,  P 2 o ( t ) -  
3t  2 - 1  

Pat(t)  = 3 t y ,  P22(t) = 3Y ~ ,  I o o ( t l , t 2 )  = t 2 - t l ,  

Ito ( t l . t 2 )  = t~ - t~  . 111 ( t l  ,t2) = t2y2 - 0 = - t t y t  + 8 t  
2 2 

12o (tl  , t2)  = tl y l  2 - t 2  Y~ , 12t (tt , t2)  = yt 3 _y=3 
2 

I 2 = ( t l , t 2 )  = 3 t = - t ~ - 3 t t  + t l  i 

, (26) 

m 

Fully Normalbed Verdon 

Fully normalised associated Legendre functions and their integrals are related to 
the corresponding non-normalised ones by 

Pn~ (t)= HnoPno(t ) ,  ] ' n o ( t l , t 2 ) =  H n o l n o ( t l , t 2 ) ,  1 

Phi  (t) = Ham Pnm ( t ) ,  ~nm ( t l , t = )  = anm Inm(t I , t=) ,  in ~ 0 

where 

(27) 

Hn~ = x / 2 n + l  1 ' (28) 

Hnm -- ~ / 2 ( 2 n + l ) ( n - m ) !  / ( n + m ) !  . m 4= 0 

Modifying the results of the previous section according to the above relationships. 
we arrive at 

~2n-])(2n-3)7~ tF._ _ (t) 
Pn-J  .m- t  (t) = [ ( n - m ) ( n + m - 2 ) J  2,m ! 

~ 2  n-- 1) (n +m--3) (n--m-- 1).7 1 
-- E ( 2 - - " ~ - - 5 y ' ( ~  ~j3" P n - 3 , m - t  ( t ) ,  m ~ n ,  (13a) 

P n - x , n - ,  (t) -- x / ( 2 n - l ) / ( 2 n - 2 )  y P n - 2 , n - 2  ( t ) ,  (21a) 

Tn z .m- I  (tl  . ta)  = - l ~ - ~ 2 n - l X 2 n - 3 ) 7 ~ y a  (t)  I ta 
- n [ ( n - m ) ( n + m - 2 ) J  P'n-2 , m - I  tl 

+ n - 3  
n I-(2 n----1)(n+m-3)(n-m-1--)l+ (t . t2)  m ~= n (20a) 

(2 n - 5 )  ( n + m - 2 )  ( n - m )  [ ]'n- a . m - ,  ] . �9 
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T, ] E - 2 , - ]  - l~y,F._,. ,_=(t)  t, 
- , , n - ,  ( t ,  , t , ) =  ~n L ( n - l ) - ' ~ - 2 ) J  t, 

l F(n- I)  (2 n -  I) (2 n-3)_-]~" T ( t t  , t=) 
L- -i n - s , n - ,  ' 

(applicable when 0 is not very small) 

(22a) 

F_(2 n -  l )  (2 n -3 )  : - L3.11 yn+, 
l - n - , , n - ,  ( t ,  ,t =) = -- i _ ( - ~ - - ~ n _ ~ "  .. 4_] 

~1 ! y..~_2 1.3 y' 1.3.5 y' 
�9 + i  + 2 n + 3  + - -  + 2.4 n+5 2 .4 .6  n+7 

(applicable when 0 is very small) 

+t[;: (25a) 

and 

(3 t '  - 1 )  Poo (t) = 1, P,o (t) = V ~ t ,  P11 (t) = ~ / ~ y ,  P'ao (t) =--~- 

P2I ( t )  = % f ~ t  y , P=2 ( t )  = 
2 

y2,  I o o ( t l , t = )  = t 2 - t l  

I'=o (t , , t , ) =  -~--- (t= = - t ~ ) , ~ , ,  ( t ,  , t2) = ~ - - ( t2  y ,  - 0 ,  - t ,  y, -I- B,) 

I-'2o (t,  , t , )  = ~ -  (t ,  y2 - t 2  y=2), I'=t (tz ,t=) = 5 ~ ' 3 "  (y~ - y ~ )  

(26a) 

] ' 2 2 0 1 , t •  3) 

Cheek Formulae 

It was felt necessary to devise some formulae to test the accuracy of computed 
[am values, especially when m and n are very large. Accordingly, the following four 
check formulae have been worked out : 

t '  = c o s [ ( O l  + 8 = ) / 2 ] ,  - - 1  

T! = I'nm (t'l , t ' )+~nm ( t ' , t = ) ,  N J  (27) 

T l - l ' n m ( t z , t = ) =  0, m = 0 , 1  . . . .  n,  n = 0 , 1 . . .  ~Tt E 
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t ' = cos(02 - O l ) ,  y' = sin(02 - O l ) ,  

T2 -- ~ / 2 n + i  [Yl [ ~/n(n + I)/2 "i'nl (1 ,t ')-- Y'Pno (t ' )}+t~ I-no (1 , t ' ) ] ,  

;T2 = T = -  3~ Pnm(t t ) ' lnm(t l , t2 )  = O ,  n = 0 , l  . . . .  N ,  
m=O 

(28) 

t' = cos(02-01) ,  y'  = sin(O~ -O~),  

T3 = ~/'2n+ 1 [ya I ~/n(n+ 1)12 lnz (1 , t ' ) - y '  Pno (t ')I  ta ~no(l , t ' ) ]  

n 

T3 -- Ts- ]~ 
m = O  

Pnm (t2)I'nm (tl ,t2 ) = 0 ,  n = 0 ,  ! . . . .  N ,  

(29) 

and 

t ' = c o s [ ( O ~ - O ~ ) 1 2 ] ,  y'=sin[(02-0z)12], 

t m = c o s [ ( 0 2 + 8 , ) / 2 ] ,  Ym = sin[(O~ +8,)/2], 

T4 = ~ / ' ~ n + l  Ym[~/2n(n+l)  I n , ( l ' t ' ) - 2 Y ' P n o ( t ' ) ] '  

n 

8 T4 "~ T4- Z 
m=O 

Pnm (tin) Inm (tl ,t2) = O, n=0,1 .... N. 

(30) 

Of these four sets of equations, (27) follows readily from the relation 
that the sum of integrals over two halves of an interval is equal to the integral 
over the entire interval, but the derivation of (28), (29) and (30) is rather involved and, 
hence, has been reported separately in the Appendix. 

It is important to observe some characteristics of these equations. Equations (27) 
relate the integrals for a particular value of rn,  while such relation is true for any integral 
besides Into �9 In contrast, equations (28), (29) and (30) hold only for these special 

integrals, ]-nm ' involving at a time the entire subset corresponding to m = 0 te n .  As 

such, from a strict standpoints, these checks are not conclusive on individual ]'nm values, 

although it is highly improbable that an ]'nm value containing significant error can 

satisfy all these tests simultaneously, 

The following pair of supplementary formulae which can be readily derived 
from the addition theorem of spherical harmonic functions, has been applied to test the 
accuracy of computed Pnm values : 

Ts = 2n+l,n 01 
8Ts = T s -  ~ -Pnrm (t)  = 

m=O 

{31) 
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RECURRENCE RELATIONS FOR INTEGRALS ..... 

Computations 

A Fortran sub-program has been developed for the present method and 
computations of ]'nrn values have been carried out with a Control Data CYBER 74 

computer over intervals ( 0  ~ , $o), (0~ 15~176 , 50 ~  and (85 ~ , 90 ~  of e for 
N =  100. For economy of space, results for only a few values of m corresponding to 
n = 60 and ]00 have been given in Table 1. The interval (0=.03,5 ~ has been selected 
following Chdstodou]idis and Katsambalos (1977) who considered this instead of the 
interval (0 ~ , 5 ~ where they confronted computational instability. Our method does 
not have such problem and our results in Table 1 clearly indicate significant differences 
I'nm (cos 0 ~ , cos 5 ~ and I-nrn (cos 0~ cos 5 ~ values when m is small. 

The sub -prograrn also provides options to apply the check formulae (27), (28), 
(29), (30) and (31). Our [nrn and Prim values computed by the present method were 

thoroughly subjected to these tests and the results are very satisfactory. Relative errors 

(8 T i l T  i , i =  l ,2 . . . .  5) never exceed 10 -2s in magnitude. T i and 5 T i values 

( i  = 1 , 2  , . .  5) for some of the cases have been tabulated in Table 2. 

It is interesting to compare our results with those of Christodoulidis and 
Katsambalos (1977). Of their two sets of Into values corresponding to their "analytical" 

and "numerical" methods respectively, the first one has been found to agree better (up to 
]6 significant digits) with our results over the interval of (45 ~ , 50 ~ , while the other 
agrees up to 8 to 14 significant digits only. On the other hand, the nature of such 
agreement is just the reverse over the interval of (0~ ~ . Then our results agree 
better (up to 12 to 13 significant digits) with their "numerical" results, while the 
agreement with their other set is sometimes not even a single significant digit. Over both 
the intervals, the agreement between both of their sets is worse than that of one of them 
with ours. In the light of established accuracy of our computations through different 
checks applied to them, we maY infer that the "numerical" method of Christodoulid/s 
and Katsambalos (1977) is' applicable only over polar regior~s while their other formula 
works well over non - polar regions. Table 3 compares these results for some specific values 
of m and n = 6 0 .  

Discussion 

Our recurrence relations for both Into ( t l  , t2)  and Pnrn ( t )  are constructed 
2 1 

in such a manner that neither t nor (1 - t ) ~" appears in the denominators of any of 
the terms which is necessary for the stability of computation throughout the interval 
( 0 ,  1) of t .  

With respect to m and n ,  we use the same scheme of computation for 
Inrn ( t l  , t 2 )  and Pnrn ( t ) .  For both of them, we keep n fixed and vary m from 0 

to n and then repeat n from 0 to N .  Thisreduces the storage requirements in the 
computer for Pnm ( t~ )  and P'nm ( t2 )  to six vectors corresponding to the present and 

the earlier two values of n for each of them -- those required in the recurrence relations 
for Pnm ( t l ) ,  Pnm ( t2 )  and ]'nm (t, , t 2 ) .  

A numerical quadrature proced_ure like that of C~istodoulidis and KatsambaJos 
(1977) requires many more values of Pnm ( t )  over an interval ( t l  , t 2 )  than what is 
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needed in our computations with the recurrence relations viz. Pnm ( t t )  and Pnm ( t z )  

From the standpoint of computation time and storage requirements, this is also another 
advantage of the method proposed here. 

O 

O O 

REFERENCES 

D.C. CHRISTODOULIDIS, and K.E. KATSAMBALOS : An AnaJysis on the Precision in the 
Computation of the Integrals of the Fully Normalized Associated Lagendre Functions, 
Report of Dept.Geod. Sci., Ohio State Univ., U.S.A., 1977. 

W.A. HEISKANEN, and H. MORITZ : Physical Geodesy, W.H. Freeman and Co., San Francisco, 
1967. 

E.W. HOBSON : The Theory of Spherical and Ellipsoidat Harmonic=, Cambridge Univ. Press, U.K., 
1955. 

D. NAGY : High Degree Spherical Harmonic Expansion of Gravity Data, EOS Trans. AGU, Vol, 58, 
p. 987, 1977. 

R.G.E. YOUNG : Combining Satellite Altimetry and Surfac= Gravimetry in Geodetic Determinations, 
TE--37, Mmc~chu=etts Institute of Technology, Measurement System Lab., 1970. 

0 

0 0 

186 



RECURRENCE RELATIONS FOR INTEGRALS ..... 

i 
r  

0= $ z 

o '4P 
I " ' ~  

% 
GO 

o 

o 

o,., 

% 

o 

% 
,,.., 

z 
, ~  f.r.1 (,,,~J t.r,.) r.,z.1L~ L.t.~ ~,.rJ ,~..1 r..~ ;.=.1 ;.t.J, r.~j, ;,,~,.) " ' ]  ~,.t.1 ~,.~ "~  

I I I I I I I I I 

I I I I I I I I I  I I I I I I I I I  

I I I I I  ~ 1 7 6 1 7 6  

I I I I I I I I I  I I I l l l l l l  

. ~  . . . . .  ~ ~ . . ~  . . 
i i l l L I I f  I I  I l l i t l  

I t 1 1 1 1 1 1 t  I I I I I I I I I  

~ ~ N N N N ~  N N N ~ 2 N N ~  

I I I I I I I I  I I  I I I I I I  

= 8 

187 



M.K. PAUL 

| 

I.- 
Io  

I -  

p, 

r 

e,l 
I -  

I -  

E 

C 

I I I I 

I I I I I  

I 

I I I I I 

l l l l  

I I I  

. . . . ,  
I ~ I I I  

I I I I I  

I I 

I I  I 

I I I I  

I I I I I  

I 

I I 1 1 1  

I l i t l  

I 

0 ' ' ~ "  

I l l l l  

l l l l l  

I 

I t l l l  

I 

I" l" I" I" I" t I I 

0 

0 

% 

% 

0 
q -  

I I I I  

I I I I l 

I 

I I I I I  

I I I I I  

I I 

I I I I I  

I I 

I I l l l  

1 1 2 1 1  

I 

I I t I 

0 8 

% 
O~ 

0 
O0 

188 



RECURRENCE RELATIONS FOR INTEGRALS ..... 

~ " 0  I I  

E "~ 
8 

i,. 

I I I I I I I I  I I I I I  

I l l l l l l l l  I l l l l l l l l  

I I I I I I I I  I I I I I  

I t . ] l l l l l  I I t l l  

% % 

o. 
% % 

189  



M.K. PAUL 

APPENDIX 

From the addition theorem of spherical harmonic functions for two points in the 
same meridian, we have 

n 

Z 'Pnrn ( C05 0c) Pnm (cos 0) = (2 rt-l- I) Pn [cos (0 --0c) ] 
m=o 

(A1) 

Multiplying both sides of (A1) by ( -  s/n 0) and integrating with respect to 0 
from 0t to 0= ,weget 

n t4 

Pnm (tc)Tnm ( t= , t= )  = ( 2 n +  l ) [ t c l n o  (t3 , t 4 ) - y  c f Pn ( t ) d y ]  (A21 
m = o  

t = t  3 
+~ .  

where t=cosO, y=sin 0, tt =cosOz ,Yl =sin 01, t 2 =C0$ 0 2 , Y2 =Sin 02 , 

tc=COSO c , yc =st~0c , t 3 =COS(Oz - 0 c )  and t4 =cos(O= - -0c ) .  

Now. 

t 4  

t = t  3 I t+ _ ~t3t4y dP n ( t )  
Pn ( t ) d y  = YPn ( t )  t3 dt dt  

(A3) 

y P. (t) Ii t`  = -- |nl (t3 , t + )  
I t3 

When (A3) is substituted in (A2) and the right hand side is reduced to its fully 
normalised form,, we obtain 

I I  

m = 0  
Pnm ( tc )  ~nm ( t l  , t=)  

I t+l.+tc~no(tz,t+)] (A4) = ~ / 2 n  + 1 [Yc I ~ ] n ( n  + l ) / 2 " I n t  (t3 , t 4 )  - y Pno ( t )  t+ 

Equation (A4) reduces after necessary simplifications to (28), (29) and (30) 
when 0 c is substituted by 0 z , 0 2 and (0 z + 0 2 ) / 2  respectively. Similar substitution 
of 0 for 0 c in (A1) gives equation (31). 

R e c e i v e d  : 1 9 . 1 Z 1 9 7 7  

A c c e p t e d  : 2 8 . 0 2 . 1 9 7 8  
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