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Abs t r ac t .  In this paper the empirical likelihood method due to Owen (1988, 
Biometrika, 75, 237-249) is applied to partial linear random models. A nonpara- 
metric version of Wilks' theorem is derived. The theorem is then used to construct 
confidence regions of the parameter vector in the partial linear models, which has cor- 
rect asymptotic coverage. A simulation study is conducted to compare the empirical 
likelihood and normal approximation based method. 
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1. Introduction 

Suppose tha t  {(X~,T~, Y~), 1 <_ i ~ n} is a random sample generated from the 
following partial  linear random model 

(1.1) Y~ = x : z  + g(T~) + e~, i = 1, 2 , . . . , n ,  

where Y~'s are scalar response variates, Xi 's  are p-vaxiate covaxiates and Ti's axe scalar 
covariates taking values in [0, 1], and where /~ is a p • 1 column vector of unknown 
regression parameter ,  g(.) is an unknown measurable function on [0, 1] and ei's are ran- 
dom statistical errors. It is assumed tha t  the errors ei's are independent  and identically 
distr ibuted random variables with zero mean and variance a 2 = Eel  2, and ei's axe inde- 
pendent  of (Xi, Ti)'s. 

The part ial  linear model was introduced by Engle et al. (1986) to s tudy  the ef- 
fect of weather on electricity demand,  and further studied by Heckman (1986), Rice 
(1986), Speckman (1988), Chen (1988), Robinson (1988), Chen and Shiau (1991), Gao 
et al. (1994), Schiek (1996) and Hamil ton and Truong (1997). Various est imators for f~ 
and g(-) were given by using different methods  such as the kernel method,  the penal- 
ized spline method,  the piecewise constant  smooth method,  the smoothing splines and 
the tr igonometric series approach. These estimators of ~ axe proved to be asymptot-  
ically normal with zero mean and covaxiance a2E -1 under different conditions, where 

: E(X1 - E[X1 [ T1])(X1 - E[X1 [ Ti]) r. For the model (1.1), a basic problem of 
statistical inference is the construction of confidence region for B. Clearly, the normal 
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approximation based method can be used for this purpose, where an estimate of the 
asymptotic variance of ~ can be obtained by the usual plug-in estimator. In this paper, 
we shall explore some other ways to construct confidence regions for/3. 

Owen (1988) introduced a nonparametric method of inference--an empirical likeli- 
hood method. This method defines an empirical likelihood ratio function, and use its 
maximum subject to a hypothesis that place restrictions on the parameter (or parametric 
vector) to construct confidence intervals. Hence, the method uses only the data  to deter- 
mine the shape and orientation of a confidence region and does not use the estimator of 
the asymptotic covariance. Hence, empirical likelihood is indeed appealing for the con- 
struction of confidence region of/3. Actually, empirical likelihood has been studied under 
various models, including smooth function models, linear regression models, generalized 
linear and projection regression, etc. For more details, the reader is referred to Owen 
(1988, 1990, 1991), Qin and Lawless (1994), Hall (1990), DiCiccio et al. (1991), Chen 
(1993, 1994), Kolaczyk (1994), Qin and Wong (1996), Wang and Jing (1999) among 
others. In particular, Wang and Jing (1999) extended empirical likelihood method to 
the partial linear model with fixed designs and proved that the empirical log-likelihood 
function is asymptotically standard chi-square. 

In this paper, we extend the empirical likelihood to the model (1.1) with fully 
random designs and prove that the nonparametric versions of Wilks' theorem also hold 
true. This can be used to construct confidence region for/3. Details are given in Section 2. 
In Section 3, a simulation study is conducted to compare the empirical likelihood method 
with the normal approximation based method. Finally, the proofs of the main results 
are given in Section 4. Though this paper considers the same model as Wang and Jing 
(1999), some details and techniques to obtain the asymptotic results are different from 
those in Wang and Jing (1999) since the designs here are fully random. In the proof of 
theorems here, we give only the different details from those in Wang and Jing (1999) 
and omit some overlapping parts. 

2. Description of methods and main results 

The model (1.1) can be rewritten as 

(2.1) Yi - E[Yi  ! Ti] = ( X i  - E [ X i  I Ti])~/3 + ei, i = 1, 2 , . . . ,  n.  

Let gl(t) = E[X1  IT1 = t], g2(t) --- ElY1 IT: = t]. Clearly, (2.1) could be considered 
as a linear model, and then empirical likelihood method could be applied to (2.1) and 
hence (1.1) when g l ( t )  and g2(t) were known. 

Let 

Zi = (X i  - E[X~ I T~])(Y~ - E[Y~ ITs] - (X~ - E[X~ I T~])~/3), i = 1 , . . .  ,n. 

It is easy to see that E Z i  = O, i = 1 , . . . , n ,  when /3 is the true parameter. Hence, 
the problem of testing whether/3 is the true parameter is equivalent to testing whether 
E Z i  = 0, for i = 1, . . .  ,n. By Owen (1991), this may be done using empirical likelihood. 
Let p : , . . .  ,Pn be nonnegative numbers summing to unity. Then, the empirical log- 
likelihood ratio, evaluated at true parameter value/3, is defined by 

(2.2) /(/3)-----2 max E log(npi) .  
E p~ Z~ =0 



EMPIRICAL LIKELIHOOD FOR PARTIAL LINEAR MODELS 587 

When both gl(t) and g2(t) were known and ~ is the true parameter, l(~) could be 
proved to be asymptotically X2p distribution. And one could reject the hypothesis that 
/3 is the true parameter when 1(/3) is greater than some critical value. But, both gl(t) 
and 92(t) are usually unknown. Hence, the empirical log-likelihood l(~) for/3 can not be 
used directly to make inference on/3 since it contains unknown functions gl (t) and g2 (t) 
and hence/3 is not identifiable. To solve the problem, a natural way is to replace gl (t) 
and g2(t) in 1(/3) by their estimators, respectively, and define an estimated empirical 
log-likelihood. To do this, let 

K ( ~ - ~  
\ h n )  

w j(t) = 
n 

where K(.) is a kernel function and hn a bandwidth tending to zero. Then, the estimators 
of gl (t) and g2 (t) can be defined by 

n n 

g in ( t )  = E Wnj(t)Xj, g2n(t) = E Wnj(t)Yj. 
j=l j=l 

Now let us define 

)~i . . . . .  Xi gln(Ti), Yi Yi g2n(Ti), Zi X,i(Yi --~-x~ [3). 

Then, the estimated empirical log-likelihood can be defined to be 

n 

(2.3) 1 ( / 3 ) : - 2  min ~--~log(npi). 
7-i'1= 

By using the Lagrange multiplier method, the optimal value for Pi satisfying (2.3) 
may be shown to be 

Pi = 1(1 + A~2i) -1, 
n 

where A is the solution of the equation 

(2.4) -1 ~ Zi _ _ 0. 
n 1 + ~-Zi 

The corresponding empirical log-likelihood ratio is then 

n 

(2.5) 1(/3) = 2 E log{1 + )~2i}.  
i=1 

The asymptotic distribution of 1"(/3) is mainly decided by the asymptotic distribu- 
n 1 n Zi;~[. 1-(/3) has the tion of ~ ~-~i=1 Zi and the consistency of n ~-~i=a Hence, same 

asymptotic distribution as 1(/3) by proving ~ ~-~inl Zi = ~n ~--~i~1Zi + op(1) and 
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nl Ei=ln 2i2~- = nl )-~i=1'~ Z iZ[  + Op(1). That  is, the nonparametric estimation does not 
affect the asymptotic result of the empirical log-likelihood ratio. 

Before stating the main results, we first list the following conditions. 
(A1) gl(t), g2(t) and g(t) satisfy Lipschitz conditions of order 1. 

(A2) 0 < E := E(X1 - E[X1 I T1])(X1 - E[X1 IT1]) ~ < oc. 
(A3) The density of T, say r(t), exists and satisfies 

(2.6) 0 < inf ~(t) _< sup r(t) < o r  
0 < t < l  0 < t < l  

(A4) There exists absolute constants M1, Ms and p > 0 such that 

(2.7) MlI[[t[ <_ p] <_ K(t )  < M~I[[t[ <_ p]. 

(A5) supt E[HX1 ][4 [ T1 = t] < oo, where []. [[ denotes the Euclidean norm. 
(A6) (i) nhn --~ oc, (ii) nh 3 --* O. 
(At) Eel 4 < oo. 

THEOREM 2.1. Under the above conditions (A1)-(A7), we have 

1(/3) = 1 Zi Zi 1 Zi + op(1). 
i=1 i=1 i=1 

1 n Theorem 2.1 can be used to prove the following theorem by proving ~ ~ i = l  Zi 

is asymptotically normal and nl E in= l  2i2~- estimates the asymptotic variance of 7~1 ~i 
consistently (see Lemma 4.1(i) and Lemma 4.20) ). 

THEOREM 2.2. Under all the conditions listed above, if/30 is the true value of/3, 
2 distribution. That is then ~((/3o) has an asymptotic Xp 

with P(X2p <_ ca) = 1 - a. 

P(l(/30) < ca) = 1 - a + o(1) 

Clearly, Theorem 2.2 can be used not only to test the hypothesis H0 :/3 = 80, but 
also to construct confidence regions for/3. Let 

(2.s) za(/3) = {/3: ~(/3) < ca}. 

Then, by Theorem 2.2, Ia(/3) gives an approximate confidence region for/3 with asymp- 
totically correct coverage probability 1 - a, i.e., 

(2.9) P(~0 e Ia(/3)) = 1 - ~ + o(1). 
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3. S o m e  s i m u l a t i o n  resu l ts  

In this section, we shall conduct some simulation studies to compare the performance 
of our empirical likelihood method with the normal approximation based method. For 
simplicity, we shall only consider the case where 13 is a scalar. It is known that under 
appropriate conditions the least-square type estimator of/3,/3n = )-~-~-1 X~/~~n=I "~,  
has an asymptotically normal distribution, i.e., 

v~E1/~(~n - ~)t~n - -  N(0, 1), 

where 32 n = n -1En_I(Yi  - )~ ,~)2  and E = n -1 •n=l ~2.  See, for instance, Speckman 
(1988) or Chen (1988). Therefore a two-sided confidence interval for 13 at level 1 - a is 
given by 

~n -{- Z l - o t / 2 ~ n / ( v ~ l / 2 ) ,  

where z1-,/2 satisfies ~(z1-,/2) = 1 - a / 2  with (I)(.) being the standard normal distri- 
bution. 

In our simulation studies, we generate Xi's and Ti's from the standard normal 
distribution N(0, 1) and uniform distribution U[0, 1], respectively. The function g(.) is 
chosen to be g(t) = t 2. The kernel function K(t) is the biweight kernel function 

15 K(x) = ]-~(1 - x 2 )  2, Ix[ _< 1. 

Also, three different bandwidths of h,~ are selected to be (n log n)-1/2, (n log n)-1/3 and 
5(nlogn) -1/3, respectively. It is easy to check that  all the conditions (A1)-(A7) in the 
paper are satisfied. Furthermore, the error distribution is taken to be standard normal 
distribution. The sample sizes have been chosen to be 10, 20 and 50, respectively. The 
coverage probabilities are calculated for the empirical likelihood and normal approxima- 
tion methods based on 500 pairs of simulated data. The nominal levels are taken to be 
c~ = 0.10 and 0.05, respectively. The results are presented in Tables 1, 2 and 3. 

From these three tables, we see that  the coverage accuracies for both the empirical 
likelihood method and the studentized-t method generally increase as the sample size n 
increases. Furthermore, the empirical likelihood method outperforms the studentized-t 
method in general, particularly for small sample sizes (say, n <_ 20). When n gets large 
(say, n -- 50), the difference between the two methods seems to diminish. We choose 
three different bandwidths ha = (n log n ) -  1/2,  (n log n)-1/3 and 5(n log n)-1/3. It seems 
that  the first choice gives the worst performance (see Table 1) while the third choice offers 
the best (see Table 3). Clearly, the bandwidth plays an important role here, however, 
we shall not address the problem of how to find the optimal bandwidth. 

Table 1. Coverage probabi l i t ies  for/3, hn = (nlogn) -1/2. 

Nominal  level ~ = 0.10 Nominal  level a = 0.05 

Student ize- t  Empir ical  Student ize- t  Empir ical  

likelihood likelihood 

10 0.710 0.730 0.788 0.864 

20 0.788 0.794 0.848 0.886 

50 0.875 0.855 0.915 0.920 
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Table 2. Coverage probabilit ies for/9, hn = (n log n) -1 /3 .  

Nominal level (~ = 0.10 Nominal level a = 0.05 

Student ize- t  Empirical Student ize- t  Empirical 

likelihood likelihood 

10 0.764 0.774 0.832 0.868 

20 0.810 0.806 0.874 0.890 

50 0.880 0.882 0.936 0.938 

Table 3. Coverage probabilities for ;9. hn = 5(nlog  n) -1/3 .  

Nominal level ~ = 0.10 Nominal level (~ = 0.05 

n Student ize- t  Empirical Student ize- t  Empirical 

likelihood likelihood 

10 0.830 0.852 0.894 0.914 

20 0.862 0.865 0.924 0.928 

50 0.894 0.902 0.940 0.942 

4. Proof of theorems 

LEMMA 4.1. Under (A1)-(A4) and (A6), i f  suptE[l lXl l l  2 I T1 = t] < 00 and 
E~ 2 < oo, we have 

(i) n -1/2 Ei"--1 Zi ~ N(O, a2E), 
(ii) n -1 ~in__l Zi = Op(n-1/2) ,  

where E is defined in (A2) and a 2 = Ee l .  

PROOF. For n -U2 Ein=l Zi, we have the following decomposition: 

(4.1) V•n• 
1 n S 

i = l Z i  = - ~  E ( X i  - E [ X i  I Td)e, + E r n i ,  
i-~l i=l 

where 

1 n n 
rnl - v ~  Z ( X ~  - E[Xi I Td) F_,Wn~(T~)~j, 

i=l j=l  
n n 

1 
r~2 - v ~  ~ ( x i -  E[X~ ITd)~Wn~(Td(g(Td-g(Tj)), 

i=1 j = l  

1 Wnj(Ti ) (g l (Ti )  - g l (T j ) )  ei, 
rn3 -- ~ i=1 

1 Wni (T i ) (X j  - E [ X j  ] Tyl) ei, 
r~4 -- V ~  i=1 [j=l 
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1 Wnj(Ti)(gl(Ti) - gl(Tj)) Wnj(Ti)ej 
r n 5  - -  V / I t  i=1 j = l  

1 Wnj(Ti)(X j - E[Xj IT  j]) )-~W.j(T~)ey 
r n 6  = V~ i=1 j = l  j = l  

r n 7  - -  

rn8 -- 

1 Wnj(Ti)(gl(Ti) - g l ( T j ) ) E  Wnj(Ti)(g(Ti) - g(Tj)) , 
i = l  j = l  j = l  

1 Wnj(Ti)(Xj - E[Xj ] Tj]) E Wnj(Ti)(g(T{) - g (T j )  . 
i=1 j = l  j = l  

By condition (A2) and the independence of e~ and (X~, T~), the central limit theorem 
can be used to prove that 

1 n 
(4.2) ~ E ( X i  - E[Xi [ Ti])ei • N(0, a2E). 

i=1 

From Ee~ < oc, suptE[[[Xl][ 2 IT1 : t] < oc and the fact that EW2j(Ti) < C(n2hn) -1 
(see Lemma 3.1 of Wang and Zheng (1997)), we have 

(4.3) El[r~lll2 = 1En ~ ~-~Wnj(Ti)(Xii=l - E[X~ I T~])ej 2 

= - -  E Wnj(Ti)(Xi - E[Xi [ 
n 

j = l  i=1 

n 
j = l  i=1 

< - -  EW2nj(T~) <_ C(nhn) -1. 
n 

j = l  i= l  

This implies that 

(4.4) [[Fnl[[ -- Op(1), as nhn ~ c~. 

By (A1) and the condition: supt E[[[X1 [[2 [ T1 = t] < c~, we have 

(4.5) E[[r.2[[ 2 

-{ ) __ in ~.= E E[tlX~ - E [ m  I Ti]tl 2 I Td  _- W~j(T~)(g(T~) - g(Tj) 

n n [ Ti_ Tj 2] 
<- Ch2n Z F_, E W~,(T~) ~ 

i = l  j : l  
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From (A4), it is ob ta ined  t ha t  

2 [Ti - Tj 2 
W~j(Ti) hn 

<_ W2j(Ti ) T i -  Tj 2 ha I [ ~  ~p] 
+W2j(T~) [T~ _ Tj 2 Ti - Tj i [  ~ >p] -2W.2 ~T ~ <-- P nj~ i) 

by not ing  t ha t  Wnj(T~) = 0 if h.  ] > P for i , j  = 1 , 2 , . . .  ,n .  This  together  wi th  (4.5) 
and  the  fact EW2j(Ti)  <_ C(n2h~) -1 yields 

(4.6) EIIr.2112 _< Ch=, 

and hence 

(4.7) I[r~21t = Op(1), as h= ---* 0. 

Similarly to (4.3) and (4.6), we can show tha t  

{ Ellrn, II 2 ~ Chn, i = 3,5,8, 
(4.8) EIr~j II 2 ~ C(nhn)-l, j = 4, 6, 

E[[rnrl[ 2 _< Cnh 3. 

Now (4.8) implies tha t  

(4.9) Irnill = op(l), i = 3 , 4 , 5 , 6 , 7 , 8 ,  

under  the  assumpt ion  (A6). Therefore,  L e m m a  4.1(i) follows from (4.1), (4.2), (4.4), 
(4.7) and  (4.9). L e m m a  4.1(ii) is a direct  consequence of L e m m a  4.1(i). 

LEMMA 4.2. Under the same conditions of Theorem 2.1, we have 
(i) 1 n 2i2[ : 1 n X 

n E i = l  n Y~i=I( i - E[Xi I Ti])(Xi E[Xi I Ti])re~ + Op(1). 
1 n Z i g [  = Op(1).  (ii) g E i = I  

Using similar a rguments  to  those employed in the proof  of (4.1), (4.4), (4.7) and  
(4.9), we can prove L e m m a  4.20).  The  detail  of the proof  is t hen  omit ted .  L e m m a  4.2(ii) 
is a direct result  of L e m m a  4.2(i) and  the law of large number .  

LEMMA 4.3. Let Z(n ) = maxl< i<n  IIZill. I f  (A1), (A3), (A4), (A5), (A7) and (i) 
of (A6) are satisfied, we have 

Z(n ) = Op(nl/2). 

PROOF. Consider  

< l<i<nmaX Xi ~-~Wnj(Ti)Xj  (4.10) Z,_~,~) _ - 
j= l  

n 

max 5-" W~(T~)Ig(T , )  - g (Tj ) l  
1 < i < n  ~...d 

- - -  j = l  
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-I- l<i<nmax__ IIX,r + l<i<nmaX Xi~-~Wnj(Ti)eJj=l 

"~ l<i<nmaX__ Is j=ILWnj(Ti)Xj 

~- l<i<nmaX_ _ jl=IL j2=l ~ Wnjl(Ti)Wnj2(Ti)XjleJ2 

< C m a x  IIX~ll + m a x  I l X ~ l l  + max IIX~ll max W,~j(Ti)ej 
- -  l < i < n  l~i~_n l~i~n l~_i<n 

+ max led max 
l<_i<_n l < i < n  

I IIn II + maX Wnjl (Ti)Xjl maX ~ Wnj2 (Ti)ej2 �9 l<i<n l<i<n 
j l = l  -- _ j 2 = l  

By Lemma 3 of Owen (1990), we have 

(4.11) max IIx/ll = o ( n l 1 2 ) ,  
l <i<:n 

max IIX~lf = o ( T t l / 2 ) ,  l<i<n max I~1 = o ( n 1 / 2 )  �9 
l~_i~n 

For any M > 0, using the result E[W4j(Ti)] < C(n4h,~) -1 from Lemma 3.1 of Wang and 
Zheng (1997) and (AT), we have 

(4.12) 
~ l ~ i < n  

4 

_ ~ - ~ - E  ~ W n j ( ~ ) q  
j=l 

n 3 h n  ~ 4 4 <- ~ E[Wnj(Ti)EeJ] 
j ~ l  

C 
_< ~--~ ---~ 0, as M ---* c~. 

Hence, 

(4.13) max [ Wnj(T ) j = l<i<n j=l 
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Similarly, under the assumption (Ab), we can show that 

(4.14) max j(Ti)Xj = Op(1). 
l < i < n  

Combining (4.10), (4.11), (4.13) and (4.14), Lemma 4.3 is then proved. 

PROOF OF THEOREM 2.1. Based on Theorems 4.1-4.3, along the lines to prove 
Theorem 1 in Wang and Jing (1999) we can prove Theorem 2.1. 

PROOF OF THEOREM 2.2. 
it follows tha t  

By Lemma 4.2(i) and the strong law of large numbers, 

n 

(4.15) 1 E Z~2~ ~ aaE. 
n 

i=1 

Hence, Lemma 4.1(i), (4.15) and Theorem 2.1 together prove 

(4.16) l(~) ~ Xp 2, 

which completes the proof of Theorem 2.2. 
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