
Advances in Computational Mathematics 2(1994)23-40 23 

Elastic curves on the sphere 
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This paper deals with the derivation of equations suitable for the computation of  
elastic curves on the sphere. To this end, equations for the main invariants of  spherical 
elastic curves are given. A new method for solving geometrically constraint differential 
equations is used to compute the curves for given initial values. A classification of the 
fundamental forms of the curves is presented. 

1. Introduction 

In Euclidean space, an elastic curve can be viewed as an arc length parametrized 
"cubic"  spline in tension, i.e. an elastic curve is a critical point  of  the functional  

! 

dp(y) = J (y", y") + tr(y', y') ds (1) 

0 

in the space F of  smooth maps 

y "[0,1] --> R n, l y'l = 1, 

y(0) = Po, y(1) = P~, y'(O) = Vo, y'(1) = v~, 

where  Po, Pi ~ R", Vo ~ Teo It", Vl ~ Te~ R", tr ~ R are f ixed and l is variable.  
Expressing y" in the Frenet frame yields the functional ~ in the form 

�9 (y) = f (~:(s)) 2 + tr ds, (2) 

where it" denotes the curvature of y. 

�9 J.C. Baltzer AG, Science Publishers 
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According to Bernoulli, the strain energy of an idealized one-dimensional 
elastic material is proportional to (2), which explains the interest in elastic curves 
as those curves that minimize bending (see [14]). In geometric modeling, the need 
for interpolants of high technical smoothness has revived the interest in elastic 
curves. To model smooth shapes, Minimal Energy Splines (MES), i.e. curvature 
continuous segmented curves with elastic curves as segments, have been proposed 
and successfully implemented (see [2,3,5, 13,15]). 

Spline techniques on the sphere have been developed to solve spherical 
interpolation problems, e.g. in the context of computer animation (see [ 18, 16, 11 ]). 
Open problems with spherical splines include the construction of splines of continuity 
higher than C l, of proper parametrization, and of technical smoothness. The Euclidean 
MES possesses all three of these properties, which is a consequence of the variational 
principle involved. This suggests to consider spherical curves defined as solutions 
of the analogous variational problem for curves on the sphere. 

Another application and motivation for this work comes from the field of 
control theory. Two important problems arise. In optimal control one wishes to 
choose an optimal trajectory for a control system by suitable choice of the control 
function, to minimize (maximize) an integral cost function along trajectories of the 
system. In the problem of path planning one wishes to simply choose one 
curve that joins two points in phase space. It is often desirable to accomplish both 
objectives simultaneously, but this is usually difficult in practice. A conceptually 
simpler procedure, which is now achieving some attention, is to generate curves by 
piecing together optimal trajectories, relative to a cost functional, just as in the 
classical interpolation setting of geometric modeling. However, in this case the 
curves are comprised of pieces of trajectories generated by a control system, not 
the usual cubic splines. This procedure has been named "dynamic interpolation" 
(see [12]). 

In many applications, such as occurs in robotics and aerospace, the dynamics 
is constrained to a geometric object, such as a Lie group, e.g. multiple copies of 
the Euclidean group, or a homogeneous space, e.g. a sphere. Thus, one poses the 
problem of dynamic interpolation on such spaces. The simplest dynamic interpolation 
problem that one can pose on the sphere results in the variational problem addressed 
here. The aim of the interpolation problem would then be to join arbitrary pairs of 
points on the sphere by pieces of the trajectories derived in this work, but this is 
another unsolved problem. 

In this paper, we derive the equations of spherical elastica and establish 
methods for the efficient computation of these curves. The presented material is 
divided into four sections. 

Section 2 gives a brief review of geometric preliminaries. 
In section 3, a set of differential equations for elastic curves on the sphere 

is derived. This set includes a differential equation for the geodesic curvature of 
spherical elastica. Since the normal curvature of a spherical curve is constant, the 
differential equation for the geodesic curvature suffices to compute the ordinary 
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curvature of  a spherical elastica. Furthermore, a formula is given that expresses the 
squared torsion of  a spherical elastica as a rational function o f  its curvature. 

In section 4, we describe the numerical algorithm used to integrate the set 
of  differential equations derived in section 3. The equations have a very particular 
structure defined by a number of  constants of  motion, and in particular they constrain 
the elastic curves to lie on the sphere. We employ an algorithm introduced by 
Crouch and Grossman [9] which preserves the constraints exactly. 

Since Euler 's  fundamental work on plane elastic curves, it has been known 
that these curves can be classified according to their shape. The tools developed in 
this paper enable us to present the fundamental forms of  spherical elastica in the 
last section. 

2. Geometric preliminaries 

Let S : U c R 2 --~ R 3 denote a regular parametric surface and N the unit normal 
vector field of  S. A curve x : I c R --~ R 3 is a curve on the surface S if  and only if 
x = S o c, where c : I ---) U is a plane curve in U. The unit normal of  S along a 
surface curve x will be denoted by n : = N o c. 

The Darboux frame bl, b2, b3 along x is the orthogonal frame defined by 

x'(t) b2(t) = n(t) x bl(t), b3(t) = n(t). 
bl(t) = Ix'(t) l '  

The equations that express the derivatives b~, b.J, bj in the Darboux basis 
bl, b2, b3 are given by 

= t o r s b 2  + ( 3 )  

b~ = -~ Icsb  1 + oyt'sb3, (4) 

= -  sb2, (5 )  

with to(t) = Ix'(t)I.  
The functions K s, tc, t and ~'s are called geodesic curvature, normal curvature 

and geodesic torsion. The geodesic torsion and the absolute value of  geodesic and 
normal curvature are invariant under reparametrization of  the surface. 

The geodesic curvature of  a surface curve x at a point x(t) is the ordinary 
curvature of  the plane curve generated by orthogonal projection of  x onto the 
tangent plane of  S at x(t). It can be computed using the formula 

[X', X", n] 
r s = i x , i  3 (6) 

A surface curve with identically vanishing geodesic curvature is called a geodesic 
of  the surface. 
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The absolute value of  the normal curvature o f x  at a point x(t) is the curvature 
of  the intersection of  S with the plane through x(t) spanned by the vectors x'( t)  and 
n(t). While the geodesic curvature is the curvature of  a surface curve from a 
viewpoint in the surface, normal curvature measures the curvature of  the curve that 
is due to the curvature of  the underlying surface. I f  tcdenotes the ordinary curvature 
of  the space curve s, the identity 

tc 2 = tc ] + tog 2 (7) 

holds. 
The geodesic torsion of  a surface curve x at a point x(t) is the torsion of  the 

geodesic that meets x at x(t) with common tangent direction. A curvature Hne of  
x, i.e. a curve with a tangent vector that points into one of  the principal directions 
of  the surface, is characterized by vanishing geodesic torsion. 

3. The differential equations of elastic curves on  the  s p h e r e  

The notion of cubic splines can be generalized to curves on a Riemannian 
manifold M by replacing the usual derivative of  the tangent vector field y '  by the 
covariant derivative compatible with the metric of  M (see [17]). Generalizing the 
functional (1) in this way, one obtains the concept of  elastic curves on arbitrary 
manifolds. In the case of  surfaces embedded in R 3, the algebraic value of  the 
covariant derivative of  the tangent vector field y '  o f  a surface curve y is the geodesic 
curvature tc 8 o f y  (see [6]). Therefore, we may define an elastic curve on a surface 
S �9 A c R 2 ---> S c R 3 as an extremal point of  the functional 

! 

= / (rg(s))2 + cr ds, (8) ~ ( y )  

0 

in the space F of  C** smooth maps 

y "[0, l] ---> S, l Y'l = 1, 

y(0) = Po, y(l) = P~, y'(O) = Vo, y'(l) = v1, 

where Po, Pt ~ S, Vo ~ TeoS, V1 ~ T~S, cr ~ R are fixed and l is variable. 
Let S be a parametrization of  a patch on the sphere S2 c R 3 of  radius r and 

center  0 such that 
S= rN 

and x be an arc length parametrized (i.e. Ix ' l  = 1) curve on S. Then 

X t = r / l  t = r b ~ .  

In this situation, (5) implies that 
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I 
x',, : - - ,  't" 8 = 0. (9) 

r 

Since the absolute values of  tc,~ and ~'g are invariant under reparametrization, these 
equations imply that any spherical curve is a curvature line with constant normal 
curvature. 

From (3), one obtains the relation 

Ibi'12 = r~ + r ~ I  , 

so that we wish to minimize the functional 

where 

under the constraints 

! 

~ l/~(s)l 2 + 8ds, 

0 

I 
8=o- r- r 

Ibd 2 = 1, bl = x', Ixl 2 = r 2.  

Hence, we can apply the Eule r -Lagrange  equations to the functional 

F = Ibl'l 2 + 8 + X(Ibd 2 - I) +/a(Ix 12 - r 2) + 2(A, x' - bl) 

to obtain the differential equations which govern the extremals: 

/ / .x -  A'  = 0, 

~ - ~ = A .  
Combining these equations yields 

(10) 

(11) 

Z'b~ + :t/,f - b f " =  t t x .  (12) 

The derivatives of  bl expressed in the Darboux basis are given by 

= rs/ ,  2 _ ! ~ ,  
p 

( ') 
1 r 

(13) 

(14) 

(15) 
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Substituting these derivatives and x = rb3 into (12) and rearranging gives 

(M + 3x'sx'~)b t 

( ,, 1 ) 
+ : t r ~ - r ~ + r ~ +  r-rr ~ b2 

1:: ll) 
- + / z r +  r~ ,  & + ~ = 0 .  

Finally, the linear independence of the vectors bl, b2 and b3 implies that 

and 
~, = - -} x "2 + C (16) 

rs  + ~pr ~ -  C +  rs  =O.  (17) 

In order to determine the constant C in terms of the tension parameter o', we 
consider the boundary condition 

F ( l ) -  ~x ,  ( l ) x ' ( l ) -  ~F , ~ -  ( 0 ~ ( t )  = o 

for the extremal x. This condition is implied by the fact that the total length 1 of 
the curve is variable in the variation (see, for example, [1]). Thus, 

1 -w2(l)  - --3- + r - 2(A(/), x'(l)) = O. (18) 
r -  

Substituting A according to (11) into the scalar product (A, x ' )  yields 

(A(1), x'(1)) = (,~b1(1), ~(I)) - (b~'(1), b1(1)) 
I 

= ~, + (tog (l)) 2 + r- ~- 

1 = -  ~ ( ' r o . ) )  2 + + c.  , - r  

Substituting this expression for the scalar product into (18), we obtain 

c +  r-T = (~ -  . (19) 

These results are summarized in the following theorem. 
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THEOREM 1 

An elastic curve x under  tension a on the sphere of  radius r satisfies the 

x~ = - r 0 

x~ - ~  

differential equations 

x 1 x2 , 

X3 

(20) 

where xl = x, x2 = rx ' ,  x3 = x x x" and where the geodesic curvature tr s of  x is a 
solution of  

. i1 r~ +-~r~ + ;2 r~ = o .  (21) 

The curvature of  a spherical elastic curve can be obtained f rom (7) and the 
fact that the normal  curvature of  spherical curves is constant. The squared torsion 
of  a spherical elastica can be expressed as a rational function of  its curvature. 

THEOREM 2 

The curvature tr and the torsion z of  a spherical elastic curve obey the 
relation: 

1 1 r 2 * 2 t c 2 = - l t c a - ~ ( - ; - ~ - c r ) l r  3 2 )  +CI .  

P r o o f  

For the invariants ~c and z of  an arc length parametrized curve x in R 3, the 
relation 

xlc 2 = [bt, b~, b~'] (22) 

holds,  where [a, b, c] denotes the determinant  of  three vectors in R 3. 
For a spherical curve, b{ and bl" can be expressed in the Darboux basis as 

follows: 

b~ = rsb2 - ~b3,  

b~'=- 1 + bl + rgb2. 

Substituting the derivatives into (22) and squaring yields 

1 (r;)2. 
"f2K'4 = 7 
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Since the differential equation (21) can be integrated to 

T) g' 

one obtains the claimed equation using (7). [] 

4. Tracking elastic curves on the sphere 

The problem we consider here is that of  numerically integrating equations 
(20) and (21) in theorem 1. One can of  course simply integrate the equations using 
a standard numerical package, such as an IMSL Runge-Kut ta  routine. However, 
the system of  equations possesses a very special structure. As pointed out in [3], 
equation (21) may be integrated directly in terms of  Jacobi's elliptic functions. We 
give more details of  this process in the next section, where we classify the various 
extremals. As for equation (20), we note that the components of the state vector 
Ix T, x T, xT] T satisfy algebraic constraints consistent with the fact that the matrix 
[x~, x2, x3] is simply a multiple of  r, of  a rotation matrix. When a standard integration 
package is applied to the set of differential equations (20) and (21), these constraints 
are not preserved exactly, and in particular the norm of the vector x~ will not remain 
at the constant value r. This is a particularly important fact when we wish to 
integrate the equations over a large number of  time steps and visualize the resulting 
c u r v e s .  

We have therefore made use of a new class of integration algorithms, developed 
by Crouch and Grossman [9], and Crouch et al. [8], which do indeed preserve such 
structures. The algorithms are therefore called geometrically exact [7]. We brief ly  
indicate the important aspects of  these geometrically stable algorithms which pertain 
to equations (20) and (21). Suppose that we wish to numerically integrate an ordinary 
differential equation on W given by the equations 

where 

:r = F(t, x(t)), x ~ R n, x(0) = Xo, (23) 

N 

F(t,x) = ~_~aJ(t,x)Aj(x), 
jffil 

(24) 

n > N, Aj are vector fields on R n and a j are functions on R • R n. Suppose that in 
addition we are given a set of  functions on [P whose numerical values are constant 
along solutions of  the equation (23) and that the level sets of  these functions are 
manifolds. Denote the level set through xo by M. It is convenient to assume the 
slightly stronger assumption that the vector fields Aj are everywhere tangent to M. 
We also assume that there is an oracle that can integrate any vector field of the 
following form, to any desired accuracy: 
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N 
Z(x)  = a Aj(x). 

j = l  

Here, ~J are real numbers. We define vector fields F e by setting: 

N 
FP(x) = ~ a J ( p ) A j ( x )  

j--1 

(25) 

and note that F t' is simply the vector field F with coefficients "frozen" at the point 
p. If we denote the flow of  any vector field Z by (t, x) ---> Oz(t, x),  R x R ~ ---> R n, then 
since the vector fields Aj are everywhere tangent to M, it follows that x ~ M implies 
that OF,(t, X) ~ M  for all p and for all t for which the flow is defined. 

We now introduce the (explicit) geometrically exact Runge-Kut ta  algorithms 
as described in [9]. Let Xk = X(tk) be a point of the integral curve x of (23). Then, 
define vector fields on R ~ by freezing coefficients of  F at various points as follows: 

N 
FI(X) = ~.~ aJ(tk, x k )A j ( x ) ,  

j - - I  

N 

F2(x) = ~ aJ(tk + hc21, OF1 (hc21, xk ) )A j (x ) ,  
j=l 

N 
F3(x) = ~ aJ (tk + h(c31 + c32), OF2 (hc32, OFl (hc31, p)) )Aj(x)  , 

j-~l 

etc. Second, we define the numerical integration algorithm via an update rule: 

Xk+l = OF, (hcr, OF,_~ (hCr-I . . . . .  OI~ (hcl, xk))), (26) 

where h is the "step length" and cl and cij are constants to be determined. These 
constants are determined from the "consistency equations", obtained by making the 
Taylor expansions in h, about h = 0, of both sides of  (26), using on the left-hand 
side the expression xk+l = Op(h, Xk). If the coefficients of  h i agree up to i = q, then 
q is said to be order of the resulting algorithm. Note that in general we have r > q, 
while for classical Runge-Kut ta  schemes we can always take r = q. Note also that 
the update rule defined by equation (26) has the property that if xk lies in M, then 
so does Xk+l since each flow is defined by a vector field F with frozen coefficients. 
In the special case where n = N, M = R n and A i = ei is the standard i th basis vector 
in R n, the algorithm reduces to the form of a classical explicit Runge-Kut ta  algorithm. 

In the paper [9], the consistency equations are derived for the geometrically 
exact Runge-Kut ta  algorithms via a careful geometric analysis of  equations (26). 
The results show that a geometrically exact third-order explicit Runge-Kut ta  algorithm 
can be obtained for r = 3 and is determined by five independent consistency equations, 



32 G. Brunnett, P.E. Crouch, Elastic curves on the sphere 

in the six constants defining the algorithm. The equations have multiple solutions, 
all of which are solutions to the equations which determine the classical explicit 
Runge-Kutta  algorithms. Thus, all solutions define classical algorithms, but the 
solutions are not ones traditionally found in the literature. We have used the following 
solution of all five equations: 

q = l ,  c2=-2/3, c3=2/3, 

c21 = -1/24, c31 = 161/24, c32 = - 6 .  

In the special case of the set of equations (20) and (21) defining the elastica 
on a sphere, we use a hybrid algorithm in which equations (20) are integrated, using 
the third-order geometrically exact Runge-Kutta algorithm described above, by 
freezing the coefficients tc s. These coefficients are then updated by integrating 
equation (21) using elliptic functions. 

In equation (20), M is the three-dimensional submanifold of R 9 determined 
by the equations 

(Xl, Xl) = r 2, (xl,x2) = 0, (xt, x3) = 0, 

(x2,x2) = 1, (x2, x3) = 0, ( x s , x 3 )  = 1. 

The solutions of (20) for any initial condition x(0) -- x0 r M lie completely in M. 
This follows from the fact that the functions 

A = (x~, x0, A = (Xl, x2>, 1"3 = (x~, x3), 

1"4 = (x2, x2), f5 = (x2, x2), 1"6 = (x3, x3) 

satisfy the system of differential equations 

3~ ' =  2f2, 

f~ = f4 +/r - (1/r2)3~, 

~ '  = f5 - r g f 2 ,  

f~  = 2 r s f  5 - (2 / rZ) f2 ,  

f~ = x'sf 6 - (1/r2)3~ - x'sf4, 

fg = -2rgfs,  

which has the unique solution 

3~ = r2 ,  f2 = 0 ,  3~ = 0 ,  f4 =1, f5 = 0 ,  f6 =1.  
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Since this argument does not specify the function r s, it follows that the flows of  
the vector fields Fl - F3 with frozen coefficients are mappings into M as needed in 
formula (26). 

Furthermore, the vector fields Aj in equation (20) are linear, so that F is given 
by an expression of the form 

N 
FCx) -- ~ b j (t, x )Bjx ,  (27) 

j--I  

where B~ are matrices and b i are functions. Freezing the functions bJ to va lues /~  
yields a system of linear differential equations with constant coefficients: 

/N / 2 =  x. (28) 
j--1 

Thus, the flow OFi of the vector field Fi (i = 1, 2, 3) is given by 

OF~ (t, q) = exp(tC/)q 

and (26) takes the special form 

xk+l = exp( c3hC3 ) . exp( c2hC2 ) . exp( qhCl  ) . xk. 

Since b I = 1/r is constant and b 2 = tt'& depends only on t, the matrices Ci are given 
by 

G = C(tD, C2 = C(tk + hc21), C3 = C(tk + h(c31 + c32)), 

where C(t) := Y-~,,1 bJ(t)Bj �9 C can be considered as a 3 • 3 skew symmetric matrix 
with matrix components that are themselves 3 • 3 matrices. Therefore, the standard 
formula for the exponential of  a 3 x 3 skew symmetric matrix can be used to 
compute the flow of each vector field: 

exp(tOS(c)) = I + sin(t$)S(c) + (1 - cos(t$))S(c) 2, 

where S(c)  is the skew symmetric matrix satisfying S(a)b  = b x a, and I c l=  1. 
Regarding the performance of  the geometrically stable integration method, it 

is clear that the method is computationally more expensive than a classical algorithm 
with the same number of stages and step length. The exact cost of  the new integration 
scheme can be found in [7]. However, if we compare the performance of  the 
geometrically stable method with the classical fourth-order Runge-Kut ta  algorithm 
on the problem of spherical elastica, it turns out that a slightly increased step length 
for the new method suffices to outperform the classical integration method. Using 
MATLAB implementations of both algorithms, we found that one can statistically 
achieve the same performance by using an increased step length of  h -- 1.3038hRx 
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for the new method. Taking into account that the proposed algorithm not only 
delivers points that lie exactly on the sphere but that are also approximately equally 
spaced along the tracked curve, the geometrically stable method seems to be a good 
choice for the integration of spherical elastica. 

A performance comparison of the new integration scheme with a more 
sophisticated classical method, the IMSL Runge-Kut ta  implementation, can be 
found in [8]. 

5. Classification of spherical elastica 

Acting on the suggestion of  Bernoulli, Euler derived differential equations 
for plane elastica and classified the fundamental forms of  these curves (see [ 10, 14]). 
A curvature analysis of  the various fundamental cases has been given in [4]. 

In this section, we classify the forms of spherical elastica based on the 
differential equation (21) for the geodesic curvature. This equation is of  the same 
form as the equation for the curvature of  plane elastica and can be solved in terms 
of  Jacobi's elliptic functions in the form 

leg(s) = tcmdn(tCm(S - Sin)~2 112), 

where the positive parameter 12 of the elliptic function is given by 

12 = 2(tr + 2 / r  2 - tr)  
~2 (29) 

(see [4]). The parameter r,,, represents the amplitude of the periodic curvature 
function and s,,, denotes the value at which to(sin) = 1r 

To obtain a representation of  the curvature in terms of  Jacobi's functions 
with parameter 12 smaller than 1, ones uses the formula 

(30) 

if tr < 0.5tr 2 + 2 / r  2. Since the function cn has zeros while dn is positive, the above 
case distinction reflects the main division of  elastic curves into those where the 
geodesic curvature changes sign and the other with constant sign of  their geodesic 
curvature. 

The change of  the forms of  spherical elastica while tc m is fixed and cr increases 
is shown by figures 1-8.  The maximum value of the tension parameter a for a real 
elastic curve on a sphere is, according to (29), a = tc 2 + 2 / r  2. This choice of  o" 
corresponds to the dashed circle that is shown in all figures for the purpose of  
orientation. The second curve in figure 1 has a negative tension parameter of high 
absolute value ( a =  - 10000). In comparison to figure 2, where cr= -30 ,  we observe 
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that decreasing the tension parameter has the effect of  lowering the amplitude of  
the curves as it is known from the Euclidean case (see [4]). The oscillation o f  the 
curve in figure 1 is of  too low amplitude to be visually observed and the curve can 
not be distinguished from the geodesic determined by the initial condition. (Note 
that the geodesic curvature (30) is far from becoming flat for or---> _oo, but in fact 
approaches a cos function that oscillates with a period that decreases with or.) 

A curve with a positive tension parameter is shown in  fig. 3, where 
or= 2/r2= 2. The displayed curve is a special case became the parameter 1/l 2 = 1/2. 
Here, the geodesic curvature is given by the lemniscate function 

leg(s) = tCmcoslemn(tCm(S - sin)/2). 

In figures 4 and 5, it is illustrated that with increasing positive or the bays 
of  the curves start to overlap until a figure-8 configuration is reached where all 
double points of  the curve coincide. This happens for a parameter  or = 7.849. 

While or increases further, the curve proceeds through the figure-8 shape, 
forming a series of  loops with alternating sign of  geodesic curvature (see 
figure 6). These loops recede from each other until, in the limiting case when 
or = 2 / r  2 + 0.5r~,  the curve forms a single loop (see figure 7). Here, the geodesic 
curvature is given by 

Ir = Ir - 8m)/2). 

Figure 8 shows that the single loop transforms into a series o f  loops with the 
same sign of  geodesic curvature. With increasing or, the loops come closer together 
and finally collapse into a circle when or = 2 / r  2 + tr 
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