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HEIGHT DATUM DEFINITION, HEIGHT DATUM CONNECTION 

AND THE ROLE OF THE GEODETIC BOUNDARY 

VALUE PROBLEM 

Abstract 

Vertical datum definition is identical with the choice o f  a potential (or height) 
value for the fundamental bench mark. Also the connection o f  two ad/acent vertical 
datums poses no principal problem as long as the potential (or height) value o f  two 
bench marks o f  the two systems is known and they can be connected by levelling. Only 
the unification o f  large vertical datums and the connection o f  vertical datums separated 
by an ocean remains difficult. 

Two vertical datums can be connected indirectly by means o f  a combination 
o f  precise geocentric positions o f  two points, as derived by space techniques, their 
potential (or height) value in the respective height datum and their geoid height 
difference. The latter requires the solution o f  the linear geodetic boundary value problem 
under the assumption that potential and gravity anomalies refer to a variety o f  height 
datums. The unknown off-sets between the various datums appear in the solution inside 
and outside the Stokes integral and can be estimated in a least squares adjustment, i f  
geocentric positions, levelled heights and adequate gravity material are available for 
all datum zones. The problem can in principle also be solved involving only two datums, 
in case a precise global gravity field becomes available purely from satellite methods. 

1. Introduction 

The discussion about vertical datum definition, the connection of vertical 
datums, and their relations to mean sea level (MSL) and its variations started in the 
seventies. Examples of the early discussions are (Ba]azs, 1973), (Sturges, 1974), or 
(Fischer, 1978). Serious steps toward clearer definitions of all involved quantities and 
solution strategies of the geodetic part of the problem were taken in (Mathe[, 1973), 
(Lelgemann, 1977) and (Colombo, 1980). In recent years in several documents the 
various aspects of the establishment of a world vertical datum, the role played by space 
techniques in this context and the connection to global monitoring of MSL were 
discussed, see e.g. (Rapp, 1983), (Rapp et al., 1984) or (Colombo, 1985). The need 
of a worldwide reference system has been underlined by the oceanographic community 
in ([APSO, 1985). The purpose of the present contribution is to continue the analysis 
of the geodetic part of the problem. First the definition of vertical datum and its 
relation to MSI. shall be discussed. We shall then turn to the datum definition for 

Bull. Gdod. 62 (1988) pp. 4 7 7 - 4 9 8 .  
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levelling networks of continental size. In the second part the worldwide vertical datum 
connection is treated, with emphasis on the role of the geodetic boundary value problem. 
It is tried to properly identify potential difference (or height) values and gravity 
anomalies, as they are applied in practice, and to use these quantities wi thout 
modification in the solution. 

2. Vertical Datum Definition 

In principle the definition of a vertical datum is straightforward. Each country 
has its levelling network. Measured are height increments. In combination with 
measured gravity potential differences, orthometric, dynamic or normal heights can be 
computed, compare e.g. (Heiskanen & Moritz, 1967" ch. 4). Orthometric, dynamic or 
normal heights are determined by aod;ng small gravity dependent corrections to the 
levelled height increments. In flat or mildly undulated terrain these corrections are 
often negligible and are either neglected or the measured gravity required for their 
computation is replaced by normal gravity. 

Since it would be inconvenient in daily practice to deal with the individual 

height differences between points, a certain fixed potential (or height) value, Wp (a) , 

is assigned to one fundamental bench mark at P. This definit ion is called the choice 

o f  a vertical datum or height system and is indicated by the (a) of W (a) . After such 

a choice is taken the potential (or height) va!ues of all other points are referred to the 
fundamental point. In terms of potential values, the potential at point Pi becomes 

w ~ a ) =  Cpp i + W (a) , (1) 

where Cpp i is the observed or adjusted potential difference between points P and 

P i  Naturally any point of the network could be chosen as datum point and any 

potential value could be assigned to it. The potentials expressed in one vertical datum 
can be transformed to another datum by an S-transformation. Suppose the potential 
values of a levelling network are expressed in datum (a) with reference bench mark Q. 
In datum (b) with reference point P we find 

w[b '=  W~ a) - W(a) + w&b)= W~ a) - W (a) + CpQ+ W (b) (2) 

Hence the transformation or connection o f  vertical datums is feasible, whenever the 
potential difference CpQ between the fundamental bench marks and the assigned 

values W(Oa) and Wp (b) are known. This implies, for example, that in case the reference 

potential (or heights) values would be defined to be zero with the fundamental bench 
marks all situated on one equipotential surface, e.g. the geoid, all potential (or height) 
values would be in one common datum This comes close to the actual situation, where 
national or continental vertical datums are referred to reference points close to mean 
sea level. Since the local mean sea level in various parts of the world deviates from one 
common equipotential surface typically by less than 1 m ,  we conclude that at this 
precision level a unified world vertical .datum can be realized without any problem, 
even in case the reference points cannot be connected directly be levelling. The situation 
is displayed in Figure 1. 
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bench mark~ " ~  ~ ~"~ , ~ i  

Fig. 1 - Deviation o f  fundamental bench marks from geoid. 

In view of ourdays precision requirements, e.g. for the worldwide monitor ing 
of changes in relative mean sea level (]APSO, 1985), which are at least one order of 
magnitude higher, the whole situation has to be revisited, for now the deviations of 

mean sea level (MSL) from the geoid become relevant or are the quant i ty to be 
determined. What is the relationship between vertical datum defini t ion and mean sea 
level ? Historically seen, there exists a close connection. Take for example the reference 
point of the United European Levelling Network ( U E L N ) ,  the Normaat Amsterdams 
Peil (NAP) .  It can be traced back til l 1682 and was originally defined by eight bench 
marks. The marks were placed at eight locks in the city of Amsterdam .They were 
referenced to regular water level measurements at the locks for the purpose of storm 
surge forcasting. Only later they were used as vertical datum for levelling. The original 
water level records since January 1, ]700 are still existing. NAP still refers to these 
bench marks, although meanwhile a new.fundamental bench mark in Amsterdam has 
replaced the original marks, which got lost or inaccessible in the course of this century. 
For a description of the history of the NAP system we refer to (Waalewijn, 1986). 
Naturally the NAP system does not coincide with M S [  anymore. Would it be 
meaningful to adjust the vertical datum to MSL at regular intervals ? The answer is 
negative. As an example, we show in Figure 2 a record of M S [  over the past century 
of eight different tide gauges along the Dutch coast, all expressed in the NAP system. 
The coast length is only about 300 k in .  Levelling errors over this distance are much 
smaller than the displayed variation in MS]. .  Two observations can be made. First, 
there exist significant changes in the yearly MS]. of the order of ]0ram with a general 

trend of 150 to 200ram/century .  Thus, adaption of the vertical datum to M S [  every 
year or decade would be an undesirable major undertaking. Second, there is also a 
considerable variation of MS]` among the eight gauges, which means that the 
deviations of MSL from one common equipotential surface can be rather large even 
over small distances and vary in addit ion from year to year. This effect is shown in 
Figure3 where the changes in MSL of the eight gauges over the period of 1975-1979  

are expressed as a funct ion of the distance between the stations. 

In short, the adaption of MS]. of one tide gauge of one particular year as 
vertical reference remains as arbitrary as any other choice and offers no particular 
advantage. It only meets our intuit ive experience, when the zero value of a vertical 
datum comes close to MS]. .  Periodical adaption of a vertical datum to MSL is 
undesirable. The def ini t ion of a vertical datum through the simultaneous choice of the 
potential (or height) reference at more than one bench mark - e.g. at the eight gauges 
of Figures 1 and 2 - with an unknown small deviation from one common equipotential  
surface is equivalent to a forced deformation of the basic reference surface of the 
levelling network, see also (].askowski, 1983). In adjustment terms it corresponds with 
an overconstraint. 

The same conclusions remain valid when we consider the establishment of 
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Fig. 2 - Yearly mean sea level over the past century at  eight tide gauges 
along the coast o f  The Netherlands. 

unif ied height systems on a continental scale, such as the UELN or the North American 
Vertical Datum. The relative precision of these networks is very high. For the UF.LN, 
consisting only of first order levelling points, the formal precision reported in (Kok, 
1985) between Amsterdam and Sicily is about 35 ram,  between Amsterdam and 
Finland 45 ram. The problem is, however, that the (internal and external) rel iabi l i ty 
is rather poor, compare the discussion in (Alberda, 1963) or (Kok, ibid.). In essence 
gross errors of varying sign could be present inside the large loops of such a network 

wi thout  being detectable. The only remedy for an improvement of the rel iabi l i ty of the 
free network would be its densification. The importance of  densification must be 
underlined, if wrong conclusions in the second stage of the adjustment are to be 
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Fig. 3 -  Yearly change in mean sea level f i lm 1975-1979 along the coast o f  
The Netherlands as derived from seven tide gauges. 

avoided, where levelling and sea level results are compared. Besides of gross errors various 
sources of systematic errors could seriously affect the quality of continental networks. 
Take for example the use of normal orthometric corrections instead of the correct 
ones based upon measured gravity. Zeger (1985) reports expected changes of between 
- ] 0 m m  and + 4 1 6 r a m  for 32representative points of the Austrian first order 
levelling net. The numbers consist in this case of a constant part coming from the datum 
change from the old reference point in Trieste/Italy to NAP,  and of a variable part 
caused by the application of real orthometric corrections. As a consequence of the poor 
reliability some external control is required, should the networks be useful for the 
purposes they were set-up for. One possible type of external control could come from 
MSL data from a number of selected sites, corrected for the best currently available 
models of sea surface topography. Depending on the quality of the potential (or height) 
differences between these sites, as derived from MSL records and oceanographic models, 
the continental levelling network could either be tied to the corrected MSL of these 
sites, or the oceanographically determined potential (or heights) differences could be 
included as a new set of observables in a second adjustment step. Since -- as explained 
a b o v e - t h e  first option could result in systematic distortions of the reference 
equipotential surface throughout the entire network, this procedure is only recommended 
in cases where the oceanographic information is definitely superior in terms of precision 
and reliability to the potential (or height) values that resulted from the adjustment 
(step one) of the levelling network. A second type of external control would be the 
incorporation of satellite derived geometric positions of surface points in combination 
with geoid information. 

This second approach, in the case of large continental networks considered 
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solely for the purpose of external control, is probably the only means to connect 
vertical datums of different continents on a worldwide scale at the quoted precision 
level of below ]0 cm. It shall be discussed in the sequel. A third option would be the 
use of precise sea surface heights near coast lines as derived from satellite altimetry. 
However, since we expect major complications when applying this method at a sub-cm 
level this approach is not discussed here. 

3. Vertical Datum Connection 

The problem to be solved is best understood by considering Figure 1 and 
formula (2). Two height systems, (a) and (b) located at two different continents are 
to be connected. Al l  potential differences (or heights) of system (a) refer to bench 
mark Q,  those of system (b) to bench mark P. Let us assume the same reference 

potential (or height)values, W (a) and w(pb),are chosen in (a) and (b) ,  respectively 

W~ a)def'= W(p b) , (3) 

e.g. a height reference value of zero at the two origins. Then, as can be seen from (2), 
the only quantity to be determined is CpQ , the potential difference between bench 

marks P and Q . Since P and Q are separated by ocean, CpQ cannot be determined 

directly by levelling and gravity measurements. Alternatively CpQ could be determined 

by oceanographic methods, but not with the required precision of better than 0.] kgal �9 m, 

equivalent to ]0cm in terms of heights, which corresponds to about ]0 -8 relative 
to the earth's radius. In addition, one of the main objectives of worldwide vertical datum 
connection is aiming exactly into the opposite direction, namely the establishment of 
control for oceanographic modelling. A second alternative is the indirect determination 
of C pQ , incorporating geometric space techniques and geoid computation. The principle 

is schematically shown in Figure 4. This alternative shall be discussed in the sequel. 

earth's 
surface 

level surface 
Through p 

geoid 

reference 
surface 

(a) 

H (b) 

V ' - , ,  . : 
level surface 
through q 

Fig. 4 - Derivation of Cpo from a combination of  geometric height h ,  

orthometric height H, and geoid height N in vertical datums (a) 
and (b). 

We assume that worldwide station coordinates in a geocentric coordinate 
system of a number of fundamental stations can be determined with the required 
precision. The computation therefrom of geometric heights h above a chosen reference 
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surface is straightforward. Furtheron it is assumed that precise orthometric or normal 
heights, or potential differences are available for atl points in system (a) and (b) ,  
respectively. We shall therefore concentrate on the geoid part or more explicitely on 
the solution of the geodetic boundary value problem and its presentation in the context 
of the determination of CpQ. 

In principle the same problem has been treated in (Mather, 1973) and (Colombo, 
1980). However, Mather's article from 1973, to be seen in the context of the requirements 
and possibilities at that time, was less specific and followed a somewhat different line. 
Colombo's approach, on the other hand, starts from some special set-up with a number 
of fundamental stations, located in-land and with all data referring to them. It is the 
intention of our approach to show that the problem can also be solved on the basis of 
the traditional definitions of vertical datums, gravity anomalies and all related quantities. 

Observables and Linear Model 

The first observable considered here are potential differences. They are derived 
from levelled height increments, A n ,  and gravity values, g, along the levelling line. 
Instead of P, or Q,  the vertical datum reference point is for the moment denoted 0 
with P being an arbitrary second point. It is, compare (Heiskanen & Moritz, 1967) 

Cpo = c (P, o)= w (o) - w (p) 

P 
= f g dH ~. % g i A n i  " (4) 

0 1 

The gravity potential is defined as the sum of gravitational potential V and centrifugal 
potential Z 

W (P) --- V (P) + Z (e) (5) 

The gravitational potential V ,  being harmonic in the space outside attracting masses, 
can be expressed as 

V(P)  GM ~ ~;n 7..l/rs 
= C Y (~'p Xe) (6) 

R n=0 m=0 a=0 ~kre]  , m a  , m a  ' 

with GM, gravitational constant times mean mass of the earth, and the following 
convention for the fully normalized, dimensionless potential coefficients 

fo 

Cnm a = (7) 

nm for a = 1 

and for the associated Legendre functions 
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Vnma (~0p, kp) =Pnm (sin ~Op) 

cosmkp for a = 0 

sin m kp for a = 1 

(8) 

where ~pp, ~.p and rs are the geocentric coordinates of P. 

= 1. co2 r 2 cos2 ~s  where the earth's spin rate co The centrifugal potential Z (P) 2 

is known very accurately. Inserting (5) and (6) into (4) gives 

Cpo = ~. gi Ani 
1 

= w ( o ) - z ( P )  cM z n§ 
-- ~ n r n e ~ p /  Cnma Ynma (P) " (9) 

From eq. (9) it is seen that a priori W (0), the coefficients Cnm a and the coordinates 

of P are unknown and that the equation is non-linear in the coordinates of P. 

The second observable is scalar gravity, g. In (4) it is only an auxiliary quantity 
with no stringent precision requirements associated with it. It is, with (5) 

w i t h n  the vertical direction in P. Inserting for V expression (6) the non-linear 
character of the problem becomes apparent again. 

Linearization of eqs. (9) and (10) requires the availability of an approximate 
- o r  no rma l -  gravity field and of approximate coordinates of all points. We define 
the normal gravity field as 

(&y" 
u(P) = z (P)+  9M' ~. c' v ~(~p Xp) (11) 

R n m a ~ r p ]  nma nm ' 

where GM' is the adopted or approximate value of GM and the coefficients C' 
t i m  n 

are those either of an internationally adopted reference field (e.g. the GRS67 or 
GRS80) or of models, such as GEM10, GRIM3 or the OSU81 field. Various aspects 
of the linearization process are treated in (Rummel, 1984). The purpose of the 
derivations here is to keep things simple without loss of generality. Therefore (1) only 
the vertical components of the linear model shall be considered, (2) the Stokes approach 
shall be taken, although it can be easily shown that a completely analogous result is 
obtained from the Molodenskii approach, and (3) spherical as well as constant radius 
approximation shall be applied, although in reality - in view of the required precision 
- atmospheric, ellipsoidal and topographic effects have to be taken into account, see 
(Moritz, 1974). 

Points on the same plumb line as P located on the chosen normal surface and 
P 

on the level (equipotential) surface passing through 0 will be denoted by P0 and P0 ' 
respectively, see Figure 5. 
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P 
suffice 

level suffice 
I through 0 ~..../-// ~PQ-- normal surface 

I 

Fig. 5 -  Definit ion of P, PO and PO" 

Free air reduction of g(P) to sea level yields �9 

g(p0) = g(p) _ a3' H 
an 

or when employing the def ini t ion of orthometr ic heights H = Cp0 
5- 

gravity along the plumb line (see Heiskanen & Mori tz,  1967 �9 ch. 4) 

wi th g" the mean 

;)3' ~ CP~ g(Po) = g(P) - a'-n 

Linearization of g (P0) wi th  respect to U and the approximate point P~) gives 

(12) 

a3' g(po) = 3' ( p 0 ) + Y _ L N +  ~; AC (13) 
On n,m,a aCnm a nma 

In terms of a gravity anomaly (observable minus approximate value) eqs. (12) and (13) 
become 

Ag = g(Po) - 3'(P~) 

a~ ~_ cp ~ _ 3' (v~) 
= g ( P )  - On 

= a 3 ' N +  Y, a3' AC 
an n,m,a tiCnm a nma 

(14) 

We observe that both observables, g(P) and C p 0 ,  enter into the gravity anomaly, an 

important fact when defining the a priori variances and covariances of the latter. 

The usually unknown potential value of the adopted zero level surface, 
Wpo = W 0 , can be expressed in linearized form as 

Wpo = Up;)+--~)UN + Z ~ a U  ACnm a 
On n , m , a  aCnm a 

or as anomaly wi th  ~ = - 3 '  
an 
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0U 
AW 0 = - 7 N  + s ~ ACnm,. , (15) 

n,m,a aCnm a 

The sum on the right side gives the anomalous potential T : 

0U 
T(P~) = X ~ AC 

n ,m,a  a C n m  a n m a  

_ 6 ( G M )  + GM' ,v,~, ~n Z ( R y + l  
r R n'=2 m=0 a=0~kT- / A C n m a Y n m a ( r  

where 8(GM) = G M -  GM' .  In (16 6(GM) is the zero-degree term. In general the 
r 

summation over n would have to start with n = 1, where from the first-degree 
coefficients the shift of the geo-center from the chosen coordinate origin can be 
computed, compare (Heiskanen & Moritz, 1967 ch. 2.6). The definition AClo  = 

ACI1 = A S I I  = 0 corresponds to a choice of the reference coordinate system in 

the geo-center. 

With (16) the linear equations (14) and (15) attain the well-known form 

AW 0 = - I'N + f (17) 

and 

0",/ 1 
Ag = g(P) - an  ~ CPO 

= 0 7  N - a__T_T . 

On On 
(18) 

Elimination of N from (17) yields Bruns' formula 

T - AW o 
N =  

7 
(19) 

insertion into (18) the fundamental equation of physical geodesy 

Lc Ag = g ( P ) -  0n 7 PO 

_ 0 7  1 A W  0 + 0._7 7 I T _  aT ( 2 0 )  

an 7 an 7 On 

It can be sh~ that the ~176 ],f ~n')  in (20, applied t~ T '  is invariant 

with respect to the first degree harmonics, compare (Krarup, 1971). In terms of linear 
algebra this means that the first degree harmonics span the null space of this operator. 
Our choice ACIe  = AC I !  = AS I I  = 0 transforms the singular problem of 

determining T into aregular one. 
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The above linearization is not the most general one, in the sense that the 
approximate coordinates were not chosen completely arbitrari ly, as e.g, in (Rumme] 
& Teunissen, 1982). Instead, in accordance with general practice, the observed potential 
differences (or heights) were not treated as a second independent observable but were 
employed for the reduction of gravity from P to P 0 '  with U = const, being the 
approximate surface common to all points. 

Solution of the Geodetic Boundary Value Problem 

We now turn to the solution of the geodetic boundary value problem i.e. the 

determination of AW 0 , N and T or equivalently Z~Cnm a from eqs. (19) and (20). 

In a first step AW 0 is assumed to be constant all over the earth, or in other words, 

there exists one unified vertical datum. 

In spherical approximation 
becomes 

Ag = " AW o -- + 
r 

and we find the wel l -known solution for 

it is a7 23' OT OT - - ~  - - -  and q ~ - - .  ILlence (20) 
an r On ~)r 

(21) 

T(P) - &(GM)+ ,R f St (gtpQ) Ag(Q)  dOQ (22) 
R 4~" a 

and for 

R 
N(P) = N O + f S t ( ~ p Q ) A g ( O ) d a Q  

47r7 o 
(23) 

where S t ( ~ )  is the Stokes integral function. The constant N O 
term. It is defined as 

AW 0 5 (GM) 
N O - + ~  

3' R7  

is called zero-order 

AW o _ R < A g >  + ~ (24) 
"7 3' 

= _ R < A g  > + 5(GM____~) 

27 27R 

with < A g >  . . . . .  1 f Ag d o ,  the global gravity anomaly average. The zero-order 
4rr 

term is discuss.ed in chapter 2 - 1 9  of (Heiskanen & Moritz, 1967), where it is also 
pointed out, that the measurement of one additional distance allows the determination 
of N O , in principle. Hence together with a precise knowledge of GM,  AW 0 is 

estimable. 

We turn now to the actual situation in vertical datum connection. Assume 
there exist wor ldwide ( [  + ] )  vertical datums. Assume further that assumption of 
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eq. (3) still holds, i.e. the initial potential (or height) value of each datum zone is the 
same, for example zero. The potential differences between the fundamental bench 
mark, 0 ,  of one arbitrarily chosen vertical datum (a), e.g. NAP,  and the bench 
marks, Qi ' of all other datums are denoted 

CQi 0 --- W(0) - W(Qi )  i = 1 . . . . .  I (25) 

While eq. (15) remains still valid for datum zone 0 the corresponding equation for the 
other I zones becomes 

~U 
AW 0 - C Q i  0 = - 3 , N +  Y~ ~ A C n m  a (26) 

n,m,a aCnm a 

It is needless to say that the height anomaly N represents the vertical distance from 
the adopted reference surface to the equipotential surface passing through datum point 
Qi"  Besides the unknowns AW0,  N ,  and ACnm a ,  discussed above, the CQi 0 

enter new into the problem. Due to this change Bruns'equation becomes 

T - AW 0 + CQi 0 
N =. (27) 

3' 

and accordingly the fundamental equation 

�9 a-na3' 1 _3,(p~))  Ag(') = g ( p ) _  gCpQi  

=2 w ~ 2c _(2+_a)T 128/ 
r - -T  Qi 0 r ar 

where the upperindex (i) of Ag should point out the fact that the observed gravity 
is reduced to the level surface passing through Qi "  CQi0 in (28) represents a global 

step function with constant function value inside each datum zone. Inside the reference 
zone (a ) the  function value is zero by definition (CQi=o 0 = 0 ) .  The relationship 

between Ag and Ag (i) is 

Ag = Ag O) + 2 
r CQi0 ' (29) 

where 2 C 2 - mgal r Qi 0 = r g H Q i  0 ~ 0.3806 m HQi0 [m] can be interpreted as free 'air 

reduction from the level surface passing through Qi to the one through 0 ,  compare 

(Rummel & Teunissen, 1982). Only the AgO) are observable. With eqs. (27), (28), 
and (29) the general solution of the geodetic boundary value becomes 

T(P) = 6 (GM) + R'-~- fo St (~PQ) [Ag(J) + 2 CQJ~ dOQ R 4n R (30) 
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and 

N(i) (p) 5 ( G M ) A W  0 CQ 0 R [ '  ~..C Q jO] 4- i + . f St(~bpo) AgO) + ~ = . Q d O Q ,  (31) 
R3` 7 7 4n3` 

where the upper index (i) of N again expresses the fact that P ties in the datum zone 
with datum point Qi " The constant N O , eq. (24), is to be replaced by (compare (31)) 

AW 0 CQi0 +6 (GM) 
NQi .3' 3' R7 

A W  0 CQio  
= _ R < a g > +  + ~ (32) 

3  ̀ 3' 3' 

AW 0 CQio 
= - R <AgtJ )>  - < C Q j 0 >  + Jr 

3' 3' 3' 

However GM' is known rather well. In a recent paper Smith et al. (1986) give a GM' 

value of 398 600.441 + 0.005 km3/s 2 , derived from one decade of LAGEOS 

tracking. This implies a relative precision of 1.2. 10 -8 , approximately the relative 
precision we are aiming for. Therefore GM shall be regarded as known in the sequel 
(6 (GM) = 0 ) .  

i 0 
Denoting now N O = and NQi 0 = , so that NQi = N O 4-NQi0 ,  

r 1 3' 
and furtheron indicating Stokes integral ~---~ f St ( ~ ) [ .  ]do by the operator notation 

S ( . )  the bias in T and N caused by neglecting AW 0 and CQi 0 can be expressed 
as 

b(T) = 2 S ( C Q i 0 )  (33) 

and 

+ I b(T) (34) b(N) = N O + NQi 0 
3' 

An impression of the order of magnitude of b(N) can be obtained by the 
following experiment. Since the reference points of the vertical datums are in general 
close to M S L - c o m p a r e  the discussion of c h a p t e r 2 - t h e  global step function 
- AW 0 + C Q i  0 can to some extent be approximated by a global model of sea surface 

topography. Enge|is & Rapp (1983) computed spherical harmonic coefficients a" 
nm 

and bnm of the sea surface topography heights H s (assuming zero elevation on land) 

based on oceanographic data compiled byLevitus 

6 n 
Hs(P ) = R Z X (anmCOSmXp+~nmSinmXp) P m (sinCp) (35) 

n=0 m=0 
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We assume that at any arbitrary point - A W 0 + C Q i 0 ~  ")'H s . Then with (35) the 

direct effect N O + NQi 0 in eq. (34) can be modelled by 

- L ( A w  o - CQ ) NO + N Q i ~  = 7 i0 

H (36) s 

1 
and the indirect effect ; -b (T) by 

_ 9 
1 b ( T ) =  - S ( C Q i o )  
7 7 

6 
~ - , R E  

n = 2  

E n 2 
(~nm cos m Xp + 5- 

m =0 n -- I n m  
sin m?~p) Pnm (sin ~) . (37) 

In Figures (6a-c) global maps of N O + NQ --[ b(T) and of the total bias b(N) 
i0 ' ,), 

are given. The total effect ranges from +2.1 m to - 1.8 m.  

Determination of &W o and CQi o 

We return to the objective of this chapter, the determination of the potential 
differences CQi 0 and of AW 0 . The following assumptions should hold �9 (1) For 

at least one station in each of the (I + 1) vertical datum zones geocentric coordinates 
are available, derived by space methods, with the required precision of better than 

]0 -s . The computation therefrom of the geometric height h above the adopted global 
reference surface is straightforward. (2) For all stations precise orthometric (or normal) 
heights or potential differences are available, referring to the respective datum point. 

(3) Gravity anomalies Ag (i) are given globally. 

At each of the available stations k ,  k = 1 ,2  . . . . .  K the height anomaly 

N (i) can be computed indirectly from the well-known relation ' 

N (i) = h - H (i) (38) 

The upper index (i) indicates again that N and H belong to datum zone i ,  i.e. they 

refer to the level surface passing through Qi " N(i) of (38), derived from the orthometric 

height in combination with h from space methods, can now be compared with the 

corresponding gravimetrically determined N (i) of eq. (31). At each of the K stations 
the following relationship can be established with (31) and (38) 

N (i) = h - H (i) 

~5 (GM) AW 0 CQi0  + ~ +  
R7 3' 3' 4r rT  

gO) + 2 CQjOI dct " (39) 
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Combining the terms with the three observable quantities h ,  H (i) and Ag 
employing the operator notation for the Stokes integral) gives 

y = h - H (i) - R---S (Ag(J)) 
3' 

Now the following estimation 
def. 

(fi(GM) = O) �9 

(J) (again 

(40) 

model for AW 0 and the CQi 0 can be established 

AW0 CQi0 s  
y = - ~ + �9 + (41) 3' 3' 3' (CQj O) 

We take a closer look at the Stokes integral in (41). Each unknown CQj 0 takes a 

constant value inside the respective datum zone. If the area on the unit sphere a 
covered by each datum zone is denoted A a i ,  we obtain 

2 
2S(CQJ 0 ) 3 '  = 47r7 fa St(r  Q 

= 2  XI { 1-- f S t ($pQ)d(Aoj )  1 
7 j=l CQjO 47r zxaj (42) 

2 I 
= ~ Z CQj 0 ISpQj 

3, j=l 

The value IS of the integral over the Stokes function depends on the position of P 
relative to Ao i . Now a complete linear adjustment model can be formulated for each 

of the K space stations Pk : 

1 CQjO CQiO. + 2 Z ~ (43) AW 0 
= +(1 + 2ISPkQi ) YPk 3' 3' j= 1 (j:~l) ISek QJ 3' 

With K ~ I + 1 and at least one station in each datum zone all unknown CQi 0 and 

AW 0 are estimable from (43). The structure of the coefficients matrix is shown in 

Figure 7. 

This is the solution to our problem. It is interesting to note, that in the strict sense the 
problem can only be treated worldwide - including all CQi 0 - and not solely as a 

datum connection problem between vertical datums (a) and (b) .  This is caused by the 

term 2 j = l  y I(j=/=i) ISpk Qj CQj 0 in (43), or in other words by the vertical datum 

effect in the computed gravity anomalies AGO), compare (29) and (31). It is the 

indirect contribution l b ( T )  displayed in Figure 6b. This effect could be completely 
3' 

eliminated, in case the gravity anomalies were computed solely from satellite derived 
potential coefficients. Gravity anomalies computed this way refer all to one level surface. 
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Yz 0 

Y2 0 

Y3 

Yw 

a c c c c c c c c 
11 12 13 14 15 16 17 18 

c c c c c c c c 
21 22 23 24 25 26 27 28 

b c c c c c C c 
31 32 33 3w 35 36 37 38 

: b 
h.2 : : ! 

Y5 

Y6 

Y7 

b 
53 

b 
63 

: b 
74 

YB 5 a 

Y9 6 a 

ylo I 7 a 
i 

! 

YI I  8 a 

b 
! 8s 

b 
:" 96 

b 
10 7 

b 
It1 8 

Fig. 7 - Structure of  the coefficient matrix for an example with 11 stations and 9 
vertical datums. The types of  elements appearing in the coefficient matrix 

are (compare eq. (43) ) a = - l ,  kib = (1 + 2ISPk Qi) and kjC = 2ISpk Qj. 

In this case a mixture of situation A "one-vertical datum", eqs. (19) and (21), and 
situation B "several vertical datums", eqs. (27) and (28), applies, where fundamental 
equation (21) is to be combined with Bruns' equation (27). This matter is discussed from 
a different angle in (Laskowski, 1983). 

The results are based on the assumption that the K stations are indeed known 
with the quoted precision in a geocentric system Ourdays results from precise laser 
tracking to LAGEOS suggest that this assumption can be made, compare (Smith et al., 
1985). If one would have indications that the origins of the gravimetric and of the 
satellite systems do not coincide at this level, additional origin shift parameters could be 
introduced into (43), analogously to (Rapp & Rummel, 1976). In principle the shift 
parameters are estimable, too. Whether they can actually be separated from the other 
unknowns depends on the number and global distribution of the stations. 

The feasibility of a global vertical datum connection considering presentdays 
data quality and distribution has been analyzed by Hajela (1983) using Colombo's 
(1980) approach. It showed that global vertical datum connection should become 
feasible in the coming decade. A similar numerical test of the model presented here has 
not yet been done. 
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4. Summary and Conclusions 

Vertical datum definition is straightforward. Strict coupling of the potential 
(or height) value of the fundamental bench mark to mean sea level is neither required 
nor - f r o m  the operational point of v i e w -  desirable. Also the connection of two 

neighbouring vertical datums poses no particular problem, as long as the reference values 
of the fundamental bench marks are known and the potential (or height) difference 
between them can be measured. Problems start with the unification of vertical datums 
on a continental scale, for large networks consisting of first-order levelling traverses are 
of comparably poor reliability and are sensitive to systematic errors. Independent control 
could come from mean sea level records at selected tide gauge stations, integrated into 
the levelling network, in combination with oceanographic models of sea surface 
topography. However this type of control makes only sense if the oceanographically 
determined po.tential differences are of superior quality than the levelled ones. 

Another, indirect, independent control can be established from a combination 
of levelled potential (or height) differences, geoid computation, and precise positions as 
derived from space methods. This method can also be employed for worldwide datum 
connection. The core of this approach forms the solution of the geodetic boundary 
problem under the realistic assumption that observable potential (or height) differences 
and gravity anomalies refer to different vertical datums with unknown level differences 
among them. In the geoid formula, which represents the solution of the geodetic 
boundary value problem the unknown level differences appear at two places, compare 
eq. (31). One time they enter outside the Stokes integral as a constant off-set for all 
computation points inside one particular datum and a second time inside the Stokes 
integral. In the latter case they can be interpreted a sort of free-air reduction of the 
gravity anomalies to one common level but with unknown reduction height. Both the 
off-set and the indirect effect entering via the Stokes integral reach ourdays an order of 
magnitude of 0.5 to ] m and do not cancel out. If the geoid heights can be determined 
independently by a combination of precise satellite positioning and the orthometric 
(or normal) heights of the respective datum, the potential differences can be solved for 
as unknowns in a least-squares adjustment problem. This global vertical datum connection 

can be performed with the required precision of better than 10 -8 relative to the earth's 
radius, if in each datum zone at least one space station is present and if satellite derived 
coordinates and, globally, levelled heights and gravity are available with adequate 
accuracy. The problem could be solved restricted to only two datums, only if the 
indirect effect of the level differences would not be part of the model. This can only be 
achieved with gravity anomalies as derived from a satellite mission, for example from 
satellite gradiometry. 

Acknowledgement 

We gratefully acknowledge valuable comments by Dr. R.H. Rapp and 

Dr. Th. Engelis, The Ohio State University. 

The second author has been supported by the Netherlands'organization for 

the advancement of pure research N.W.O. 

0 

0 0 

496 



HEIGHT DATUM DEFINITION, HEIGHT DATUM CONNECTION ..... 

REFERENCES 

J.E. ALBERDA : Report on the Adjustment of the United European Levelling Net and Related 
Computations, Netherlands Geodetic Commission, New Series, 1, 2, 1963. 

W. BAARDA : A Connection Between Geometric and Gravimetric Geodesy, A First Sketch. NGC, 
New Series, 6, 4, 1979. 

E.I .  B A L A Z S  : Local Mean Sea Level in Relation to Geodetic Levelling Along the United States 
Coastlines, National Geodetic Survey, Rockville, Md., 1973. 

O.L. COLOMBO : A World Vertical Network, Dept. Geodetic Science, 296, The Ohio State Univer- 
sity, Columbus, 1980. 

O.L. COLOMBO : Levelling with the Help of Space Techniques, in proc. 3rd Int. Symp. on the 
North American Vertical Datum, National Geodetic Information Center, NOAA, Rockville, 
1985. 

Th. ENGELIS, R.H. RAPP : Global Ocean Circulation Pattern Based on SEASAT Altimeter Data and 
the GEM L2 Gravity Field, 18th General Assembly, IUGG, Hamburg, 1983. 

I. FISCHER : Mean Sea Level and the Marine Geoid -- An Analysis of Concepts, Marine Geodesy, 
1, 1, 1978. 

D.P. HAJELA : Accuracy Estimates of Gravity Potential Differences Between Western Europe and 
United States Through LAGEOS Satellite Laser Ranging Network, Dept. Geodetic Science, 
345, The Ohio State University, Columbus, 1983. 

W, HEiSKANEN, H. MORITZ : Physical Geodesy, Freeman, San Francisco, 1967. 

IAPSO Advisory Committee on Tides and Mean Sea Level : Changes in Relative Mean Sea Level, EOS 
Transactions, AGU, 66, 45, pp. 754--756, 1985. 

J.J. KOK : The United European Levelling Network (UELN--73), Report on the Symp. lAG Sub- 
commission for RETrig (ed. : K. Poder), pp, 106--116, Muenchen, 1985. 

T. KRARUP : Letters on Molodenski's Problem, Communication to the members of lAG Special 
Study Group 4.31, Copenhagen, 1971. 

P, LASKOWSKI : The Effect of Vertical Datum Inconsistencies on the Determination of Gravity 
Related Quantities, Dept. Geodetic Science, 349, The Ohio State University, Columbus, 1983. 

D. L E L G E M A N N  : On the Definition of the Listing Geoid Taking into Consideration Different 
Height Systems, 3rd Int. Syrup. Geodesy and Physics of the Earth, Potsdam, 1977. 

R.S. MATHER : The influence of Stationary Sea Surface Topography on Geodetic Considerations, 
in proc. Symp. Earth's Gravitational Field & Secular Variations in Position, pp. 585--599, 
Canberra, 1973. 

H. MORITZ : Precise Gravimetric Geodesy, Dept. Geodetic Science, 219, The Ohio State University, 
Columbus, 1974. 

R.H. RAPP, R. RUMMEL : Comparison of Doppler Derived Undulations with Gravimetric 
Undulations Considering the Zero-Order Undulation of the Geoid, proc. of Int. Geodetic 
Symposium Satellite Doppler Positioning, vol. 1, pp. 389--397, Las Cruces, 1976. 

R.H. RAPP : The Need and Prospects for e World Vertical Datum, proc. of the lAG Symposia 18th 
General Assembly, IUGG, vol. 2, pp. 432--445, Hamburg, 1983. 

R.H. RAPP, J. WHITCOMB, R. MITCHELL, P. VANICEK, O.W. Williams, B.D. TAPLEY Report 
of the Vertical Datum Subcommittee of the Committee on Geodesy, Board on Earth Sciences, 
National Research Council, 1984. 

R. R U M M E L ,  P. T E U N I S S E N  : A Connection Between Geometric and Gravimetric Geodesy - Some 
Remarks on the Role of the Gravity Field, in : Daar heb ik veertig jaar over nagedacht ...... 
vol. 2, pp. 602--622, Delft, 1982. 

497 



R. RUMMEL, P. TEUNISSEN 

R. RUMMEL �9 From the Observational Model to Gravity Parameter Estimation, proc. Local Gravity 
Field Approximat ion (ed.  : K.-P. Schwarz), pp. 67--106, Beijing, 1984. 

R. RUMMEL, P. TEUNISSEN : Geodetic Boundary Value Problem and Linear Inference, Intern. 
Symp. Figure and Dynamics of the Earth, Moon and Planets, vol. I, pp. 227--264, Prague, 
1986. 

D.E. SMITH,  D.C. CHRISTODOULIDIS, R. KOLENKIEWICZ,  P.J. DUNN,  S.M. KLOSKO,  
M.H. TORRENCE, S. FRICKE, S. BLACKWELL ; A Global Geodetic Reference Frame 
from LAEGOS Ranging, Journ. Geoph. Res., 90, B11, pp. 9221- 9233, 1985. 

D. SMITH, R. KOLENKIEWICZ, M.H. TORRENCE, P. DUNN : Geophysical Parameters Obtained 
During a Decade of LAGEOS Tracking, Int. Syrup. Figure and Dynamics of the Earth, Moon  
and Planets, vol. I, pp. 73--84, Prague, 1986. 

W. STURGES : Sea Level Slope Along Continental Boundaries, Journ. Geoph. Res., 79, pp. 825- 
830, 1974. 

A .  W A A L E W I J N  : Drie Eeuwen Normaal Amsterdams Peil, hoofddirectie van de waterstaat, 48, 
Den Haag, 1986. 

J. ZEGER : Aufbau eines Neuen H6hensystems in ~sterreich, AIIg. Vermessungs-Nachrichten, 
8--9, pp. 299--310, 1985. 

R e c e i v e d  : 1 9 . 0 6 . 1 9 8 7  

A c c e p t e d  : 0 6 . 0 4 . 1 9 8 8  

498 


