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A b s t r a c t .  The estimation problem in multivariate linear calibration with elliptical 
errors is considered under a loss function which can be derived from the Kullback- 
Leibler distance. First, we discuss the problem under normal errors and give unbiased 
estimate of risk of an alternative estimator by means of the Stein and Stein-Haft 
identities for multivariate normal distribution. From the unbiased estimate of risk, 
it is shown that  a shrinkage estimator improves on the classical estimator under the 
loss function. Furthermore, from the extended Stein and Stein-Haft identities for our 
elliptically contoured distribution, the above result under normal errors is extended to 
the estimation problem under elliptical errors. We show that  the shrinkage estimator 
obtained under normal models is better than the classical estimator under elliptical 
errors with the above loss function and hence we establish the robustness of the above 
shrinkage estimator. 

Key words and phrases: Elliptically contoured distribution, Kullback-Leibler dis- 
tance, multivariate linear model, shrinkage estimator. 

i .  Introduction 

The  cal ibrat ion p rob lem occurs in m e a s u r e m e n t  se t t ings  where two m e a s u r e m e n t  
methods  are available: One is ex t remely  accura te  but  expensive (or t ime-consuming)  
while the o ther  is less accura te  bu t  easier and fast. The  funct ional  re la t ion be tween the 
two types  of measu remen t s  is assessed th rough  a ca l ibra t ion exper iment ,  where  the  values 
of bo th  measu remen t s  are known; this re lat ion is then  used in subsequent  exper iments  
to predict  the  value of the  more  precise m e a s u r e m e n t  based on a sample  of  the more  
approx ima te  measuremen t .  

This  se t t ing  is of m a j o r  impor t ance  in physical  and chemical  measu remen t s  and  
we refer the  reader  to Rosenbla t t  and  Spiegelman (1981) for a general  discussion on 
the pract ica l  issues of cal ibrat ion.  For a detai led and  recent  survey  of the  cal ibrat ion 
problem,  see Brown (1982, 1993), Osborne  (1991), and  Sundberg  (1999). 

In  this  pape r  we consider the  mul t iva r ia te  l inear ca l ibra t ion model .  Let  Y and Y0 
be, respectively, n • p and  m • p r a n d o m  mat r ices  of  response  variables  and  also let 
X be an n • q m a t r i x  of exp lana to ry  variables  wi th  full rank.  Consider  the cal ibrat ion 
exper iment  and  the predic t ion exper iment  which can be represented  as, respectively, 

(1.1) 

(1.2) 

Y = lnO~ t + X O + s  

YO = l m  Ozt + 1,nZ~)O + tO, 
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where Ii  is the I x 1 vector consisting of ones, a and O are, respectively, p x 1 vector and 
q •  matr ix  of unknown parameters,  and x0 is the q • 1 vector to predict. Here, we denote 
by A t the transpose of a matr ix  A. Furthermore e and Eo are, respectively, n • p and 
m • p error matrices wi th  mean zero matrices. We assume tha t  p >_ q, n + m - q - 2 _> p, 
and X t l n  = 0qxl.  Our problem is to predict x0 based on (Y, X )  and Yo- 

We assume two cases of error distributions: (I) The rows of the error matrices, e and 
e0, are independently and identically distr ibuted as the p-variate normal distributions 
with mean zero vector and covariance matr ix  E,  abbreviated by Afp(0p• E).  (II) The 
error matrices, E and Co, are joint ly distr ibuted as the elliptically contoured distr ibution 
with its density function 

(1.3) [ E l - ( n + m ) / 2 f ( t r { E - l e t e  ~- E-ls163 

where f is an unknown, nonnegative function on [0, c~) and E is a p x p scale matrix.  
In both  cases (I) and (II), we assume tha t  E is unknown and positive-definite. Here, we 
denote by t r (A)  and IA[ the trace and the determinant  of a squared matr ix  A. 

There has been plenty of l i terature on the problem of est imating Xo in (1.2) under 
the errors (I). Then two est imators are well-known; one is the classical e s t i m a t o r  and 
the other is the inverse  regression e s t ima tor .  Now, denote the least squares estimators 
of a and O by 

(1.4) & : ~/, 6 = ( X t X ) = l x t y ,  

where y = Y t l n / n .  Let 

rio = y t o X m / m ,  V0 -- (Yo - X,~Y~)t(Y0 - l m ~ ) ,  
(1.5) 

V = ( Y -  i n &  t - X ~ ) ) t ( Y  - i n &  t - X~)) ,  and S = V + Vo. 

Brown (1982) derived tile classical and the inverse regression estimators which are given 
by, respectively, 

(1.6) So  = (6s-16 )-16s-l( o - 

and 

(1.7) ~o = { ( x t x )  - 1  "~- OV-16t}-16V-l(#o - fJ). 

The classical est imator (1.6) is the restricted maximum likelihood est imator and for 
n --~ cc and m ---+ oc it is consistent when O ~ 0 but  the inverse regression est imator 
(1.7) is not consistent. For details of comparison between the classical and the inverse 
regression estimators see, for example, Brown (1982, 1993). 

The main interest of this paper is an improvement on the classical est imator (1.6) 
from a decision-theoretic point of view. When q = 1, ~ = a 2 I ;  and a2 is unknown in 
models (1.1) and (1.2), Kubokawa and Robert  (1994) showed, under the squared loss, 
tha t  the classical est imator  is inadmissible and tha t  the inverse regression est imator is 
admissible. Srivastava (1995) showed the inadmissibility of the classical est imator and 
the admissibility of the inverse regression est imator when q = 1 and E is fully unknown. 
Furthermore,  when q > 1 in (1.1) and (1.2), Tsukuma (2002) discussed the problem of 
est imating x0 under the quadrat ic  loss function 

(1.8) Lo(Xo; Xo) = (1/Cn,m)(SeO -- X O ) t ( X t X ) - I ( 5 : 0  - Xo),  
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where 5~o is an estimator of x0 and cn,m = 1In + 1/m. Tsukuma (2002) proposed an 
alternative estimator over the classical estimator and showed that the inverse regression 
estimator is admissible under the loss (1.8). On the other hand Branco et al. (2000) 
treated a Bayesian analysis of the calibration problem under the multivariate linear 
model with elliptical errors whose density is different from (1.3) and they showed that a 
Bayes estimator for a noninformative prior is the inverse regression estimator. 

In this paper we discuss the problem of estimating x0 under the quasi-loss function 

(1.9) L(~o; Xo) = (1/Cn,m)(OtSCo - O t x o ) t ~ ] - l ( O t x o  - O t x o ) .  

Then the accuracy of an estimator xo is measured by the risk function R(5~o; Xo) = 
E[L(~o; Xo)]. The loss function L can be regarded as a quadratic loss function in the 

problem of estimating Otxo by an estimator ~)ts~ o but  L is not a loss function in terms 
of Xo and Xo. The usage of L is motivated by the following reasons: (1) If ~,  O and 
~3 are known under normal errors, then the maximum likelihood estimator is 5~o ML = 
(O~ ' ] - -1ot ) - -10~- ' ] - - l (y  0 -- O, 0 a nd  ~ g L  ~,~ j~q(X0 ' ( O ~ - ] - l o t ) - x ) .  T h u s  it seems that the 
behavior of L is similar to that of a natural loss function 

(1.10) Ll(5~o; x0) = (1/Cn,m)(SCO - x 0 ) t o ~ - ] - - l o t ( x 0  -- X0). 

(2) Under normal errors, the loss function L can be derived from the Kullback- 
Leibler distance 

/ {  log P(fl,P(fI'~)'S'fI~176 p ( ~ l ' ~ ) ' S ' ~ l ~ 1 7 6 1 7 6  S, rio ' 04 O, E, Xo) 

where p(y, ~), S, Y0 I a ,  O, E, x0) denotes a joint density function of (9, ~), S, Yo)- Here 
(fl, O, V, Yo) is given by (1.4) and (1.5) and (&, O, E, &o) is an estimator of (a ,  O, E, x0). 

This paper is organized in the following manner: In Section 2, the problem of 
estimating x0 is considered under the errors (I), i.e., the rows of the error matrices 
are mutually and independently distributed as the multivariate normal distributions. 
First we derive a canonical form for this setup and give unbiased estimate of risk of 
an alternative estimator via the Stein and Stein-Haft identities for multivariate normal 
distribution. From this unbiased estimate of risk, it is shown that shrinkage estimators 
improve on the classical estimator (1.6) under the loss function L. For example, one of 
the shrinkage estimators is the James-Stein type estimator (see James and Stein (1961)) 

( Cn,m(q-2) )a~o, for q > 3 ,  2oJs= 1-(n+m_q_p+~b- o-y)tS_l(yo_# ) 

which is different from improved estimators given by Kubokawa and Robert  (1994) and 
Tsukuma (2002). Next, in Section 3 we discuss the problem with the errors (II), i.e., 
the error matrices are jointly and uncorrelatedly distributed as an elliptically contoured 
distribution. From the extended Stein and Stein-Haft identities for our elliptically con- 
toured distribution due to Kubokawa and Srivastava (1999, 2001), the above domination 
under normal errors is extended to the estimation problem under elliptical errors. Monte 
Carlo simulations in special case of an elliptical distribution is carried out to evaluate 
the risk performance under the loss function L1 since it is very difficult to prove the 
improvement under the loss function L1. From this simulations, we illustrate that a 
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shrinkage estimator is better than the classical estimator even if the loss function L1 is 
used. Furthermore, since the problem with the errors (II) is not independent sampling, 
we also conduct a simulation study based on independently and identically sampling 
model from an elliptically contoured distribution. Under this setup, we also show that 
the James-Stein type estimator is numerically better  than the classical estimator under 
the loss function L1. Finally, in Section 4 we state some technical lemmas and give 
proofs of theorems in Sections 2 and 3. 

2. Improving on the classical estimator under normal errors 

In this section, we consider an improvement on the classical estimator under normal 
errors. First, we give a canonical form of this problem and, next, state main theorems 
of this section. Proofs of theorems and corollaries are postponed to Subsection 4.1. 

2.1 A canonical form 
We first define the following notation. The Kronecker product of matrices A and C 

is denoted by " A  | C" .  For any q x p matrix Z = ( Z l , . . .  ,Zq) t with p x 1 vectors zi, 
we write vec(Z t) = (Ztl, . . .  ,Zq)t t. ' Z  ~ A/'q• A | C) '  indicates that vec(Z t) follows 

multivariate normal distribution with mean v e c ( M  t) and covariance matrix A | C.  
Furthermore, 'Wp(E, k)' stands for the Wishart distribution with degrees of freedom k 
and mean kE. 

The classical estimator for unknown x0 is rewritten as 

(2.1) = - y ) ,  

where f/, ~), S, and Y0 are given in (1.4) and (1.5). We here note that these statistics 
f/, ~), S, and f/0 are mutually and independently distributed as 

~ Alp(a, (1 /n)E) ,  6 ,-~ A/'q• ( X t X )  -1 | E), 

S ~ YVp(E, 1), and rio ~" A/'p(a + Otxo ,  ( l / r e )E )  

for l = n  + m - q -  2 > p. 
- 1 / 2 t -  Let cn,m = 1/n  + 1/m,  z = Cn,m (Yo - 0), and B = ( X t X ) I / 2 ~ ) .  Here, we denote 

by A 1/2 a symmetric matrix such that A = A I / 2 A  1/2. Then B ,  S, and z are mutually 
and independently distributed as 

(2.2) B ~ A/'q• Iq | 2]), S ~ Wp(E, l), and z ~ Afp(flt{, E),  

where /3 = 
written as 

( x t x ) 1 / 2 0  and ~ = cn,m-1/2~XtX~-l/2x0 " t  ) The loss function (1.9) can be 

( 2 . 3 )  = 

~- - l /2[  ~rt v - ~ - I / 2 ~ _  To express the classical estimator (2.1) with B,  S and z, we put ~ = Cn,m I A . , ' l)  '~0 
to have 

(2.4) ~ = ( B S - 1 B t ) - I B S - l z .  
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Similarly, using the statist ics B and z,  we can write the inverse regression es t imator  
(1.7)  as 

(2.5) ~ = (Iq + B V - 1 B t ) - I B V - l z ,  

o - 1 / 2 ( x t y ~ - I / 2 ~  We here note  tha t  V ~,- )/Vp(/C, l l )  where ll = n - q - 1 where ~ = ~n,m t - - ]  --u' 
and tha t  the statistics V,  B ,  and z are mutua l ly  independent .  

In next  subsection we t rea t  the cal ibrat ion problem on the model  (2.2) and discuss 
an improvement  on the classical es t imator  (2.4) under  the loss (2.3). 

2.2 Improved estimator and unbiased estimate of its risk 
Note tha t  the es t imat ion problem on the model  (2.2) is invariant under  the group 

of t ransformations:  

QOP, E P EP, 
B ~ Q B P ,  S ~ P t s P ,  z --~ P t z  

for any q x q or thogonal  mat r ix  Q and any p x p nonsingular  mat r ix  P .  
Now, for es t imat ing ~ in (2.2) under  the loss (2.3), we consider a class of es t imators  

(2.6) ~(r  G )  = C G B S - l z ,  

where r is a scalar-valued function of z t S - I z  and G is a q • q symmetr ic  mat r ix  whose 
elements are functions of F = B S - 1 B  t. The  es t imators  (2.6) can be in terpre ted as an 
extension of the classical es t imator  (2.4). Remark  tha t  for m = 1 the inverse regression 
es t imator  (2.5) belongs to the above class of es t imators  since S = V but  the es t imator  
(2.5) does not  belong to it for m > 2. 

From the Stein identi ty for the mult ivar ia te  normal  dis t r ibut ion and the Stein-Haft  
identi ty for the VVishart dis tr ibut ion,  we can evaluate the risk of the est imators  (2.6) as 
follows: 

THEOREM 2.1. Let statistics B ,  S, and z be defined as (2.2) and let F -- 
B S - 1 B  t. Further, denote by DE differential operator in terms of F = (Fij) where 
the (i , j)-element of DF is {DF}~j = (1/2)(1 + 6ij)O/OF~j with the Kronecker delta 6ij. 
Suppose that we wish to estimate ~ in (2.2) by 

~ ( r  G )  = CGBS-lz, 

where r is a scalar-valued function of t = z t s - l z  and G = (Gij) is a q x q symmetric 
matrix whose elements are functions of F .  Then, under the loss L given in (2.3), the 
risk of the estimators i ( r  G) can be represented as 

(2.7) R(~(r  G),~) = E [ -  p + 4 r  + 2 r  

+ (l - p  - 1 ) t r [ S - 1  (z - C B t G B S - l z ) ( z  - C B t G B S - l z )  t] 

+ 4 r  _ C z t S - 1 B t G B S - l z )  

+ 4r  _ C G F ) { ( F D F ) t G } B S - l z  

+ 2r  - C z t S - I B t G B S - l z )  

+ 2 r  _ C z t S - ] B t G F G B S - l z ) ] ,  
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where the expectation is taken with respect to (2.2) and r = de~dr. Here '{(FDF)tG} ' 
indicates that DF acts only on G and that the (i,j)-element of {(FDF)tG} is given by 

{(FDg)tG}i j  = E Fab[{DF}iaGbj]. 
a,b 

Note that the content of expectation in the right-hand side of (2.7) is an unbiased 
estimate of risk in terms of the estimators ~(r G). In Theorem 2.1, putting r = 1 and 
G = F -1, we obtain unbiased estimate of risk of the classical estimator: 

COROLLARY 2.1. Under the loss L, the risk of the classical estimator (2.4) can be 
expressed as 

(2.8) R(~, ~) = E[-p  + 2q + (l - p - 1 + 2q)(z, t s - l z  - z t S - ' B t F - 1 B S - l z ) ] .  

For improving on the classical estimator ~, we consider shrinkage estimators (see 
Baranchik (1970)) 

(2.9) ~(r = (1 - ~ b / t ) ( B S - 1 B t ) - l B S - l z ,  

where ~ is a differentiable function of t = z t S - l z .  From Theorem 2.1 and Corollary 
2.1, we establish the following dominance result: 

THEOREM 2.2. Assume that q >_ 3. If  
(i) r is nondecreasing, and 

(ii) 0 < ~b < 2 ( q -  2 ) / ( / -  p+ 3), 
then the shrinkage estimators (2.9) improve on the classical estimator (2.4) under the 
loss L. 

For example, one of the shrinkage estimators is the James-Stein type estimator (see 
James and Stein (1961)) 

q - 2  
(2.10) ~J8= ( 1 -  ( l _ p +  3 ) z t S _ l z )  ~ 

for q > 3. 
Theorem 2.2 indicates that  under the loss L the estimators ~(r improve on the 

classical estimator ~ by statistics z and S. Since the statistic z has much information on 
~, the result of Theorem 2.2 seems to be natural. On the other hand, Tsukuma (2002) 
proposed an improved estimator on the classical estimator under the loss function (1.8). 
The improved estimator is constructed by means of statistics B and S and hence it is 
different from the estimators ~(r See also Kubokawa and Robert  (1994). 

Remark 2.1. In Theorem 2.1, we replace S by V and put r = 1 and G = (Iq + 
B V - 1 B t )  -1 to evaluate risk of the inverse regression estimator (2.5) as follows: 
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COROLLARY 2.2. 

(2.11) R(~ ,  ~) = E [ L ( ~ ;  ~)] 

= E[-p  + 2tr{Fl(Iq  + F 1 )  - 1 }  

+ (11 - p - 1 ) t r { V - l ( z  - Bt(Iq + F 1 ) - I B V - l z )  

x (z -- Bt(Iq + F 1 ) - I B V - l z )  t} 

+ 2 z t y - l B t ( I q  + F1) - lA ( Iq  § F I ) - I B V - i z  

+ 2(tr{Fl(Iq -4- F 1 ) - l } )  

• ( z t v - l z  - z t V - 1 B t ( I q  -4- F 1 ) - I B V - l z )  

+ 2 ( z tV-1Bt ( Iq  + F 1 ) - I B V - l z  

_ z t V - 1 B t ( I q  + F 1 ) - i F l ( I q  + F 1 ) - I B V - l z ) ] ,  

where the expectation is taken with respect to ( B , V , z ) .  Here F1 = B V - 1 B  t and 
A = - (q  + 1)Iq + (Iq + E l )  -1  + ( t r ( I q  + F1)- i ) Iq .  

C o r o l l a r y  2.2 sugges t s  t h a t  unb i a sed  e s t i m a t e  of  r isk of  the  inverse  regress ion  es- 
t i m a t o r  is t he  con t en t  of  e x p e c t a t i o n  of t he  r i g h t - h a n d  side of  (2.11) and ,  however ,  we 
s e e m  u n a b l e  to  e v a l u a t e  the  r isk di f ference of t he  c lass ical  a n d  the  inverse  r eg res s ion  
e s t i m a t o r s  ana ly t ica l ly .  

Table 1. Estimated risks (L1) under multivariate normal distributions with ~ = (1, 1, 1, 1, 1) t. 

fl~3-1fit CL JS Ave. IN 
diag(1, 1, 1, 1, 1) 10.86 8.37 22.93% 4.77 

(0.241) (0.156) (0.006) 
diag(10, 10 -1 , 10 -1 , 10 -1 , 10 -1 ) 8.34 7.45 10.71% 6.09 

(0.273) (0.192) (0.021) 
diag(10, 10, 1, 10 -1 , 10 -1) 22.05 19.76 10.39% 12.66 

(0.720) (0.616) (0.036) 

diag(10, 10, 10, 10, 10) 51.18 47.56 7.07% 29.55 

(2.882) (2.619) (0.074) 

diag(1002, 10, 1, 10 -1 , 10 -2) 24.23 23.61 2.57% 13.11 

(0.877) (0.840) (0.064) 
diag(102, 102, 10, 10, 1) 44.58 43.80 1.74% 26.45 

(1.714) (1.678) (0.109) 
diag(103, 1, 1, 1, 1) 23.91 23.84 0.28% 7.09 

(1.408) (1.399) (0.045) 
diag(103, 102, 102 , 102, 10) 35.00 34.89 0.32% 33.66 

(0.390) (0.388) (0.162) 
diag(104 , 103, 102 , 10, 1) 43.17 43.15 0.04% 23.98 

(1.061) (1.060) (0.131) 
diag(104 , 104, 103, 102, 102) 31.90 31.89 0.02% 34.37 

(0.220) (0.220) (0.197) 
diag(105 , 102, 1, 10 -2 , 10 -5 ) 26.96 26.96 0.00% 11.25 

(0.796) (0.796) (0.085) 
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Remark 2.2. In Theorem 2.2, we have analytical dominance result on the classical 
and the shrinkage estimators when the quasi-loss function L is used. On the other 
hand we seem very difficult to establish the dominance result analytically under the loss 
function La given in (1.10). Therefore, we have carried out Monte Carlo simulations to 
investigate risk performance under the loss L1 which can be written as 

(2.12) LI(~;~) = ( ~ -  ~)t~E- '~ t (~  - ~). 

The estimated risks are given in Tables 1 and 2 and our simulations are based on 10,000 
independent replications which are generated from model (2.2). In Tables 1 and 2, 'CL', 
' JS ' ,  and ' IN'  denote the classical estimator (2.4), the James-Stein type estimator (2.10), 
and the inverse regression estimator (2.5), respectively, and their estimated standard 
deviations are in parentheses. Furthermore, 'Ave.' is average of improvement in risk 
of JS  against that  of CL, i.e., Ave. -- 100(1 - R*JS/Tt*)%, where R* and ~ , J s  are, 
respectively, values of estimated risks for CL and JS  by simulations. For simulations, 
we take (n,m,p,q) = (30,20,7,5) and suppose that  j3E-lf~ t is the diagonal matrix 
with typical elements and that ~ -- (1, 1, 1, 1, 1) t (in Table 1) and ~ = (2, 2, 2, 2, 2) t (in 
Table 2). 

From numerical results in Tables 1 and 2, we observe that Ave.'s are large when 
the diagonal elements of j3E-l j3  t are small. Hence, our simulations indicate that JS  is 
better  than CL under the loss L1 but it is difficult to prove the domination analytically. 

Table 2. Es t imated risks (L1) under mult ivariate normal dis tr ibut ions with ~ = (2, 2, 2, 2, 2) t. 

f i E -  lf~t CL JS  Ave. I N  

diag(1 ,  1, 1, 1, 1) 30.76 28.17 8.40% 18.89 

(0.628) (0.502) (0.018) 

d iag(10,  10 -1  , 10 -1  , 10 -1  , 10 -1 )  22.17 21.68 2.20% 23.91 

(0.863) (0.755) (0.061) 

d iag( lO,  10, 1, 10 -1  , 10 -1 ) 65.41 63.50 2.92% 49.66 

(2.052) (1.941) (0.115) 

d iag(10,  10, 10, 10, 10) 169.99 166.60 1.99% 116.16 

(8.131) (7.923) (0.266) 

diag(1002 , 10, 1,10 -1 , 10 -2 )  81.25 80.69 0.69% 49.51 

(9.692) (9.576) (0.200) 

diag(102 , 102, 10, 10, 1) 151.29 150.60 0.46% 100.13 

(6.096) (6.059) (0.371) 

diag(103,  1, 1, 1, 1) 71.79 71.74 0.07% 24.57 

(5.679) (5.669) (0.125) 

d i ag ( lO  3, 102, 102 , 102 , 10) 122.54 122.43 0.08% 124.35 

(1.500) (1.498) (0.568) 

d iag ( lO  4 , 103, 102, 10, 1) 145.49 145.47 0.01% 86.36 

(3.566) (3.566) (0.446) 

diag(104,  104 , 103, 102, 102) 111.76 111.75 0.01% 123.41 

(0.776) (0.776) (0.692) 

diag(105 , 102 , 1, 10 -2  , 10 -5 )  81.54 81.54 0.00% 38.66 

(2.421) (2.421) (0.268) 
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3. Extensions to elliptical errors 

In this section we consider cal ibrat ion problem under  elliptical errors. Here, suppose 
tha t  the error matrices,  e and eo, of (1.1) and (1.2) have a joint  densi ty  function 

(3.1) I~]-(~+m)/2f(tr{~ -l(ct~ + E~eo)}), 

where f is an unknown funct ion on [0, oo) and ]E is a p x p unknown positive-definite 
matrix.  Note tha t  the rows of bo th  e and e0 are uncorre la tedly  d is t r ibuted  but  not 
independently.  

We shall s ta te  proofs of main  theorems of this section in Subsect ion 4.2. 

3.1 A canonical form 
We first derive a canonical  form of this setup. Let  T be an n x n or thogonal  mat r ix  

such tha t  

T 1  n = (hi~2,0, . . .  , 0 )  t a n d  T X  - - [ O q x l , ( X t x ) l / 2 , 0 q x ( n _ q _ l ) ]  t. 

Also let T Y  = [nl/2y, Bt,vt] t. Here the sizes of y ,  B and v are, respectively, p x 1, 
q • p and (n - q - 1) • p. Similarly, let T o  be an m • ra or thogonal  mat r ix  such tha t  
T o l m  --- (rn 1/2, 0 , . . . ,  0) t and denote  T o Y o  = [mX/2y o, v~] t, where the sizes of Yo and 
v0 are, respectively, p • 1 and (m - 1) • p. Thus,  by the or thogonal  t ransformat ions  
Y --~ T Y  and Y0 --~ T o Y o ,  the densi ty  (3.1) can be wr i t ten  as 

(3.2) [E[-('~+m)/2 f ( tr[E-l  {n(y - o~)(y - a) t + (B - / 3 ) t (B  - /3)  + vtv 
1 / 2  t _ 1 / 2  f~tJ-\t 

+ m ( y  o - oz - C n , m / 3  6 , ) ( Y o  - a - on,rap ~;) + V~Vo}]), 

- 1 / 2 " x t x x - 1 / 2 - -  --~ 1/n + 1/m. T h e n  our where /3 -- ( x t x ) I / 2 0 ,  ( = cn,m ~, ) ~u, and On, m 
problem is to es t imate  ~ based on (y, B ,  v, v0, Yo) with respect  to the loss L given in 
(2.3). 

3.2 The classical estimator and its improved estimator 
- - 1 / 2 ~  

Denote S = vtv +VtoVo and z = cn,m ( Y 0 -  Y)" If (Ol,/3, E )  are known and 
f is decreasing on [0, oo), then  the max imum likelihood es t imator  of ~ is given by 

~-- 1 / 2  [ nl~-~-- 1 F.lt ~ -- 1 r~ -~ - -  1 = Cn,m ~ '  ~" ] t- '~ (Y0 - a )"  When  (c~,/3, E )  are unknown, we shall replace 
(a , /3 ,  E)  by their  est imators  from the da t a  (y,  B ,  S)  wi thout  da t a  Yo. From (3.2) with 

^ A 

a decreasing function f ,  the  max imum likelihood es t imator  of (e~,/3, E )  are (&,/3, E )  = 
(y, B ,  mS) where ~ is a certain constant .  Hence, we obta in  a na tura l  es t imator  

(3.3) - - 1 / 2  ^ A - - 1  ^ t  --1 ^ A - - 1  
= cn,.  /3 ) (yo  - a )  
= ( B S - 1 B t ) - I B S - l z .  

Throughou t  this paper,  this es t imator  is called the classical estimator in case of the 
elliptical model  (3.2). 

Consider an improvement  on the classical es t imator  (3.3) with its ex tended  estima- 
tots  

(3.4) ~ ( r  = (1 - r  
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where ~ is a differentiable function of t = zts-lz .  The estimators are extension of the 
estimators (2.9) in the case when the rows of errors e and e0 follow the multivariate 
normal  distributions. 

Next, we shall evaluate risk of the estimators (3.4). Let g be a scalar-valued function 
of ( y , B , v , v o ,  Yo) and also let 

Denote 

(3.5) 

F( t )  = -~ f ( x ) d x .  

(3.6) 

El[g] = f g • IE] - (n+m) /2 f (x )dydBdvdsodYo ,  

EF[g] = / g x I]El-(n+m)/2F(x)dydBdvdvodYo,  

1 / 2  t __ where x = t r [ E - l { n ( y -  ~ ) ( y -  (~)t+ ( B _ f ~ ) t ( B _ ~ ) + v t v + m ( Y o _ t ~ _ c , ~ , m ~  ~)(Yo 
1/2 t t t -Cn,m~ ~) +V0V0}]. Using these notat ion,  we give the risk expression of the estimators 

(3.4) as follows. 

THEOREM 3.1. Put  t = z t S - l z  and 1 = n + m -  q -  2. Denote r = d r  Then, 

under the loss L given in (2.3), the risk of ~(r  can be written as 

R(~(r  ~) = E] [L(~(r ~)1 

= EF[--p -- 4 ( r  -- r  + 2q(1 - r  

+ (l - p - 1 ) ( z t S - l z  - (1 - r  

- 4 ( r  - r  

• ( z t S - l z  - (1 - r  

+ 2q(1 - r  - z t S - 1 B t F - 1 B S - l z ) ] ,  

provided a suitable condition is satisfied. 

In Theorem 3.1, the content in EF[.] is not unbiased est imate of risk in case of an 
elliptical density except normal density. The 'suitable condition'  in Theorem 3.1 are the 
same as those of both  Lemmas 4.7 and 4.8 in Subsection 4.2. From Theorem 3.1, we 
have an expression for risk of the classical est imator (3.3): 

COROLLARY 3.1. 

R(~, ~) = EF[--p + 2q + (l - - p -  1 + 2 q ) ( z t S - l z  - z t S - 1 B t F - 1 B S - l z ) ] ,  

where l = n + m - q - 2 and F = B S - 1 B  t. 

Therefore, we get a dominance result under elliptical errors. 

THEOREM 3.2. Assume that we want to estimate ~ in (3.2) and that q > 3. I f  
(i) r is nondecreasing, and 
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Table 3. Est imated risks (L1) under multivariate t-distributions (joint) with t~ = (2, 2, 2, 2, 2) t. 

~IE- 1fit CL JS  Ave. I N  

diag(1,  1, 1, 1, 1) 33.61 30.27 9.96% 18.92 

(2.706) (1.923) (0.019) 

diag(10,  10 -1  , 10 -1  , 10 -1  , 10 -1  ) 24.83 24.18 2.64% 25.48 

(0.755) (0.657) (0.088) 

diag(10,  10, 1, 10 -1  , 10 -1)  74.08 70.93 4.26% 52.75 

(4.821) (4.421) (0.173) 

diag(10,  10, 10, 10, 10) 208.59 201.76 3.28% 122.68 

(12.236) (11.799) (0.412) 

diag(1002 , 10, 1, 10 -1  , 10 -2)  94.77 93.79 1.04% 70.39 

(3.626) (3.533) (0.546) 

diag(102 , 102 , 10, 10, 1) 215.29 212.71 1.20% 140.34 

(9.534) (9.234) (1.081) 

diag(103, 1, 1, 1, 1) 86.44 86.39 0.06% 37.25 

(6.428) (6.400) (0.589) 

diag(103, 102 , 102 , 102, 10) 215.26 214.72 0.25% 199.35 

(5.898) (5.862) (2.054) 

diag(104 , 103 , 102, 10,1) 243.89 243.80 0.04% 130.14 

(15.338) (15.327) (1.431) 

diag(104 , 104 , 103 , 102, 102) 206.49 206.42 0.04% 202.59 

(12.058) (12.034) (2.695) 

diag(105 , 102 , 1, 10 -2 ,  10 -5)  161.42 161.42 0.00% 63.42 

(36.580) (36.578) (0.780) 

(ii) 0 < r  
then the estimators (3.4) improve on the classical estimator (3.3) under the loss L. 

The result of Theorem 3.2 is an extension of that of Theorem 2.2 and suggests that  
for our elliptically contoured distribution (3.1) we establish the robustness of improve- 
ment via the shrinkage estimators (2.9). 

Although the risks of the estimators (2.5) and (2.6) can also be expressed by usage 
of notation (3.6), we omit these derivations. 

3.3 Monte Carlo studies 
Finally, using Monte Carlo simulations in special case of the parameters, we shM1 

investigate the risk behavior of the improved estimators (3.4) under the loss function L1 
given in (2.12). We supposed that the errors are jointly distributed as a multivariate 
t-distribution whose density function is given by 

(3.7) ctl~[-(n+m)/2{1 + ( l /k )  t r ( E - l e t e  + E-leteo)}-(k+('~+m)p)/2 , 

where ct = Fl{k + (n + m)p}/2]/{(rrk)(n+m)p/2V[k/2]} and k > 0. Here, we denote by 
F(x) the Gamma function. 

Our simulations are based on 10,000 independent replications which are generated 
from the canonical form (3.2). For this numerical studies we assume that (n, m,p ,  q) = 
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Table 4. Estimated risks (L1) under  multivariate t-distributions (i.i.d.) with t~ = (2, 2, 2, 2, 2) t. 

~ -  l~t CL JS  Ave. I N  

diag(1,  1, 1, 1, 1) 32.41 28.78 11.22% 19.19 

(0.874) (0.696) (0.017) 

diag(10,  10 -1  , 10 -1  , 10 -1  , 10 -1)  26.10 25.33 2.94% 27.65 

(0.797) (0.701) (0.073) 

diag(10,  10, 1, 10 -1  , 10-1) 73.61 70.61 4.07% 57.06 

(2.579) (2.344) (0.136) 

diag(10,  10, 10, 10, 10) 231.04 224.48 2.84% 134.66 

(12.614) (12.239) (0.306) 

diag(1002 , 10, 1, 10 -1  , 10 -2)  106.33 105.22 1.04% 69.51 

(9.048) (8.863) (0.353) 

diag(102, 102 , 10, 10, 1) 219.90 218.45 0.66% 143.39 

(6.347) (6.284) (0.708) 

diag(103, 1, 1, 1, 1) 80.65 80.58 0.09% 31.97 

(2.428) (2.423) (0.247) 

diag(103 , 102, 102 , 102 , 10) 219.38 219.11 0.12% 207.21 

(4.593) (4.585) (1.366) 

diag(104, 103 , 102 , 10, 1) 233.01 232.98 0.01% 136.22 

(6.432) (6.431) (1.051) 

diag(104 , 104 , 103 , 102 , 102) 192.30 192.28 0.01% 214.54 

(2.349) (2.348) (1.875) 

d iag( lO 5 , 102 , 1, 10 -2  , 10 -5)  118.04 118.04 0.00% 61.50 

(7.568) (7.568) (0.502) 

(30, 20, 7, 5) and tha t  k = 5. We simulated the risks of the classical est imator  (3.3), 
the James-Stein type shrinkage est imator with ~p _= (q - 2 ) / ( / -  p + 3), and the inverse 
regression est imator ~ = (Iq + B V - 1 B t ) - I B V - l z  where V = vtv .  These est imated 
risks are given in Table 3. 

In Table 3, 'CL',  'JS ' ,  and ' I N '  denote the classical, the James-Stein type, and 
the inverse regression estimators,, respectively, and their es t imated s tandard  deviations 
are in parentheses. Fur thermore 'Ave.'  indicates average of improvement in risk of J S  
against tha t  of CL. We suppose tha t  the parameter  r t is the diagonal matr ix  wi th  
typical elements and tha t  c~ = 0 and ( = (2, 2, 2, 2, 2) t. 

Moreover, since the error distr ibution (3.7) does not denote independent  sampling, 
we also conduct  a simulation s tudy  based on independently and identically sampling 
model from the multivariate t-distribution. Here, its density function is given by 

ciIEl-i/2{l + (llk)e~E-ie~} -(k+p)/2, i = l , . . . , n , n  + l , . . . , n  + m, 

where ei = F[(k-~-p)/2]/{(Trk)P/2P[k/2]}, e = [s  s t, and e0 = [ e n + l , . . . ,  en+ml t. 
For this simulation, the assumptions for (n,m,p, q, k) and parameter ((, a,/3E-1/3 t) 
were the same as those in Table 3. This simulation result is given in Table 4. 

From Table 3, we can see tha t  J S  performs bet ter  than  CL in all cases and, par- 
ticularly, Ave.'s are large when the diagonal elements of ~1E-1/3 t are small and close 
together.  Thus, we seem tha t  J S  is bet ter  than  CL even if the loss function L1 is 
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used. On the other hand the risk performance of Table 4 are similar to those in Table 3. 
Hence, al though there are simulations in small cases of parameters,  it is expected tha t  
the improvement with the est imator  (3.4) remains robust under  the loss L1 even if all 
the rows of the error matrices e and E0 are identically and independently distr ibuted as 
an elliptically contoured distribution. 

4. Proofs 

4.1 Proofs of Theorems 2.1 and 2.2 
First,  to prove Theorem 2.1, we shall s tate  definition of differential operators and 

calculation formulae with respect to the differential operators. 
Let z be a p x 1 vector and also let u and u be, respectively, scalar-valued and p • 1 

vector-valued functions of z. Fur thermore  let S be a p • p symmetric ,  positive-definite 
matr ix  and let h and H be, respectively, scalar-valued and p x r matrix-valued functions 
of S. Denote differential operators in terms of z = (zi) and S -- (Sij) by 

V z ; p x l = ( O / O z i )  and D s ; p •  0 ) 
2 O~j  ' 

where 5/j is Kronecker's delta. The actions of ~7z on u and on u -- (u/) and those of Ds  
on h and on H = (Hu) are defined as, respectively, 

~7zU;p x 1 = ~u V z u t ; p  x p = \ Ozi ] ~Ttzu;1 x 1 = Oz~ 
i=1 

( 1 +  5/j O h )  ( ~ l + S i k O H k j ~  
Dsh;p  • p =  2 OSij ' and D s H ; p  • r =  k=l 2 ~ ] "  

Next we give the following lemmas in terms of calculus for operators Vz and Ds.  

LEMMA 4.1. (Haft (1979, 1981, 1982)) Let f ) s  be a p • p matrix whose elements 
are linear combinations of O/OS~j (i = 1 , . . . , p , j  = 1 , . . . , p ) .  Also, let H1 and H2 be 
p • p matrices whose elements are functions of S .  Then we have 

(i) D s H I H 2  = ( D s H 1 ) H 2  + (H~[)ts)tH2, 
(ii) D s S  =- {(p + 1)/2}Ip, 

(iii) ( H 1 D s ) t S  = { t r (H1) } I v /2  + H1 /2 ,  
(iv) { D s } i j S  ab = - ( s a J s  ib -+- s a i s j b ) / 2 ,  

where S ab is the (a, b)-element of S -1. 

LEMMA 4.2. Let r be a function of z t  S - l  z and also let G be a q • q matrix-valued 
function of F = B S - 1 B  t, where B is a q • p matrix. Assume that G is symmetric. 
Furthermore, let DF be a differential operator with respect to F ,  i.e., DE; q x q = ({(1 + 
5ij)/2}O/OFij). Then we have 

(i) t r [ V z ( r  - z) t] = 2 r  + C t r ( F G )  - p, 
(ii) D s r  = - q Y S - I z z t S  -1, 

(iii) { D s B t G B S - l z } i  - { S - 1 B t [ ( F D , z ) t G ] B S - l z } i  - (1 /2){ t r (FG)}  x 
{s--lz}i- ( 1 / 2 ) { S - i B t G B S - l z } i ,  
where r = dr and {h}i denotes the i-th element of a vector h. 
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(i) Now, it follows that  Vzr  = 24~s - l z  and V~z t = Ip. Thus we can 

t r [ V z ( r  - z )  t] 

: t r [ ( V z r  + r t r [ ( V z z t ) S - ' B t G B ]  - tr(Vzz t) 

= 2r t r ( S - l z z t S - 1 B t G B )  + C t r ( S - 1 B t G B )  - tr(Ip). 

(ii) The (i, j)-element of D s r  is equal to 

{Ds}ij~) = ~) '{Ds}ij(ztS-lz)  = r E ZaZb{Ds}ijsab" 
a,b 

Hence, fl'om Lemma 4.1 (iv), we have the equality (ii). 
(iii) It follows fl'om Lemma 4.1 (i) that 

(4.1) {DsBtGBS-lz}i  = {(DsBtGB)S-lz}~ + {(BtGBDs)tS-'z}i.  

Applying Lemma 4.1 (iv) to the second term of the right-hand side in (4.1), we obtain 

(4.2) {(BtGBDs)tS-'z}i  

= ~ {BtGB}ob({Ps}ioSbC)z~ 

(4.3) 

a~blc 

: -(1/2)[tr(BS- 'BtG)I{S-lz}i-  (1/2){S- 'BtGBS-'z}, .  

Next, we evaluate the first term of the right-hand side in (4.1). We observe that 

{(DsBtGB)S-'z}i  = ~[{DsBtG}i j l {BS- ' z} j  

= ~[Bba{Ds}ioabjl{BS-~z}3. 
j,a,b 

Here, from chain rule and F = BS-1B t, we get 

E Bba{Ds}iaGbj : E Bba" (1 -+- 5cd )~cd j "  (1 
a,b a,b,c,d 

, o F ~  1 

: E Bbo" [{DF}cdabj]" [BceBdl{DS}ia Se]] 
a,b,c,d,e,f 

1 
-- -2 E Bba " [{DF}cdabj] " BceBdz(SeaS i f  + seis aI) 

a,b,c,d,e,f 

= -{S-1Bt(BS-1BtDF)tG}ij,  

where the third equality is given by Lemma 4.1 (iv). Hence, using the above result and 
(4.3), we can see that 

(4.4) { ( DsBtGB)S-l  z}i = -{  S-1Bt { ( FDF)tG} BS- l  z}i. 

Finally, combining (4.1), (4.2) and (4.4), we get the equality (iii). [] 
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LEMMA 4.3. Let r F ,  and G be defined as in L e m m a  4.2. 
C G B S - l z .  Then we have 

t r [Ds(Bt~(r  G) - z) (Bt~(r  G) - z)t] 

= 2 r  z -- d p z t S - 1 B t G B S - l z )  

+ 2 r  - C G F ) { ( F D F ) t G } B S - l z  

+ r  - C z t S - 1 B t G B S - l z )  

+ r  _ C z t S - 1 B t G F G B S - l z ) .  
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Denote ~(~p, G )  = 

PROOF. 

(4 .5 )  

We observe that 

t r [ D s ( H t ~ ( r  G)  - z ) ( B t ~ ( r  G)  - z )  t] 

= 2 ~ - ~ { D s ( B t ~ ( r  G)  - z ) } i { B t ~ ( r  G)  - z } i  
i 

= 2 ~ - ~ . { ( D s r  + C D s B t G B S - l z } i { r  - z} i .  
i 

Hence, in the first braces of the last right-hand side of (4.5), we apply Lemma 4.2 (ii) to 
the first term and Lemma 4.2 (iii) to the second term to obtain the desired results. [] 

Next, we state the Stein identity of the multivariate normal distribution and the 
Stein-Haft identity of the Wishart distribution for our problem. These identities are used 
to derive the unbiased estimate of risk for the estimators ~(r G). 

LEMMA 4.4. (Stein (1973)) Let z .-~ Afp(/3t~, ~) .  Also let u be a p x  1 vector whose 
elements are differentiable funct ions  of  z .  Then we have 

E [ ( z  - = E[tr(Vz  )] 

provided the expectations exist. 

LEMMA 4.5. (Haft (1977)) Let S ..~ WB(]E, l). Also let H be a p x p matrix  whose 
elements are differentiable funct ions  of S .  Then we have 

E[tr(~E-1H)] = E l ( 1 - p -  1 ) t r ( S - 1 H )  + 2 t r ( D s H ) ]  

provided a suitable condition is satisfied. 

PROOF OF THEOREM 2.1. From Lemmas 4.4 and 4.5, the risk of ~( r  under 
the loss L can be expressed as 

R(~(r G), ~) = E[L(~(r V), ~)] 

= E[ ( z  - / 3 t ~ ) t ~ j - l ( z  - ~t~) A- 2(z - f~ t~) t~] - l (B t~(r  G)  - z )  

+ t r { ~ - l ( B t ~ ( r  G) - z ) ( B t ~ ( r  G)  - z)t}] 

= E[p + 2 t r { V z ( B t ~ ( r  G)  - z )  t } 

+ (l - p - 1) t r{S-1 (B'~(r  G )  - z ) ( B t ~ ( r  G)  - z )  t } 

+ 2 t r { D s ( B t ~ ( r  G)  - z ) ( B t ~ ( r  G)  - z)t}]. 



462 HISAYUKI TSUKUMA 

Thus the desired result can be given by applying Lemma 4.2 (i) and Lemma  4.3, respec- 
tively, to the second and the last terms in the brackets of the last r ight-hand side of the 
above equality. [] 

Next, to evaluate risks of the classical and the inverse regression estimators,  we give 
the following lemma. 

LEMMA 4.6. Let F be a q • q symmetric, positive-definite matrix. Then we have 
(i) ( F D F ) t F  -1 = - ( q  + 1 ) F - l / 2 ,  

(ii) (FDF)t ( Iq  + F )  -1 -- - (1 /2 ) ( Iq  + F ) - l { ( q  + 1)Iq - (Iq + F )  -1 - (tr[(Iq + 
F ) - l ] ) I q } .  

PROOF. (i) From Lemma 4.1 (i) and (ii), we can see tha t  

0q• = D F ( F F  -1) = ( D r F ) F  -1 + (FDv) F -1 

---- (q q- 1 ) F - 1 / 2  q- ( F D F ) t F  -1. 

Hence we have the  equality (i). 
(ii) Similarly, we observe tha t  from Lemma 4.1 (i) and (ii) 

Oq• = n F { ( I q  + F ) ( I q  q- F )  -1 } 

= (q + 1)(Iq + F ) - 1 / 2  + {(Iq + F ) D F } t ( I q  + F )  -1 

and from L e m m a  4.1 (i) and (iii) 

Oqxq = DF{(Iq  + F ) - l ( I q  q- F ) }  

= {DF(Iq + F ) - l } ( I q  q- F)  + (tr[(Iq + F ) - l ] ) I q / 2  q- (Iq -4- F ) - 1 / 2 .  

Thus, we can write the above equalities as, respectively, 

(4.6) {(Iq q- F )DF} t ( Iq  + F )  -1 =- - ( q  + 1)(Iq -t- F ) - 1 / 2 ,  

(4.7) DF(Iq + F )  -1 = - ( t r [ ( I q  + F)- l] ) ([q  q- F ) - 1 / 2  - (Iq q- F ) - 2 / 2 .  

Here it follows tha t  

(4.8) {(Iq -4- F ) n F } t ( I q  q- F )  -1 = n F ( I q  4- F )  -1 q- (FDF) t ( Iq  + F)  -1. 

Hence, combining (4.6)-(4.8), we obtain the equality (ii). [] 

PROOF OF COROLLARY 2.1. The proof is given easily from the combinat ion of 
Theorem 2.1 and Lemma 4.6 (i). [] 

PROOF OF THEOREM 2.2. Under  the loss L, the risk of the  est imators (2.9) can 
be expressed as 

n ( ~ ( r  ~) = E[L(~(r  ~)1 

= E [ - p  - 4 ( r  - r  + 2q(1 - r  

+ (I - p - 1 ) ( z t S - l z  - (1 - ~ ) 2 / t 2 ) z t S - 1 S t F - 1 S S - l z )  

- 4(r  - r  

X ( z t s - l z  -- (1 - r  

+ 2q(1 - ~ / t ) ( z t S - l z  - z t S - 1 S t F - 1 S S - l z ) ] ,  
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where t = z t S - l z .  Here, put  to = z t S - 1 B t F - 1 B S - l z .  
between ~ and ~(~)  can be wri t ten  as 

(4.9) 
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Thus,  the risk difference 

= E [ - 4 ( r  - r  - 2 q r  + (1 - p - 1 )r  2 

- 4 ( r  - r  - (1 - r  - 2qr  - to)/t]. 

(4.11) - 4 ( r  - r  <_ 4 r  2 and - 2 q r  <_ - 2 q C t o / t  2. 

Thus,  combining (4.9)-(4.11), we have 

R ( ~ ( r  ~) - R ( ~ ,  ~)  <_ E [ 4 r  2 - 2 q C t o / t  2 + (l - p - 1 ) r  2 

+ 4 r  - t o ) / t  + 4 r  ~ - 2 q r  - t o ) / t ]  

= E [ { ( I  - p + 3 ) r  2 - 2 ( q  - 2 ) r  2 - 2 ( q  - 2 ) r  - t o ) / t ]  

_< E [ { ( / -  p + 3 ) ~  2 - 2 ( q  - 2 ) r  . 

Hence, we complete  the proof. [] 

PROOF OF COROLLARY 2.2. Replacing S by V in Theorem 2.1 and using Lem m a  
4.6 (ii), we can immediate ly  get the desired result. [] 

4.2 Proofs of Theorems 3.1 and 3.2 
In this subsect ion we give proofs of theorems and corollary in Section 3. T h e  stat ist ic 

(y, B ,  v, Vo, Yo) is the same defined as Section 3. First ,  we define the useful notat ion.  
Let  u -- (U l , . . . ,Up )  t be a p x 1 vector  whose elements are functions of y -- 

( Y l , . . . , y p ) t  and Y0 = (Y01,-..,Y0p) t. Also let Vy and Vyo be p x 1 differential op- 
erators  with respect  to y and Y0, respectively. Define 

c3uj 
(4.12) (VyUt)ij- Oyi and ( V y o U t ) i j _  OUj 

OYoi 
for i = 1 , . . . , p ,  j = 1 , . . . , p .  

Further ,  let W - W ( S )  = (Wi j )  be a p x p mat r ix  such tha t  the ( i , j ) - e lement  Wij  
is a funct ion of S = (Sij) .  Let 

p 

(4.13) { D s W } ~ j  = E d~aWaj, 
a = l  

Similarly, we obta in  

From the assumptions tha t  r > 0 and tha t  ~ is nondecreasing and the fact t ha t  t - t o  > O, 
the four th  t e rm in brackets of the r ight-hand side of (4.9) can be evaluated as 

(4.10) - 4 ( r  - r  - (1 - r  

= - 4 r  - to + r  + 4r  - to ) / t  2 + 4r  3 

0 + 4 r  - to ) / t  + 4r  2. 
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where  
1(1 + 0 

di~ = -~ ~ia) OSia 

wi th  5ia = l f o r i  = a a n d  5i~ = 0 for i # a. P u t  v = (vtl, . , v  t ~t a n d v 0  = 
�9 " n - - q - - l ]  

( V t _ q , . . . , v ~ )  t wi th  l = n + rn - q - 2. Also p u t  vi  = (V i l , . . . ,V ip )  for i = 1 , . . . , I .  

Hence  we have  S = v t v  + V~Vo = Y]~i=lt t ViVi .  
Now, we a d a p t  the  Ste in  and  S te in -Haf t  ident i t ies  w i th  respec t  to  the  el l ipt ical ly  

c o n t o u r e d  d i s t r i bu t ion  due  to  K u b o k a w a  and  Sr ivas tava  (1999, 2001) for ou r  p rob lem.  
Since the  proofs  are  g iven in m u c h  s imilar  way as in K u b o k a w a  and  Sr ivas tava  (1999, 
2001), we s t a t e  the  fol lowing formulae  w i t h o u t  the  proofs:  

LEMMA 4.7. Let EI[. ] and EF[.] be defined as (3.5) and (3.6), respectively. Let u 
be a p • 1 vector whose elements are functions of (y,  yo).  For i = 1 , . . .  ,p,  assume that 
the elements of u are differentiable with respect to Yi and yoi and that 

1/2 t t - 1  (i) E~N(y - ~ ) ~ - % 1 ]  and E z [ l ( y o  - ~ - c . , ~  ~) ~ ~1] are finite; 
(ii) limy~__.+~ u y t F ( y ~  + a 2) = Op• and l i m y o ~ + c r  uYoF(Yoit 2 + a 2) = Opxp for 

any real a. 
Then we have 

(i) E f [ ( y  -- c ~ ) t E - l u ]  = EF[ t r {Vyu t } /n ] ,  
1/2 t t --1 

(ii) E f [ ( y  o - a - Cn,ml3 ~) ]E u] = EF[ t r {Vyou t } /m] .  

LEMMA 4.8. Let W be a p x p matrix whose elements are functions of S = 
l 

~-]~i=1 v~vi. For i = 1 , . . . , 1 ,  j = 1 , . . .  ,p,  assume that the elements of W are differ- 
entiable with respect to vii and that 

(i) Ey[[ t r ( E - 1 W ) [ ]  is finite; 

(ii) l i m ~ , ~ = ~  I V i j [ w ( E l i = l  t - 1  2 for any real a. ViVi  ) F(vi j  + a 2) = Op• 
Then we have 

E I [ t r ( E - 1 W ) ]  = EF[(l -- p -- 1) t r ( S - 1 W )  + 2 tr( D s W ) ] .  

Next ,  using L e m m a  4.7, we get  t he  fol lowing l e m m a  to  eva lua te  the  risk of  the  
e s t ima to r s  (3.4): 

LEMMA 4.9. Let ~ ( r  be defined as (3.4). Then we have 
(i) E f [ ( z  - / 3 t ~ ) t ] E - l ( z  - 13t~)] = EF[p], 

(ii) Ey[(z  - ~ t ~ ) t ~ ] - l ( B t ~ ( r  - z )  t] = EF[- -2 ( r  - ~ ) / t 2 ) z t S - 1 B t f B S - l z  + 

(1 - r - p] 
provided the conditions of Lemma 4.7 are satisfied. 

PROOF. 

(4.14) 

- -1 /2 :  
(i) P r o m  z = cn,m (Yo - Y), we observe  t h a t  

E s  [(z - ~ r  _ ~r 
1/2 t t - 1  _1/2 •  

= Es[e-~),Ayo - o~ - cn,.,:3 ~) r~ (~/o - ~ - ':,,,.,. r 

1/2 t t -1 - 2 c ~ , l ( y o  - a - Cn,.U3 ~) Z (y -- Oe) 
- 1  -{-Cn,rn(Y -- og)t)-]  - 1  ( y  - -  Ot)]. 
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Hence, applying Lemma  4.7 to each te rm of the r ight-hand side in (4.14), we can see 
that  

( i i )  

(4.15) 

E l [ ( 2 ;  ~ t ~ ) t ~ - l ( z - ~ t ~ ) ]  - 1  1 /2  t t - = EF[C,,  m t r{Vyo(y o -- ~ -- cn,mfl  ~) } / m  

- 2c~,~ t r (V~o(y  - o z ) t I / m  

+ cn,m-1 t r {Vy(y  - ~ ) t } / n ]  

= EF[p]  

First, we use Lemma  4.7 to get 

E f [ ( z  - ~ t ~ ) t E - l ( B t ~ ( r  - z)] 

= [Cn,m(y o - a - On,rap ~) z~ E f  - - I  _1/2 m t ~ t ~ - - I  

• {(1 - r  -1 - I p } ( y  o - y )  

- 1  - c ~ , m ( y  - a)tE -1 

• {(1 - ~ / t ) B t ( B S - 1 B t ) - I B S  - '  - I p } ( y  o - y)] 

= E F [ C n , ~ ( 1 / m  ) tr{Vyo[(1 - r  o - y ) t S - 1 B t ( B S - 1 B t ) - I B  

- ( y o  - 

- c ~ , ~ ( 1 / n ) t r { V , [ ( 1  - ~b/ t ) (y  o - y ) ~ S - 1 B t ( B S - 1 B ~ ) - I B  

- - 

R(~(r  ~) = E f [L(~ ( r  ~)] 

= Z f [ ( z  - ~ t ~ ) t ~ - ' ] - l ( z  - ~ t ~ )  _~_ 2(z - ~ t ~ ) t ~ , - l ( B t ~ ( r  - z )  

+ tr{]E - l ( B t ~ ( r  - z ) (B t~ (~b )  - z)t}] 

= E F [ - - p  -- 4 ( r  -- r  + 2(1 - r  

+ ( l - p -  1 ) t r { S - l ( B t ~ ( r  - z ) ( B t ~ ( r  - z )  t } 

+ 2 t r { D s ( B t ~ ( ~ b )  - z ) (B t~ (~b )  - z)t}]. 

Thus, applying Lemma  4.3 and Lemma  4.6 (i) to the last t e rm in the brackets of  the last 
r ight-hand side of the above equality, we get the risk expression of ~(~).  [] 

- -1 /2  t --1/2 t Here, the fact tha t  Vuo( r  ) = 2Cn,m ( ~ b / t - ~ / t 2 ) S - l z  and V u ( r  ) = - 2 c n , m  ( r  
~ b / t 2 ) S - l  z yields 

(4.16) Vyo[(1 - r  - Y ) t S - 1 B t ( B S - 1 B t )  - 1 B  - (Yo - y)t] 

= - - V y [ ( 1  - -  r  o - y ) t S - 1 B t ( B S - 1 B t ) - l B  - (Yo  - y ) t ]  

-- - 2 ( r  r  

+ (i - ~ / t ) S - 1 B t ( B S - I B t ) - I B  - Ip. 

Hence, applying the above result (4.16) to the last right-hand side in (4.15), we have the 
equality (ii). [] 

PROOF OF THEOREM 3.1. From Lemmas 4.8 and 4.9, the risk of ~(r under the 
loss L can be expressed as 
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PROOF OF COROLLARY 3.1. This is similar to proof of Corollary 2.1 and is omit- 
ted. [] 

PROOF OF THEOREM 3.2. This is similar to proof of Theorem 2.2 and is omitted. [] 
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