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Abs t r ac t .  A continuous composition semigroup of probability generating func- 
tions F := (Ft, t > 0) and the corresponding multiplication (~)F of van Harn et al. 
(1982, Z. Wahrsch. Verw. Gebiete, 61, 97-118) are used to introduce the concept of 
IF; a]-unimodality which generalizes the discrete a-unimodality due to Abouammoh 
(1987, Statist. Neerlandica, 41,239-244) and Alamatsaz (1993, Statist. Neerlandica, 
47, 245-252). We offer various characterizations and other properties of [F;a]- 
unimodality. Notably, several convolution results are presented. Moreover, we ex- 
plore the relationship between [F; a]-unimodality and the concepts of discrete self- 
decomposability and stability. Finally, lower bounds for variances of IF; a]-monotone 
and [F; a]-unimodal random variables are derived and some examples are also men- 
tioned. 

Key words and phrases: Lattice distribution, semigroup, monotonicity, generating 
function, mixture, convolution, variance bounds. 

i .  Introduction 

A real-valued random variable (rv) X is said to have an a-unimodal  distr ibution 
about  0 for some a > 0 if X has the following representation: 

(1.1) X d W 1 / a y ,  

where W and Y are independent  rv's and W is uniform (0, 1). This definition is due 
to Olshen and Savage (1970) who examined properties and characterizations of such 
distributions. If Y in (1.1) is R+-valued (R+ := [0, c~)), then the distr ibution of X is 
said to be a-monotone.  Among other characterizations, a distr ibution on the real line 
is a -unimodal  about  0 if and only if its restrictions to the positive half-line and to the 
negative half-line are a -monotone  (for example, see Hansen (1990), p. 47). 

It is clear tha t  the a -unimodal i ty  of (1.1) does not apply to lattice distributions, 
i.e., distributions over the set of integers Z := {0, +1, •  Abouammoh (1987, 
1988) introduced a concept of discrete a -un imodal i ty  as follows: a lattice distr ibution 
(Pn, n C Z)  is said to be a -unimodal  (about  0) if 

(n + 1)pn+l _ (~ + a)p~, ~ > 0 
(1.2) 

(1 - n)pn-1  <_ (a - n)p,~, n <_ O. 
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Discrete a-unimodality was further studied by Alamatsaz (1993), Bertin and Theodor- 
escu (1995), and Wu and Dharmadhikari (1999). Using the binomial thinning operator 
o of Steutel and van Harn (1979), Steutel (1988) defined c~-monotonicity of a Z+-valued 
(Z+ = {0, 1, 2 , . . .})  rv X similar to (1.1): 

(1 .3)  x e__ w l / .  o y ,  

where W and Y are as in (1.1) and Y is Z+-valued. Steutel (1988) showed that  if 
(Pn, n > 0) is the probability distribution function (pdf) of X then (1.3) is equivalent 
to the top inequality in (1.2). Hence, as in the non-lattice case of (1.1), discrete a- 
unimodality about 0 is equivalent to a-monotonicity on both sides of 0 (see Alamatsaz 
(1993)). 

Aly and Bouzar (2002) used the multiplication QF of van Harn et al. (1982) in lieu 
of o in (1.3) to introduce a generalized notion of discrete monotonicity called IF; ~]- 
monotonicity. They derived the following characterization which we state as an alterna- 
tive definition. 

DEFINITION 1.1. A pdf (ion, n > 0) is IF; a]-monotone if and only if for any n _> 0, 

n + l  

(1.4) E ipihn-i+l ~ (n -1- aa-1)pn, 
i=1 

where (h,~,n > 0), a pdf (with hi ~ 0), and a > 0 are characteristics of the continuous 
composition semigroup of probability generating functions (pgf's) F := (Ft, t _ 0) from 
which | stems (see definitions below). 

The purpose of this paper is to present a generalized notion of discrete unimodality 
for lattice distributions called [F; al-unimodality. In Section 2 we propose a two-sided 
version of (1.4) as a definition that will contain (1.2) as a special case. We offer various 
characterizations and other properties of [F; a]-unimodality thus generalizing the work 
of several authors. Moreover, we explore the relationship between [F; c~]-unimodality 
and the concepts of (discrete) F-self-decomposabilty and F-stability of van Harn et al. 
(1982). In Section 3 we establish several convolution properties. As a consequence, we 
give sufficient conditions for the IF; a]-unimodality of an F-stable lattice distribution 
and that  of a generalized two-sided version of (1.3), as defined by Pakes (1995). Finally, 
in Section 4 lower bounds for variances of [F; a]-monotone and [F; a]-unimodal rv's are 
derived. In the case of [F; aJ-unimodality, we obtain a sharper lower bound than the one 
obtained by Abouammoh et al. (1994) by relaxing at the same time their assumption 
a > 1. Some examples are also mentioned. This paper is to be seen as a follow-up to 
the aforementioned article by Aly and Bouzar (2002). 

In the rest of this section we briefly recall some definitions and results that  axe 
needed in the sequel. For proofs and further details we refer to Athreya and Ney ((1972), 
Chapter 3), van Uarn et al. (1982) and van Harn and Steutel (1993). F : -  (Ft; t _> 0) is 
a continuous composition semigroup of pgf's such that Ft ~ 1 and 5F = --In F~(1) > O. 
We denote by UF the infinitesimal generator of the semigroup F. The related A-function 
is defined by 

{/0 } (1 .5 )  AF( ) = e x p  - , z e [ 0 , 1 ) .  
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Moreover, there exists a constant a > 0 and a pgf H(z) given by 

(1.6) H(z)  = ~ hnz "~, 
n_>0 

with hi = 0 such that 

UF(z) = a{H(z) - z}, Izl < 1, 

oo 
and H'(1) = ~-~=1 ih~ _~ 1. Finally, we recall that for a Z+-valued rv X and v E (0, 1), 
the generalized multiplication ~ Q F  X is defined by 

X 

(1.8) ~ | X d E Y/' 
i=1 

where (Yi,i > 1) is a sequence of iid rv's independent of X, with common pgf Ft, 
t = - l n u .  

2. A generalized notion of discrete unimodality 

DEFINITION 2.1. Let c~ > 0. A lattice distribution (Pn, n E Z)  is said to be IF; a]- 
unimodal (about 0) if 

(2.1) 

n + l  

E ip ihn- i+l  ~ ( a a  - 1  + n)pn, n ~ 0 
i=l 
-n+l  

E ip-ih-n-~+] < ((~a -1 - n)pn, n < O, 
i=1 

where a > 0 and (hn, n _> 0) are as in (1.6)-(1.7) above. 

A Z-valued rv X is said to be [F; a]-unimodal if its distribution is IF; a]-unimodal. 
The definitions of [F; a]-monotonicity (see Definition 1.1 above) and IF; a]-unimodality 
can be extended to sequences of nonnegative real numbers. This extended definition will 
at times be used in the remainder of the paper without any further reference. 

We start out by gathering a number of elementary properties, the proofs of which 
follow directly from (1.4) and (2.1) and are therefore omitted. 

PROPOSITION 2.1. (i) A lattice distribution (Pn,n C Z)  is [F; a]-unimodal if  and 
only if  (Pn, n > O) and (P-n, n > O) are IF; ~]-monotone. 

(ii) A Z-valued rv X is [F; (~]-unimodal if and only if Z + and X -  are IF; c~]- 
monotone and max(pl ho , P_ l ho ) < a a -  l po . 

(iii) Ira lattice distribution (Pn, n C Z) is IF; a]-unimodal, then it is [F; ~]-unimodal 
for any ~ > c~. 

(iv) A Z-valued rv X with a symmetric distribution (Pn, n C Z)  is IF; a]-unimodal 
if  and only if  IXI is IF; ~]-monotone and 2plh0 _< aa-lpo.  

We next present the main characterization of [F; c~]-unimodality. 
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PROPOSITION 2.2. A lattice distribution (Pn, n E Z) is [F; c~]-unimodal if and only 
if plho <_ o~a-lpo and the sequence (qn,n E Z) defined by 

(2.2) 

n + l  

((c~a-l + n)Pn - E ipihn-i+l) /(eea-l + if n > 0  

(eta -1 - n)pn - E ip-ih-n-i+l ~(eta -1 + plho), if n <_ 0 
i = 1  

is a lattice distribution. 

PROOF. Suppose (Pn, n E Z) is [F; a]-unimodal. Then by (2.1), qn _> 0 for any 
n E Z. Let M and N be integers such that M < 0 and N > 0. Then straightforward 
manipulations yield 

0 0 - -M 

(2.3) (~a -1 + plh0) E qn -- ~a -1 E Pn + (1 - M)bM-1 - E iKipM-l+i, 
n = M  n = M  i=1  

and 
N N N 

(2.4) (~a- l+plho)  E q n = O ~ a - l E p n + ( N + l ) C N + l - E i K i P N + l _ i + p l h o ,  
n = l  n = l  i = 1  

oo - M  K where Ki -- ~--~.j=i+lhj, bM-1 = ~-~i=1 i P M - l + i -  PM-lho, and cg+l = 
N ~i=1 KiPN+l-i -- py+lho. Since H'(1) < 0% we have limi-_.oo iKi = 0 and ~-~-~_>0 Ki < 

oc. It also follows that ~ M < - I  IBM-11 < oo a n d  E N > _ I  tCN+ll < OO. Moreover, noting 
that limN-.o~ PN+I-i = limM-~_~ PM-I+i = 0 for each i >_ 1, and that  the sequences 

N - -M 
~--~-i=1 Pg+l-i and ~-]i=1 PM-I+i are both bounded (by 1), we have by Toeplitz' theorem 
(Knopp (1990)), 

N 

(2.5) lim E iKipN+l-i 
N --*(:x:) 

i=1  

- M  

= lim ~-~ iKiPM-l'+i = O. 
i=1  

Since qn _> 0, the left-hand sides of both equations (2.3) and (2.4) have limits. By (2.5) 
and the fact that ~-~M<-I IbM-l[ and ~'~g>l [CN+ll both converge, these limits must be 
finite and limN~oo(N~- 1)CN+I = limM~--~(1 -- M)bM-1 -- 0. Therefore, 

N N 

Mlim_ (cm -1 + plho) E qn = c~a-1 E Pn + p l h o  = oLa-1 + p l h o ,  

lv~+o~ n = M  n = M  

or ~-]-~c~ qn = 1. Conversely if (qn, n e Z) of (2.2) is a lattice distribution, then (2.1) 
holds trivially. [] 

The following proposition offers a characterization of [F; a]-unimodality in terms of 
generating functions (gf's). 
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PROPOSITION 2.3. A Z-valued rv X with distribution (p,~, n E Z)  is [F; a]-uni- 
modal if  and only if  P+ (z) = ~'~-~-o Pn zn and P -  (z) = ~nC~=o p_nz  n satisfy 

(2.6) 

P+(z) = a [AF(z ) ]  -~  jfz 1 

P - ( z )  = a[AF(z)] -~ f z  1 

Q,(v)AF(v)~[UF(v)]- ldv and 

Q2 (v)AF (v) ~ [UF (v)] -1 dv, 

where Izl 1, and Ql(Z) and Q2(z) are gf's. More specifically, Ql(Z) -- CQll(Z), 
Q2 (z) = (1 - c + po) Q22 (z), and c = Y~--o pn, for some pgf's Qll  (z) and Q22 (z). 

oo PROOF. Without  loss of generality, we assume c > 0 and c' = Y~n=0 P-n  = 1 - 
c + P0 > 0. By Proposition 2.1(i), (pn,n C Z)  is [F;c~]-unimodal if and only if the 
distributions (on Z+)  (pn/c ,n  > 0 ) a n d  (p -n / c ' , n  > 0) are [F;a]-monotone.  Note 
that  P+(z) = cPl(z) and P - ( z )  = c'P2(z) where Pl(z) and P2(z) are the pgf's of 
(pn/c, n > 0) and (p_~/c', n >_ 0) respectively. By Proposition 2.2 in Aly and Bouzar 
(2002), a Z+-valued rv X '  is [F; c~]-monotone if and only if its pgf P(z)  admits the 
representation 

(2.7) jfz 1 P(z)  = a[AF(z)] -~ Q(v)Ag(v)"[UF(v)]- ldv,  

for some pgf Q(z). The conclusion follows by applying (2.7) to Pl(Z) and P2(z). [] 

We next give a mixture representation theorem for [F; a]-unimodal rv's. 

PROPOSITION 2.4. A Z-valued rv X with distribution (Pn, n C Z)  is [F; a]-uni- 
modal if  and only i f  max(plho,p_aho) <_ aa- lpo  and 

(2.8) X+ . . . .  d W1/a 6)F Y1 and X -  d 1/171/c~2 @F Y2, 

where for i = 1, 2, Wi is uniformly distributed over (0, 1), Y/ is a Z+-valued rv, Yi and 
Wi are independent, and | is as in (1.8). 

PROOF. We recall from Aly and Bouzar (2002) that  a Z+-valued rv X '  is [F; c~]- 
monotone if and only if 

(2.9) X '  d W1/a @F Yr 

where W is uniformly distributed over (0, 1), Y is a Z+-valued rv, and Y and W are 
independent.  By Proposition 2.1(ii), X + and X -  are [F; a]-monotone. Hence, (2.8) 
follows by applying (2.9) to X + and X - .  [] 

A useful closure property is established next. Its proof is a straightforward conse- 
quence of Proposition 2.2 and is therefore omitted. 

PROPOSITION 2.5. Let (Xk, k > 0) and X be Z-valued (resp. Z+-valued) rv's. 
Assume that for  each k > 0, Xk is [F; (~]-unimodal (resp. IF; c~]-monotone). I f  (Xk, k > 
O) converges in distribution to X ,  then X is IF; c~]-unimodal (resp. IF; c~]-monotone). 
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The following two propositions explore the relationship between IF; a]-unimodality 
and the concepts of discrete self-decomposabilty and stability due to van Ham et al. 
(1982). A Z+-valued rv X is said to be F-self-decomposable if for any v �9 (0, 1), there 

exists a rv Xv such that X d = v | X + Xv. The pgf of an F-self-decomposable rv X 
admits the following canonical representation 

(2.10) [ ~'z 1 1 - -Q(x)dx]  P(z) = exp -A  Up(x) J ' 

for some unique (A, Q), where A > 0 and Q is a pgf with Q(0) = 0 (cf. van Ham et al. 
(1982)). X is said to be F-stable with exponent V > 0 if there exits a sequence of iid 

rv's (Xn, n > 0), Xi d X for all i, such that for all n > O, X d n_l/~ QF Y]in=_l Xi.  
F-self-decomposable distributions are infinitely divisible and F-stable distributions axe 
necessarily F-self-decomposable and exist only when 0 < V <- 5F (cf. van Ham et al. 
(1982)). Moreover, the pgf of an F-stable rv X with exponent 0 < 7 -< 5F admits the 
canonical representation 

(2.11) P(z) = exp[-AAF(z)~], 

for some A > 0. 

PROPOSITION 2.6. (i) Let X be an F-self-decomposable rv with pgf P(z)  described 
by (2.10). X is [F; a]-unimodal for ~ > 0 f i end  only ira < a. 

(ii) Assume 5f  > O. Let X be an F-stable rv with exponent V, 0 < V <_ (~F and with 
pgf P(z)  described by (2.11). X is [F;a]-unimodal for (~ > 0 if and only if A V < v~. 

PROOF. By Proposition 2.10 in Aly and Bouzar (2002), an F-self-decomposable rv 
X is IF; a]-unimodal if and only if UF(O)pl/po < a. Noting that m __ ~ log P(z) Iz=o, 

- -  P O  

it follows by (2.10) (resp. (2.11)) that  UF(O)pl/po = A for F-self-decomposable distribu- 
tions (resp. UF (O)pl/Po = AV for F-stable distributions). [] 

F-self-decomposable distributions with pgf's of the form 

(2.12) P(z) = (1 + CAF(z)'Y) -r,  

for some c > 0, r > 0 and 0 < 7 -< bE, were shown by van Harn and Steutel (1993) 
to be solutions to important stability equations for Z+-valued processes with stationary 
independent increments (see also Pakes (1995)). By Proposition 2.6(i), a distribution 
with pgf given by (2.12) is [F; a]-unimodal if and only if ~ < a. The special case 

l + c  - -  

where r = c~/v gives rise to an interesting characterization. 

PROPOSITION 2.7. Assume 5F > O, ~ > 0 and 0 < V <- 5F. Let X be a Z +-valued, 
IF; c~]-unimodal rv with pgf P(z).  Then the pgf Q(z) in the representation (2.6) of P(z)  
satisfies Q(z) = (P(z)) l+'ffa if and only if P(z)  = (1 + cAF(z)~) -~/'y for z �9 [--1, 1]. 

PROOF. First we note that  in the Z+-valued case, (2.6) is equivalent to the fol- 
lowing equation: 

(2.13) Q(z) = - c~ - lP ' ( z )  + P(z).  
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A straightforward subst i tu t ion argument  in (2.13) implies the 'if' part .  To prove the 
'only if' part ,  we use the subst i tu t ion P(z)  = (1 + f ( z ) )  -~/'y for some function f ( z ) .  
Equat ion  (2.13) becomes 

f ' ( z )  ~/ 
f ( z )  UF(z) 

whose solution is f ( z )  = cAR(z)  "r for some c > O. [] 

We conclude the section with some examples and remarks. 
van H a m  et al. (1982) give some rich examples of continuous composi t ion semigroups 

of pgf 's from which one can generate [F; c~]-unimodal distributions.  We mention the 
parametr ized family of semigroups (F  (~ 0 C [0, 1)) described by 

(2.14) F(O)(z) = 1 - _ -Oe--~ - z) t >_ o, Izl <_ 1, o = 1 - 0. 
0 + 0(1 - e -~  (1 - z ) '  

In this case we have hE(O) = -0, UF(o)(z ) = (1--z)(1--Oz),  AF(o)(z ) = ( 1- - z  ~1/-0 ~ l - - z - ~ ,  , a = 1 + 0 ,  

h0 = 1/(1 + 0), h~ = 0, h2 -- 0/(1 + 0), hn = 0, n _> 3. A lattice dis tr ibut ion (Pn, n C Z)  
is F(~  if max(pl ,p_lO)  <_ apo and 

(It -- 1)Opn_ 1 q- (n + 1)pn+ 1 < (Ot q- (1 q- O)n)pn, n >_ 1 
(2.15) 

(1  - -  n)pn-1  -- (n + 1)Opn+l ~ (ot -- (1  + O)n)pn, n < --1. 

We note tha t  for 0 = 0, F (~ corresponds to the s tandard  semigroup F (~ (z) -- 1 - e - t  + 
e - t z  and the multiplication | becomes the binomial thinning opera tor  of Steutel  
and van Harn (1979). IF(~ a]-unimodal i ty  is the a -unimodal i ty  of A b o u a m m o h  (1987) 
and of Alamatsaz (1993) described by (1.2). The  results obta ined in this section are 
generalizations of these authors '  results. 

Another  way of producing examples is to s tar t  out  with a constant  a > 0 and a pdf  
(hn, n _> 0) with hi = 0. If the mean of (hn, n _> 0) is less than or equal to 1 and its pgf 
H(z )  satisfies the non-explosion condit ion 

1 

(2 .16 )  [ H ( x )  - x1 -1  = c~,  (c > 0), 
1--~ 

then there exists a unique continuous semigroup F := (Ft, t > 0) admit t ing U(z) given 
by (1.7) as its infinitesimal generator.  For more on the construct ion of F we refer to van 
Harn  et al. (1982) and references therein. We also note tha t  the  non-explosion condit ion 
(2.16) is satisfied under the assumptions given in the introduct ion (see also van Harn et 
al. (1982)). 

Remarks.  1) Proposi t ions 2.3 and 2.4 should be seen as the closest analogues to 
characteristic function and mixture representat ions in the non-latt ice case (see Olshen 
and Savage (1970)). 

2) In general, a lattice dis tr ibut ion (Pn, n E Z)  will be said to be IF; c~]-unimodal 
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about an arbitrary mode mo E Z if 

(2.17) 

n + l  

E ( i -  mo)pihn_i+l ~ (o~a - 1  -~- r t -  mo)Pn, 
i = m o + l  

- - n + l  

E (i q- mo)P_ih_n_i+ 1 < (ota  - 1  - n Jr mo)Pn, 
i=1 --rno 

n > m o  

n _ ~  /t't 0. 

Let gn -- Pn+mo, n C Z. Then (p,, n E Z)  is IF; a]-unimodal about m0 if and only if 
(g,, n E Z) is [F; a]-unimodal about 0. Hence the results on [F; a]-unimodality about  
0 in this and subsequent sections carry over (through a translation argument as well 
as with the obvious modifications in the statements) to IF; (x]-unimodality about an 
arbitrary mode. 

3) One can define the concepts of discrete monotonicity and discrete unimodality 
through (1.4) and (2.1), respectively, without referring to a continuous semigroup of 
pgf's. All that  is really needed is a pdf (hn, n > 0) with hi = 0 and finite mean. One 
can even assume a = 1. It can be checked that in that  case Propositions 2.1 and 2.2 
(and their monotone analogues) also hold. However, the representations results in terms 
of gf's (Proposition 2.3) and mixtures (Proposition 2.4) do not carry over. 

4) Proposition 2.7 is an extension of a result obtained by Sapatinas (1995) for the 
standard semigroup F (~ of (2.14). 

3. Convolution properties 

We start out with two useful properties of [F; a]-monotonicity. 

LEMMA 3.1. (Translation p r o p e r t y ) L e t  a > a. I /  (pn,n >_ O) is an [F;a]-  
monotone sequence of nonnegative numbers, then for any i > 0 (Pn+i, n > O) is [F; c~]- 
monotone. 

PROOF. We have by (1.4) 

n+i+l 
n + a a - 1  (n+i+c~a-1)Pn+i>- n + a a - 1  E jpjhn+~-j+l 

(n+aa-lpn+~) -- n + i + a a  -1 n + i + a a  -1 
j=l 

n -k tea -1 n+i+l 
> E jPjhn+i-j+l 
- n + i + a a - 1  

j=i+ l 
n + l  

= rt q- c~a -1 E (  j -b i)pj+ihn-j+l. 
n §  -1 

j----1 

The conclusion follows by noting that a _> a implies that for any 1 < i < n + 1, 
(JTi)(n-F~ > j .  [] 

n+iTo~a-1 -- 

LEMMA 3.2. (Mixture property) Let ((a(~),n _> 0), i > 0) be [F;a]-monotone 
sequences of nonnegative real numbers. Let (wi, i ~ O) be a sequence of nonnegative 
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numbers such that for  every n 7_ 0, 

o o  

bn = E wia(~) < oo. 
i=0  

Then (bn, n >> O) is [F; ~]-monotone.  

PROOF. Straightforward.  [] 

We now state and prove the main result of this section. 

PROPOSITION 3.1. Let a > O, /3 > 0 be such that a + 13 >_ a. The convolution 
of an IF; a]-unimodal lattice distribution and an IF;/3]-unimodal lattice distribution is 
[F; a +/3]-unimodal.  

PROOF. We use the same argument  as in Wu and Dharmadhikar i  (1999). Assume 
(Pn, n C Z )  (resp. (qn, n C Z ) )  is [F; a]-unimodal  (resp. [F;/3]-unimodal). Let (p * 
q)n = ~i~=_~Piq,~-i ,  n E Z ,  be the convolution of {p~} and {qn}. We show that  
((P * q)n, n >_ 0) is [F; a]-monotone.  It 's easy to see tha t  

o o  n o<3 

( 3 . 1 )  (P*q)n : EP-iqn+i + EPiqn-i  + EPn+iq-i. 
i=1 i=0  i = t  

By the translat ion proper ty  (Lemma 3.1) applied to (q~, n _> 0) and the mixture  proper ty  
o o  

(Lemma 3.2) applied to w~ = P- i  and a(n/) = qn+i, an = ~-]~i=1 P-iqn+i is [F;/3J-monotone, 
and hence, by Corollary 2.4 (i) in Aly and Bouzar (2002), it is IF; c~ +/3]-monotone.  

o o  Likewise, it can be shown tha t  Cn -- ~ = 1  Pn+~q-~ is IF; c~]-monotone, and hence [F; a + 
/3J-monotone. The middle sum in (3.1), bn -- ~-]i"--0 Piqn-i ,  is the convolution of (Pn, n >_ 
0) and (q~, n > 0) and is therefore IF; c~ +/3]-monotone  by Proposit ion 2.5 in Aly and 
Bouzar (2002) (obviously modified to apply to [F; a]-monotone sequences of nonnegative 
numbers).  Hence (p .  q)n = an + bn + cn is [F; a +/3J-monotone. Similarly, one can show 
that  ((p �9 q)n ,n  < 0) is [F; c~ +/3]-monotone.  [] 

The following proposition is an extension of a result due to Alamatsaz (1993) in the 
case of the s tandard  semigroup F (~ of (2.14). We provide a simpler and more direct 
proof than Alamatsaz's.  

PROPOSITION 3.2. Let ~ >_ a, /3 >_ a, and 6 = max(o~,/3). Let X and Y be 
two independent Z+-valued rv's such that X and Y are [F;a]-monotone and [F;/3]- 
monotone,  respectively. Then X -  Y is [F; 5]-unimodal. 

PROOF. Let gn = P ( X  - Y = n), n E Z.  Then  one can easily derive tha t  

(3.2) 

o(3 

E Pn+~qi, if n >_ 0, 
i=0  

g l 2  ~ OO 

E Piq-~+i, if n <_ O. 
i=0  
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By the translation property (g~, n > 0) (resp. (g_,~, n _> 0)) is [F; c~]-monotone (resp. 
[F; ~]-monotone). Hence, by Corollary 2.4 (i) in Aly and Bouzar (2002), (gn, n > 0) and 
(g-n,  n > 0) are IF; 5]-monotone. The conclusion follows from Proposition 2.1(i). [] 

The following corollary is a direct consequence of Proposition 3.2 above and Propo- 
sition 2.5 in Aly and Bouzar (2002). Its proof is omitted. 

COROLLARY 3.1. Let a > a. The symmetrization of an [F; a]-monotone distribu- 
tion is IF; a]-unimodal. 

Pakes (1995) extended the concept of discrete F-stability to lattice distributions 
as follows. A Z-valued rv X is said to have an F-stable distribution with exponent % 

0 < 7 _< 5F, if X d X1 - X2 where X1 and X2 are independent,  Z+-valued rv's with 
F-stable distributions with exponent % The characteristic function of X is given by 

(3.3) r = exp(-[AiA(ei~') ~ + A2A(e-iT)']), 

where A1 > 0 and A2 > 0. 

COROLLARY 3.2. Let (~ >_ a and let X be a Z-valued rv with an F-stable distribu- 
tion with exponent 7, 0 < "~ <_ 5F, and charactrisitic function (3.3). I f  max()q,  A2) _< 
c~7 -1, then X has an [F; (~]-unimodal distribution. 

PROOF. Follows directly from Propositions 2.6 and 3.2. [3 

Pakes (1995) also introduced a two-sided version of the multiplication | of (1.8). 

Let Y be a Z-valued rv with the decomposition property Y d Y1 - II2 where Y1 and Y2 
are Z+-valued, independent rv's. Let W be a rv that  is independent of Y1 and ]I2 with 
support  in (0, 1). Then W |  Y is defined by its characteristic function 

(3.4) f0 
1 

r = Pl(F_logw(ei~-))P2(F_logw(e-i~))dF(w), 

where Pi is the pgf of Yi, i = 1, 2, and F(w)  is the distribution function of W. Note that  if 

W is constant, W -- w with probability 1 (w E (0, 1)), then W Q F Y  d W| --W| 

PROPOSITION 3.3. Let a >_ a, ~ >_ a, and 5 = max(a,  fl). Let Y ,  Y1, ]I2 and W be 
as described above. I f  ]I1 and II2 are IF; a]-monotone and IF; fl]-monotone, respectively, 
then W | Y is [F; 5]-unimodal. 

PROOF. For w E (0 ,1) , l e t  (qn(w) ,n  C Z )  be t h e p d f o f w |  ( d w |  
W QF Y2) and (p~, n E Z) the pdf  of W | Y. By the independence assumption, we 
have for every n E Z,  

(3.5) Pn = qn(w)dF(w) ,  

where F is the distribution function of W. Since w | Y1 and w | Y2 are independent 
and, respectively, IF; c~]-monotone and IF;/3J-monotone (cf. Aly and Bouzar (2002)), it 
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follows by Proposition 3.2 that w Q)F Y is IF; 5]-unimodal. This implies that  (qn(w), n E 
Z) satisfies (2.1). Consequently, by (3.5), (Pn, n C Z )  satisfies (2.1) as well. [] 

Remarks.  1) The mixture property given in Lemma 3.2 holds too for IF; a]-uni- 
modality. 

2) Corollary 3.1 is due to Alamatsaz (1993) for the standard semigroup F (~ of 
(2.14). 

3) The results in this section remain valid under the semigroup-free definition of 
discrete unimodality given in Remark (3) in Section 2. 

4. Variance bounds 

Variance bounds for unimodal rv's have been discussed by several authors (see 
Abouammoh et al. (1994) and references therein). In this section we obtain lower bounds 
for the variances of [F; a]-monotone and [F; a]-unimodal rv's. In the case of [F; a]- 
unimodality we derive a sharper lower bound than the one obtained by Abouaznmoh et 
al. (1994) by relaxing at the same time their assumption a > 1. 

We will assume throughout this section that H"(1) = ~i~=2 i(i - 1)hi < c~. 

PROPOSITION 4.1. Let X be a Z+-valued,  [F;a]-monotone rv. As sume  that the 
second m o m e n t  of  X exists and let p and a 2 denote the mean and variance of  X ,  re- 
spectively. Then 

(4.1) (72 > Ap2 + Bi t  
- 2av"-A + a 2' 

where A = a2(1 - H'(1)) 2 and B = aa(1 - H'(1) + H"(1)).  

PROOF. First we recall from the assumptions on the semigroup F that  H~(1) <_ 1. 
Let P( z )  be the pgf of X. Since X is [F; a]-monotone, by Proposition 2.2 in Aly and 
Bouzar (2002) there exists a pgf Q(z)  such that 

(4.2) Q(z)  = - - a - I P ' ( z ) U F ( z )  + P( z ) .  

The fact that  X has a finite variance implies P'(1) = # and P"(1) = o-2 + #2 _ #. It 
follows by (4.2) that 

(4.3) 
Q'(1) = ( aa - l (1  - H'(1)) + 1)p 

Q"(1) = (2aa- l (1  - H'(1)) + 1)(a 2 + #2 _ #) _ aa - lH , , (1 )# .  

Therefore, the distribution with pgf Q(z)  has finite variance equal to Q"(1) + Q'(1) - 
Q'(1) 2, which implies the inequality Q"(1) > Q'(1) 2 - Q'(1). Using (4.3) and solving for 
o-2 in the latter inequality yields (4.1). [] 

PROPOSITION 4.2. Let X be a Z-valued,  [F;a]-unimodal rv. As sume  that the 
second mome n t  of X exists and let # and a 2 denote the mean and variance of  X ,  re- 
spectively. Then 

1 
~ ( a  + V ~ ) 2 ( [ E ( [ X [ ) ]  2 - #2) + B E ( I X [ )  + A #  2 

(4.4) o- 2 
- 2 a v ~  + a ~ ' 
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where A and B are as in Proposition 4.1. 

PROOF. Let ~+ and a~_ (resp. i t -  and o.2_) be the mean and variance of X + (resp. 
X - ) .  Since X + X  - = O, we have 

(4.5) = + a2 + p - .  

By Proposition 2.1(ii), X+ and X_  are [F; a]-monotone. Hence, by applying Proposition 
4.1 to X + and X -  separately, it follows from (4.5) that 

(4.6) a 2 > A(#+)2 + B # +  + A ( # - ) 2  + B p -  + 2 # + # _  . 
- 2av"-A + a 2 2av"A + a 2 

Since p =/~+ - i t - ,  E(IXI)  = #+ + # - ,  and (consequently) 2#+# - = ([E(IXI)] 2 - # 2 ) / 2 ,  
(4.4) is deduced from (4.6) by straightforward algebraic manipulations. [] 

In the case of the semigroup F (~ of (2.14), 0 E [0, 1), we have Ho(z) = (1/1 + 0) + 
(0/1 + O)z ~. The quantities A, B, and C of Propositions 4.1 and 4.2 can be shown to be 

A = 0~ and B = a(1 + 0), where 0 = 1 - 0. If X is Z-valued, [F(~ c~]-unimodal, and 
with finite second moment, then its variance a 2 satisfies 

(4w) 
1 + -O)2([E(IXI)] 2 - pz )  + c (1 + O)E(IXr)  + 2 

o.2>_ -2 
2~o~ + c~ 2 

For the standard semigroup F (~ (4.7) at 0 = 0 becomes 

1 
o .2 > [ ( ~  + 1)2([E(IX[)]2 _ #2) + o~E(iXI) + 1~2 

20~ + ~2 

This is a sharper lower bound than the one obtained by Abouammoh et al. (1994) (see 
their Theorem 3.1): o.2 > (p2+a[#l) / (2c~+a2).  We also note that  the assumption a > 1 
made by Abouammoh et al. (1994) to prove their result is not needed. 
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