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P R E D I C T A B I L I T Y  OF THE EARTH'S  POLAR M O T I O N  

Abstract 

The numerical prediction o f  the Earth's polar motion is o f  both theoretical and 
practical interest. The present paper is aimed at a comprehensive, e.vperimental study o f  
the predictability o f  polar motion using a homogeneous BIH (Bureau International de 
l'Heure) data set for the period 196 7-1983. Based on our knowledge of  the physics o f  
the annual and the Chandler wobbles, we build the numerical model for the polar 
motion by allowing the wobble periods to vary. Using an optimum base length o f  six 
years for prediction, this "floating-period" model, equipped with a nonlinear least- 
squares estimator, is found to yield polar motion predictions accurate to within 0".012 
to 0".024 depending on the prediction length up to one year, corresponding to a 
predictability of  89-82 ~o. This represents a considerable improvement over the 
conventional f ixed-period predictor, which, by its nature, does not respond to 
variations in the apparent wobble periods (in particular, a dramatic decrease in the 
periods o f  both the annual and the Chandler wobbles after the year 1980). The superiority 
of  the floating-period predictor to other predictors based on critically different 
numerical models is also demonstrated. 

1. Introduction 

The art of prediction of a time series consists in the extrapolation into the 
future of past behavior of the dynamic system that generates the time series. Some 
systems are deterministic and hence completely predictable (at least in principle), such 
as tides or the time of the next sunrise. Other systems are for the most part statistical in 
nature and often too erratic to be subjected to accurate predictions ; examples include 
the weather pattern and stock market tradings. 

The Earth's polar motion is a dynamic system that lies somewhere between the 
two extremes (a quantitative treatment is given in Section 4). To first approximation, 
polar motion is composed of a secular motion and two quasi-circular components : the 
annual wobble and the ]4 -month  Chandler wobble. These components are by no 
means completely deterministic (as are, say, the tides), yet each of them, governed by 
different physics, is coherent enough with respect to time that a fairly accurate 
prediction can be expected. This makes the problem of polar motion prediction meaningful 
and, in my opinion, challenging. 

Besides theoretical interests, the prediction of polar motion is of practical 
value as well, as attested by the independent publication of predicted pole positions by 
two time services : the B[H (Bureau International de I'Heure) Circular B/C [Feissel, 
Bull Gdod. 59 (1985) pp. 81-93. 
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1980], and the USNO (U.S.  Naval Observatory) Series 7 [Babcock, 1982]. The 
conventional prediction methods adopted are ones that can be characterized by fixed 
wobble periods. Zhu [1982] has made a comprehensive study of polar motion prediction 
that uses such a "fixed-period" scheme ; it, as far as I know, has remained the only 
published work on the subject to date. 

The present paper is an experimental study of the predictability of polar motion 
based on a homogeneous B[H data set for the period 1967-1983. It will be shown that 
with a f loating-period numerical model and a capable estimation method, predictions 
accurate to within 0".012 to 0".024 can be achieved for polar motion, depending on 
the prediction length up to one year. The superiority of this "f loat ing-period predictor" 
to other predictors that are based on critically different numerical models (including the 
conventional f ixed-period predictors) will be demonstrated. 

2. Prediction (Using the Floating-Period Predictor) 

The procedure of numerical prediction consists of three stages : model 
identification, parameter estimation, and extrapolation [Box & Jenkins, 1970].  

2,1. Model Identification 

Based on our knowledge of the physics of polar motion, we decompose the 
latter into three major components : 

polar motion = (secular motion) + (annual wobble) 

+ (Chandler wobble). (1) 

For the purpose of prediction, we shall consider record segments with lengths shorter 
than, say, eight years. It is with respect to this time scale that we discuss the numerical 
representation of each component in equation (1). 

The secular motion (relative to the Conventional International Origin, or C]O) 
can be well represented by a linear term. It is presumably the combination of a true polar 
wander and any periodic component with a period much longer than, say, eight years. 

The annual wobble is believed to be driven largely by the atmospheric mass 
transport [see, e.g., Lambeck, 1980]. The solar energy received by the atmosphere cycles 
every 365.24 days with a nearly constant peak- to-peak amplitude. However, the 
Earth's meteorological transfer function being intricate and nonlinear, it is only natural 
that the annual wobble thereby generated will have an amplitude that varies from year 
to year and a period that fluctuates about the driving period 365.24 days. 

The Chandler wobble is the Earth's free oscillation that corresponds to the 
Eulerian nutation of a rigid body ; but the exact physical nature of its variations with 
time is largely unknown. One hypothesis states that the Chandler wobble is simply a 
single-period oscillation convolved with a sequence of random or rionrandom excitations. 
An alternative hypothesis calls for multiple (and fixed) natural periods [see, e.g., Colombo 
& Shapiro, 1968]. Both hypotheses give rise to (apparent) instantaneous periods and 
amplitudes that are slowly varying with respect to time, as manifested by actual 
observations. (For the single-component hypothesis, a good synthetic example is given 
by the "disturbed pendulum" model of Yule [1927];  for the modulating effects of 
multiple periods on the instantaneous period and amplitude of the polar motion, see 
Chao [1983].  ) 

The above discussions justify the following numerical model for polar motion : 
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PREDICTABILITY OF THE EARTH'S POLAR MOTION 

.27rt .27r t 
X ( t )  = A + Bt + C a cos 1-~--- + Ca) + C c cos I--if--- + r ) (2) 

a c 

for the X-componen t ,  and a similar expression for the Y - c o m p o n e n t  Y ( t ) .  A + Bt 
is the linear secular term, and the two sinusoidal terms represent the annual and the 
Chandler wobbles (C stands for the amplitude, P the period, and ~b the phase angle)�9 
The eight (real) parameters A , B , C  a ,Pa ,~ba ,Cc  , P c , r  are unknowns to be 

estimated from a given record segment X ( t )  or Y ( t )  - -  each record segment yields 
one set of estimated parameters. Since we allow the data in each given record segment to 
"choose" the wobble periods, we'call equation (2) the fl0ating-period model. Note that 
here we treat X ( t )  and Y ( t )  as independent series so as not to restrict ourselves only 
to the prograde portion of the true polar motion, as we would if we chose to model the 
complex series X ( t )  + i Y ( t )  in terms of " complex wobbles" of .the form 
exp ( i 2 r r t / P  +q~). Although the physics behind equation (2) is for the most part 
unknown, we shall show that this model is adequate for the purpose of prediction. 

2.2. Parameter Estimation Method 

The next stage is, of course, the numerical estimation of the eight free 
parameters in equation (2). This is a nonline'ar fitting problem, for equation (2) is 
nonlinear in some of the parameters (particularly the periods). Thus we implemented the 
nonlinear least-squares estimator, called "CURF[T" ,  according to Bevington [1969, 
pp. 232-242]  . It uses the Marquardt algorithm which combines a gradient search with 
an analytical solution developed from linearizing the fitting function. This algorithm is 
found to be robust and fast. 

2.3. Extrapolation and Error Analysis 

As an experiment, we now apply the floating-period estimator described above 
to the X -  and Y-series of a homogeneous B[H polar motion data set, given at f ive-  
day intervals spanning 1967.0-t983.3 with the origin adjusted to the G[O in 1967 
[Feisse], 1980]. These two time series, henceforth called B ] H - X  ( t )  and B [ H - Y  ( t )  
respectively, are referred to the 1980 Nutation Theory [Capitaine & Feisse], 1983], and 
have been strongly smoothed by means of the Vondrak algorithm. They are displayed 
in Figure 1. 

Our basic procedure is straightforward. We simply "chop" an N-year  segment 
(where N =  5 , 6 , 7 , 8 )  from B [ H - X  (or  B I H - Y )  , apply the floating -period 
estimator, and use the derived model parameters to extrapolate the time series M days 
(where M = 2 5 , 5 0 ,  1 0 0 , 1 8 0 , 3 6 5 )  into the future. We start from the first N-year 
segment at the beginning of B [ H - X  (or B [ H - Y )  , make an M-day  prediction, and 
then shift forward M days for the next M-day  prediction. This procedure continues 
across the length of B [ H - X  (or B I H - u  until we hit the end. Each M-day  prediction 
can now be compared with actual observations, and the root-mean-square (rms) 
prediction error (for each M-day  prediction), denoted by E , can be evaluated. Finally, 
we can average the sequence of the prediction errors E obtained consecutively across 

the whole length of B I H - X  (or B [ H - Y )  to yield the average prediction error E .  The 

value of E will be used as a performance indicator for the predictor under consideration. 
The prediction scheme described above will be denoted as [ N (years), M (days) ] 
where N is referred to as the base length and M the prediction length " and we shall be 
speaking of E [ N ,  M ] (a sequence) and of E' [N ,  M] (a single quantity). 
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Fig. 1 - BIH polar mot ion  t ime series, B I H - X  and B / H -  Y. 
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PREDICTABILITY OF THE EARTH'S POLAR MOTION 

Figure2 summarizes the performance of our floating-period predictor by 

showing E [ N ,  M ]  for N = 5  ~- 8 (years) and M =  2 5 ~  365 (days) . Two things areto 
be noted �9 

(i) Minimum E invariably occurs around N =  6 (years) . This is in fact expected, 
because six years is the beating period between the annual and the Chandler wobbles. For 
N < 6 ,  the presence of noise in the data greatly decreases the capability of our f loat ing- 
period estimator (or any other estimator for that matter) in resolving the two wobbles. 
(Note, incidentally, that all we need to estimate the set of eight parameters are eight data 
points, which in the present case amount to a base length of only 40 days, if the data 

were noise free.) For N > 6 ,  on the other hand, E increases because the coherence of 
each component in the polar motion decreases as the time span gets large ; and Figure 2 
clearly implies that the coherence length of the polar motion is less than six years. Thus, 
we conclude that six years is the optimum base length for the prediction of polar 
motion. 

(ii) For any base length N ,  E increases monotonously as the prediction length 
M gets longer. This is again to be expected because of the decaying of the coherence, 
and hence predictability, of the polar motion with respect to time. 

3O 
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Fig. 2 - The average prediction error E [ N ,  M ] by the f loat ing- 
period predictor, where N is the base length (in years) and M is 
the prediction length (in days). 

As an example, we display in Figure 3 a typical comparison of observed pole 
positions (solid line) with those predicted by some ten consecutive [ 6 ,  100] f loating- 
period predictions (dotted line, at 5-day intervals) for a 3-year period (1977.7--]980.? 

85 



0.1 

B. Fong CHAO 

0 

-0.1 

A - 0 .2  

o 

>- -0 .3  

- 0 . 4  - 

- 0 . 5  - 

-~, 1978.0 . 

�9 " ~ ....... "".. '.I ~ . .  

~ 1 7 6  o �9 ~ o ~ 

1978.5 

R I I I I I 
- 0 = 0 . 3  - 0 . 2  -0 .1  0 0.1 0.2 0.3 

X (arcsec) 

Fig. 3 - A typical three-year segment of polar motion. The solid line 
is the BIH pole path, the dotted line shows the pole path predicted by 
the floating-period [6 ,  ]00 ] scheme. The cross + gives the position 
of the 1967 CIO. 

0.4 

---- we choose this particular time segment simply because during this time the polar 
motion amplitude changes rapidly enough to give us a clear display as shown). The two 
sequences E [6 ,  ]00]  (for B I H - X  and B [ H - Y )  are shown as the dashed lines in 

Figure4 (their averages, F, [ 6 , 1 0 0 ] ,  are shown in Figure2 as well as in Table 1). 
Table 1 lists E [ 6 ,  ] 00 ] vs .  M ,  and is plotted in Eigure 5 as dashed lines. From Table I 
we see that, depending on the prediction length (within 25 ~- 365 days) , the f loat ing- 
period predictor in general achieves accuracy to within 0".01 2 to 0 "024 .  In comparison, 
the six-year rms f i t  residuals of the floating-period estimator are in the range 
O " . O l  I - 0 " . 0 1 4  . 

3.  O t h e r  Pred ic tors  

In this section we shall compare other predictors which, when subjected to 
the same experiment described in Section 2.3. yield less satisfactory results than the 
floating-period predictor. 
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Fig. 4 - Comparison of  the prediction error sequence E [ 6 , 1 0 0  ] by 
the fixed - period predictor (solid lines) and by the floating-period 
predictor (dashed lines). 

Table 1 

The average prediction error E [ 6 ,  M ]  (in units of 0".001)  

by the f loating-period predictor vs. the prediction 

length M (see dashed lines in Fig. 5) .  

M(days) 

BIH - X  

BIH-Y 

25 50 100 180 365 

15.1 16.9 19.6 22.6 23.6 

12.8 13.9 15.8 17.5 19.5 

3.1. Fixed--Period Predictor 

Fixed-period predictor is one that uses predetermined annual and Chandler 
wobble periods in the numerical model, hence the name "fixed--period," Let the periods 
be 365.24 and 435,00 days respectively 
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Fig. 5 - Comparison of  the average prediction error E [ 6 , M ] (as a function 
of the prediction length M ) by the floating-complex period predictor (solid 
fines) and by the floating-period predictor (dashed lines, see Table 1). 

. 2rrt . 2rrt  
X ( t )  = A + Bt + C  a cos (3-g~.24 + ~a) + Ce cos ('435.00 +~be) (3) 

and similarly for Y ( t ) .  This is the simplest polar motion model, and the estimation of 
the six parameters is a linear problem (the nonlinearity with respect to ~ in expression 
(3) dissolves when we expand the cosine terms). To date, f ixed-period predictors have 
been the only predictors in use [BIH Circular B / C ,  USNO Series 7 ] ,  or discussed 
[Zhu, 1982]. 

However, when we apply the fixed--period predictor based upon our model (3) 
to the B[H data set, something unexpected appears. The solid lines in Figure 4 show the 
prediction error sequence E [ 6 , 1 0 0 ]  by the f ixed-period predictor for B I H - X  and 
B [ H - Y .  Prior to the year 1980, this predictor worked steadily, although not quite as 
well as the floating-period predictor. For example, E [ 6 , 1 0 0 ]  prior to 1980 is found 
to be 0".021 for B I H - X  and 0".018 for B I H - Y .  This agrees with the results of Zhu 
[1982],  and is about 10 g higher than those of the floating-period predictor (cf. 
Table 1).  However, Figure4 clearly shows that E [ 6 , 1 0 0 ]  from the fixed--period 
predictor soars tremendously after 1980. The same phenomenon occurs in all other 
prediction schemes [6 , M ]  with different prediction lengths M .  The root of this 
phenomenon is traced to a dramatic decrease in both annual and Chandler wobble periods 
starting around 1977 (see Section 4), a situation with which a f ixed-per iod predictor 
cannot cope. This is also reflected by a similar post-1980 jump in the six-year fit 
residuals of the f ixed-period estimator. 

The U.S. Naval Observatory (USNO), in its weekly "Time Service Announcement 
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Series 7 (Earth Orientation Bulletin)", publishes 40 days in advance pole positions 
predicted by a scheme which can be characterized as a f ixed-period predictor. The major 
difference between the USNO scheme and our f ixed-period implementation discussed 
above is in the base length used in prediction - - U S N O  uses a base length of only two 
years [McCarthy, personal communication, 1983]. The advantage of using a short base 
length is that the resultant estimates are more "instantaneous." So we decided to look 
into a f ixed-period [ 2 ,  M ] prediction scheme as well. Our experiments show that the 

f ixed-period F, [ 2 , 4 0 ]  (for either B [ H - X  or B I H - Y )  lies as low as about 0".015 , 

which is comparable to F, [ 6 , 4 0  ] of our f loating-period predictor (see the dashed lines 
in Figure5). However, this success is only apparent. In the f ixed-per iod [ 2 , M ]  
scheme, since the base length falls much shorter than the minimum resolving length (six 
years) of the annual and the Chandler wobbles, the estimates are prone to noise in the 
data (see Section 2.3). In particular, this is found to result in wobble amplitude estimates 
that are unstable and sometimes unreasonable. For short prediction lengths (M shorter 
than 40 days, say) this creates little discomfort as far as the prediction is concerned 
because of the general compensating capability of least-squares estimators. However, 
when one extrapolates these (unstable) estimates further into the future, one would 
expect a rapidly growing deviation of the predictions from actual observations. This is 
indeed found to be the case - -  for example, F. [ 2 , 3 6 5  ] is found to be about 0".029, 

almost double the value of E [ 2 , 4 0 ]  . Furthermore, the f ixed-period [ 2 ,  M ]  scheme 
also sees a post-1980 jump in E [2 , M ]  as M increases although not as severely as 
discussed earlier. 

The USNO scheme differs from our f ixed-period scheme also in the numerical 
model (cf. Equation 3). USNO does not fit a linear trend while it "forces" a circular 
Chandler wobble solution by using the same Chandler amplitude (Cc) for X ( t )  and 

Y ( t )  and a 90 ~ difference in the Chandler phase (q~r between X ( t )  and Y ( t ) .  

The latter constraint seems rather artificial and lacks physical justification (cf. discussion 
in Section 2.1 preceding Equation 2). In any event, this lack of freedom in the USNO 
model may have been the cause of some rather large prediction errors (in some cases as 
high as 0".07 at the end of their 40-day prediction). 

In conclusion, the f ixed-period predictors yield parameters that fail to reflect 
true variations in the polar motion ; and, as a result, perform less satisfactorily than the 
floating-period predictor and may be potentially dangerous in the sense that it may 
sometimes lead to disastrous predictions. 

3.2. Floating--Complex Period Predictor 

The superiority of the floating-period predictor to the f ixed-period predictor 
is obviously the consequence of two additional degrees of freedom in the former fitting 
procedure, namely, the two wobble periods. Similarly, we can build in yet more degrees 
of freedom to allow for variations in the amplitude for each N-year  segment. A natural 
choice is to make the wobble periods complex in the numerical model, so that their 
imaginary parts give exponential decay or growth in the wobble amplitudes, hence the 
name "f loating-complex period" : 

.2~rt 
X (t) = A + Bt + C a exp (tZat) cos (---~-- + ~a)  

a (4) 
(2~tt 

+ C  c e x p ( a c t  ) cos ~ +r 
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and similarly for Y ( t ) .  Now we have ten (real) parameters to be estimated, some of 
which are nonlinear ; and again we use the " C U R F I T "  algorithm as in Section 2.2. 

As expected, equation (4) is indeed found to be a better fitting model. For 
instance, the rms fit residual for each six-year record segment is invariably lower (in 
some cases as much as 30 ~) than that of the floating-period estimator. As a predictor, 
like the floating-period predictor, it also responds to the post-1977 drop in the wobble 
periods mentioned in Section 3.1, showing no increase in the prediction errors E [ 6 ,  M ]  
after 1980 as did the f ixed-period predictor. However, the average prediction errors 

]~ [6 ,  M]  (M =25 ~ 365) of its predicted pole positions (by means of extrapolation) 
are generally higher than those by the floating-period predictor, as shown in Figure 5. 
This, of course, is indicative of the fact that the trend in the exponential decay/growth 
of the wobble amplitudes in general does not continue past, say, six years. Indeed, 
physically, we should not expect otherwise because the variations of wobble amplitude 
with respect to time are determined by the excitation functions which presumably are 
either erratic or changing from year to year. In conclusionl we state that while the 
floating-complex period model does a good fitting job and may hence have other 
potential usages, it is less satisfactory as a predictor for the polar motion. 

3.3. Autoregressive (AR) Predictor 

A related prediction scheme (but under a completely different philosophy) is the 
so-called linear prediction, which has been widely pursued in research fields such as 
geophysics, speech processing, control theory, and economics [see, e.g., Makhou], 1975 ]. 
Its application in time-series prediction has been thoroughly studied by Box & Jenkins 
[1970].  Here we shall briefly develop one widely used class of numerical models in the 
linear prediction theory, namely, the autoregressive (AR) models, and relate it to the 
present problem of polar motion prediction. 

An ruth order AR model of a time series x ( n )  is 

m 

x ( n )  = Z S i x ( n - i ) + a ( n  ) (5) 
i=l 

where l a ( n ) l  is a random (or white) series, and I Si" i = l  ,2  . . . . .  m I , called the 

AR coefficients, are the ( real-val ued) model param ete rs yet to be determined. While having 
the physical meaning of being the external disturbances to the dynamic system, the series 
a (n)  is just the nth prediction residual as far as prediction is concerned [for details 
see Box & Jenkins, 1970]. Many physical systems can be modeled by such an AR 
process; and the model identification problem consists mainly in the determi nation of the 
order m .  Although the latter problem may often be difficult or even controversial, we 
shall show presently that it poses no obstacle to the modeling of polar motion time 
series. It is wel l -known that a pure sinusoidal function can be represented as a second- 
order AR time series [see, e.g., Yu]e, 1927]. In fact, it can be shown that a linear 
combination of K complex sinusoids (with exponentially decaying orgrowing amplitudes ) 
can be expressed as a 2Kth order AR time series, and the K complex periods are 
related to the 2K (real-valued) AR coefficients through Prony's relation [for details see 
Chao & Gilbert, 1980; Chao, 1984]. For example, with a (n )  representing some random 
excitation function and m = 2 ,  equation (5) is a mathematically simple, and physically 
sound model for the Chandler wobble. For a linear combination of two wobbles (K  = 2 ) ,  

90 



PREDICTABILITY OF THE EARTH'S POLAR MOTION 

namely the annual and the Chandler wobbles in polar motion, we let m = 4 .  Equation 
(5) is then a general AR model which, apart from the secular term A + B t ,  
encompasses equations (2), (3), and (4). 

Now that the numerical model has been built, the estimation of parameters (i.e., 
the AR coefficients I Si ; i =  1 , 2 , 3 , 4  I) is just a linear least-squares procedure, and 

the extrapolation is straightforward, all according to equation (5) by letting a ( n ) = 0 .  
In practice, unfortunately, we encounter the following two difficulties : 

(i) Since equation (5) does not allow for a linear term A +  Bt ,  the latter has to 
be removed from the data prior to the AR estimation. This can be done by a least- 
squares fit. However, for record segments as short as several years, the f i t  is biased in the 
presence of the wobble terms. Synthetic experiments have indicated that this, in turn, 
can lead to biased estimations for the wobble parameters. (Nevertheless, it should be 
pointed out that the AR estimator is accurate and powerful in analyzing zero-mean, 
trendless polar motion data, as demonstrated by Chao [1983] ) . 

( i i) A more serious problem which is inherent in the AR predictor results from 
the noise in the data. Thus, even with an accurate set of model parameters, a predicted 
value can be, and often is, seriously biased by the noise in the existing values used in the 
prediction. Put differently, the noise in • ( n - i )  on the right side of equation (5) 
"propagates out" to • (n)  on the left side of (5). Synthetic experiments show that 

average prediction errors E generated by an AR predictor are generally several times 
larger than the corresponding s s by a floating-period predictor. 

Thus, although it is an adequate representation for the wobbles, the AR model (5), and 
hence the AR predictor, is unworthy in the prediction of polar motions. 

4. Conclusions and Discussions 

It is desirable to compare the different prediction schemes in terms of some 
quantitative measure. Thus let us here define the "predictabil i ty" P simply as 

P = I  aE 
~ 

(6) 

where a denotes the standard deviation, o 2 is the variance of the prediction error and E 
op.N . 2  is the variance of the polar motion. Note that here the variances are themselves 

the sum of the variances of the X -  and Y-components. For a system being modeled 
reasonably we expect P to lie between 0 and | - -  s  1 signifies a completely 
deterministic, noise-free system which has been modeled exactly, while P =0  results 
from a complete failure in prediction with the prediction error as great as the signal 
itself. Obviously P depends on the predictor and the prediction scheme in use, and 
represents a (linear) performance indicator. The quantity ap.M. can be estimated by 

computing the rms amplitude of the polar motion time series, and is found to be 0".17. 
The quantity o E can be estimated using E ,  an ensemble average of E which is itself 

an estimate (as a temporal mean) of o E of individual X -  or Y-component. Thus, 

from Table 1 and equation (6), we conclude that the predictability of polar motion using 
the floating-period predictor for prediction lengths in the range 25 ~ 365 days is 89 -- 
82 ~ .  The predictability of polar motion using the floating-complex period predictor is 
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somewhat lower ( 88 -76%) ;  and those using the fixed-period and AR predictors 
are considerably lower yet, and, in the former case, sometimes ill-behaved (see 

Section 3.1 ). 
One obvious by-product of our prediction procedure is the set of sequences of 

estimated polar motion parameters as functions of time. One such sequence which is 
interesting and relevant to our present study is that of the estimated wobble periods. 
Figure 6 shows the variations in the estimated annual and Chandler wobble periods resulting 
from the [6, 100] floating-period prediction scheme.The points represent six-year running 
estimates of the periods, each shifted 100 days down the length of the BIH data set. 
Thus features with scale shorter than, say, two years might be spurious. These variations 
may simply be due to the presence of noise in the data under the general compensating 
effect of least-squares estimators. (The latter is partially reflected by strong temporal 
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Fig. 6 - Six-year running estimates of wobble periods estimated by the 
floating-period estimator from B IH-X  (solid lines) and B IH -Y  (dashed 
lines) for (a) the Chandler wobble, and (b) the annual wobble. The curves 
are constructed by connecting the points in a visually smooth manner. 
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correlations between the estimates of  periods and amplitudes.) However, the sudden 
decrease starting around 1977 in both annual and Chandler wobble  periods, which show 

up in both B [ H - X  (solid lines) and B I H - u  (dashed lines), is believed to be real. Other 
est imation techniques, namely the f l oa t i ng -comp lex  period a n d  the AR estimators, 

also unequivocal ly show a very similar trend in the period variations. This has caused our 

implementat ion of  the f i xed -pe r iod  predictor to  " fa i l "  after 1980 as we have seen in 

Section 3.1. Presently we know nothing about its cause(s) or  its geophysical impl icat ions. 

We can only speculate that  this phenomenon has its root  in the atmospheric circulat ion 

system ; but  this awaits further investigations. 
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