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Abstract. The estimation problem in multivariate linear calibration with elliptical
errors is considered under a loss function which can be derived from the Kullback-
Leibler distance. First, we discuss the problem under normal errors and give unbiased
estimate of risk of an alternative estimator by means of the Stein and Stein-Haff
identities for multivariate normal distribution. From the unbiased estimate of risk,
it is shown that a shrinkage estimator improves on the classical estimator under the
loss function. Furthermore, from the extended Stein and Stein-Haff identities for our
elliptically contoured distribution, the above result under normal errors is extended to
the estimation problem under elliptical errors. We show that the shrinkage estimator
obtained under normal models is better than the classical estimator under elliptical
errors with the above loss function and hence we establish the robustness of the above
shrinkage estimator.

Key words and phrases: Elliptically contoured distribution, Kullback-Leibler dis-
tance, multivariate linear model, shrinkage estimator.

1. Introduction

The calibration problem occurs in measurement settings where two measurement
methods are available: One is extremely accurate but expensive (or time-consuming)
while the other is less accurate but easier and fast. The functional relation between the
two types of measurements is assessed through a calibration experiment, where the values
of both measurements are known; this relation is then used in subsequent experiments
to predict the value of the more precise measurement based on a sample of the more
approximate measurement.

This setting is of major importance in physical and chemical measurements and
we refer the reader to Rosenblatt and Spiegelman (1981) for a general discussion on
the practical issues of calibration. For a detailed and recent survey of the calibration
problem, see Brown (1982, 1993), Osborne (1991), and Sundberg (1999).

In this paper we consider the multivariate linear calibration model. Let Y and Y
be, respectively, n x p and m x p random matrices of response variables and also let
X be an n X ¢ matrix of explanatory variables with full rank. Consider the calibration
experiment and the prediction experiment which can be represented as, respectively,

(1.1) Y =1,a' + XO +¢,
(1.2) Yo = 1pal + 1,250 + €,
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where 1; is the [ X 1 vector consisting of ones, e and © are, respectively, p x 1 vector and
g * p matrix of unknown parameters, and xq is the ¢ x 1 vector to predict. Here, we denote
by A? the transpose of a matrix A. Furthermore € and €g are, respectively, n x p and
m X p error matrices with mean zero matrices. We assume that p > ¢, n+m—q—2 > p,
and X1, = 0Ogx1- Our problem is to predict z( based on (Y, X) and Y.

We assume two cases of error distributions: (I) The rows of the error matrices, € and
€, are independently and identically distributed as the p-variate normal distributions
with mean zero vector and covariance matrix X, abbreviated by Np(0px1,3). (II) The
error matrices, € and €g, are jointly distributed as the elliptically contoured distribution
with its density function

(1.3) |z~ ()2 f(tr{ B ete + B ebeo}),

where f is an unknown, nonnegative function on [0,00) and X is a p x p scale matrix.
In both cases (I) and (II), we assume that ¥ is unknown and positive-definite. Here, we
denote by tr(A) and {A| the trace and the determinant of a squared matrix A.

There has been plenty of literature on the problem of estimating x¢ in (1.2) under
the errors (I). Then two estimators are well-known; one is the classical estimator and
the other is the inverse regression estimator. Now, denote the least squares estimators
of  and © by

(1.4) a=y, ©=(X'X)'X',
where § = Y'1,/n. Let

15 Uo=Yolm/m, Vo= (Yo~ 1005 (Yo~ 1ni}),
' V=(-1,&-X0)}Y -1,6'— XO), and S=V+V,.

Brown (1982) derived the classical and the inverse regression estimators which are given
by, respectively,

(1.6) & = (057104108 (g, - §)
and
(1.7) & = {(X'X) 1+ 0Vv-ietlev (g, - 3).

The classical estimator (1.6) is the restricted maximum likelihood estimator and for
n — oo and m — oo it is consistent when ® # 0 but the inverse regression estimator
(1.7) is not consistent. For details of comparison between the classical and the inverse
regression estimators see, for example, Brown (1982, 1993).

The main interest of this paper is an improvement on the classical estimator (1.6)
from a decision-theoretic point of view. When ¢ = 1, ¥ = 02I, and ¢2 is unknown in
models (1.1) and (1.2), Kubokawa and Robert (1994) showed, under the squared loss,
that the classical estimator is inadmissible and that the inverse regression estimator is
admissible. Srivastava (1995) showed the inadmissibility of the classical estimator and
the admissibility of the inverse regression estimator when ¢ = 1 and X is fully unknown.
Furthermore, when ¢ > 1 in (1.1) and (1.2), Tsukuma (2002) discussed the problem of
estimating &g under the quadratic loss function

(1.8) Lo(&o; 20) = (1/cnm)(@o — o) (X X) (&0 ~ o),
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where Zo is an estimator of ®¢ and ¢, = 1/n + 1/m. Tsukuma (2002) proposed an
alternative estimator over the classical estimator and showed that the inverse regression
estimator is admissible under the loss (1.8). On the other hand Branco et al. (2000)
treated a Bayesian analysis of the calibration problem under the multivariate linear
model with elliptical errors whose density is different from (1.3) and they showed that a
Bayes estimator for a noninformative prior is the inverse regression estimator.

In this paper we discuss the problem of estimating xo under the quasi-loss function

(1.9) L(&0;20) = (1/Cam)(O'F¢ — Olzy) T~} (O — O'zy).
Then the accuracy of an estimator Zo is measured by the risk function R(Zo;xo) =

E[L(Zo; xo)]. The loss function L can be regarded as a quadratic loss function in the

problem of estimating ®’x( by an estimator ét:izo but L is not a loss function in terms
of o and Zg. The usage of L is motivated by the following reasons: (1) If a, © and
¥ are known under normal errors, then the maximum likelihood estimator is #3/% =
(Ox7'eH)'eZ (g, — a) and £)F ~ N, (x0, (O "10@%)~1). Thus it seems that the
behavior of L is similar to that of a natural loss function

(110) Ll(fio; 3}0) = (1/Cn’m)(i0 — :E())tez—l@t(io ke ZB()).

(2) Under normal errors, the loss function L can be derived from the Kullback-
Leibler distance

5.6.5.5. | 66,5 2 ) . A
/ {logp(y’ 5.9 &, “”")}p(y,e,s,@ola,e,z,@o)dydedeyo,

p(:'_/a éa Sa gO I «, ("), E? :120)

where p(y, (:), S,y | @, ©, X, xp) denotes a joint density function of (g, é, S, 1) Here
(7,0, V,§,) is given by (1.4) and (1.5) and (&, ©, X, &) is an estimator of (o, ©, X, ).

This paper is organized in the following manner: In Section 2, the problem of
estimating xo is considered under the errors (I), i.e., the rows of the error matrices
are mutually and independently distributed as the multivariate normal distributions.
First we derive a canonical form for this setup and give unbiased estimate of risk of
an alternative estimator via the Stein and Stein-Haff identities for multivariate normal
distribution. From this unbiased estimate of risk, it is shown that shrinkage estimators
improve on the classical estimator (1.6) under the loss function L. For example, one of
the shrinkage estimators is the James-Stein type estimator (see James and Stein (1961))

Cnml{q—2

= — —— — | &g, for
n+m-—q—p+1)(g,—)tS 1(yo—y))

which is different from improved estimators given by Kubokawa and Robert (1994) and
Tsukuma (2002). Next, in Section 3 we discuss the problem with the errors (II), i.e.,
the error matrices are jointly and uncorrelatedly distributed as an elliptically contoured
distribution. From the extended Stein and Stein-Haff identities for our elliptically con-
toured distribution due to Kubokawa and Srivastava (1999, 2001), the above domination
under normal errors is extended to the estimation problem under elliptical errors. Monte
Carlo simulations in special case of an elliptical distribution is carried out to evaluate
the risk performance under the loss function L; since it is very difficult to prove the
improvement under the loss function L;. From this simulations, we illustrate that a
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shrinkage estimator is better than the classical estimator even if the loss function L, is
used. Furthermore, since the problem with the errors (II) is not independent sampling,
we also conduct a simulation study based on independently and identically sampling
model from an elliptically contoured distribution. Under this setup, we also show that
the James-Stein type estimator is numerically better than the classical estimator under
the loss function L;. Finally, in Section 4 we state some technical lemmas and give
proofs of theorems in Sections 2 and 3.

2. Improving on the classical estimator under normal errors

In this section, we consider an improvement on the classical estimator under normal
errors. First, we give a canonical form of this problem and, next, state main theorems
of this section. Proofs of theorems and corollaries are postponed to Subsection 4.1.

2.1 A canonical form

We first define the following notation. The Kronecker product of matrices A and C
is denoted by “A ® C”. For any ¢ x p matrix Z = (z1,...,2,)" with p x 1 vectors z;,
we write vec(Z) = (2§,...,25)". ‘Z ~ Nyxp(M, A® C)’ indicates that vec(Z") follows
multivariate normal distribution with mean vec(M®) and covariance matrix A ® C.
Furthermore, ‘W, (X, k)’ stands for the Wishart distribution with degrees of freedom k
and mean k3.

The classical estimator for unknown xg is rewritten as

(2.1) & = (0S710Y) 105 (g, — B),

where g, ©, S, and @, are given in (1.4) and (1.5). We here note that these statistics
¥, ©, S, and g, are mutually and independently distributed as
g~ Np(a, (1/n)), O ~Nyxp(©,(X'X) ! © ),
S~Wy(,l), and gy~ Ny(a+ O'zg, (1/m)X)
forl=n+m-qg-22p.
Let chm =1/n+1/m, z = enibZ(@o — §), and B = (X*X)/20©. Here, we denote

by A'/? a symmetric matrix such that A = A2 AY? Then B, S, and z are mutually
and independently distributed as

(22) B ~ qup(ﬁ>IQ ® 2): S ~ Wp(za l): a'nd z ~ Np(ﬂt£72)7
~1/2

where 8 = (X'X)V/2© and &€ = cnm (X*X)"Y/2x4. The loss function (1.9) can be
written as

(2.3) L(€;€) = (B'€ - B'¢)'s1 (B¢ - B'¢).

To express the classical estimator (2.1) with B, S and z, we put £ = c;,lr,/;‘)(X EX)1 24,
to have

(2.4) £€=(BS™'B")'BS !z
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Similarly, using the statistics B and z, we can write the inverse regression estimator
(1.7) as

(2.5) £€=(,+BVB) 1BV 2z

where & = cp 42(X*X)~1/2%,. We here note that V ~ W, (2, 1l;) where [y =n—g—1
and that the statistics V', B, and z are mutually independent.

In next subsection we treat the calibration problem on the model (2.2) and discuss
an improvement on the classical estimator (2.4) under the loss (2.3).

2.2 Improved estimator and unbiased estimate of its risk
Note that the estimation problem on the model (2.2) is invariant under the group
of transformations:

B—QBP, X-P'ZP, (- Q¢
B-—QBP, S P'SP, 2z P'z

for any g x ¢ orthogonal matrix Q and any p x p nonsingular matrix P.
Now, for estimating £ in (2.2) under the loss (2.3), we consider a class of estimators

(2.6) £(¢,G) = pGBS™ 'z,

where ¢ is a scalar-valued function of 287!z and G is a ¢ X ¢ symmetric matrix whose
elements are functions of F' = BS™!B'. The estimators (2.6) can be interpreted as an
extension of the classical estimator (2.4). Remark that for m = 1 the inverse regression
estimator (2.5) belongs to the above class of estimators since S = V but the estimator
(2.5) does not belong to it for m > 2.

From the Stein identity for the multivariate normal distribution and the Stein-Haff
identity for the Wishart distribution, we can evaluate the risk of the estimators (2.6) as
follows:

THEOREM 2.1. Let statistics B, S, and z be defined as (2.2) and let F =
BST!B'. Further, denote by Dp differential operator in terms of F = (F3;) where
the (i,7)-element of Dp is {Dr}i; = (1/2)(1 + 6i;)0/0F,; with the Kronecker delta 6;;.
Suppose that we wish to estimate £ in (2.2) by

£(¢,G) = $GBS™ 'z,

where ¢ is a scalar-valued function of t = 2!S7 'z and G = (Gij;) s a g x q symmetric
matriz whose elements are functions of F'. Then, under the loss L given in (2.3), the
risk of the estimators £(¢, G) can be represented as

(2.7) R(£(¢,G),€) = E[—p+44'2!S ' B' GBS 'z + 26 tr(FG)
+(-p-1Dtr[S™ (z - ¢B'GBS 'z)(z — ¢ B'GBS ™ '2)]
+4¢'2'ST!B'GBS ' 2(2!S7 2 — $2!ST!B'GBS!2)
+4¢z'ST'BY (I, - GF){(FDr)'G}BS 'z
+ 26[tr(FQ))(2'S™ 'z — $2!S"'B'GBS ™ '2)
+24(z!'ST'B'GBS 'z — ¢2!ST'B'GFGBS '2)},
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where the expectation is taken with respect to (2.2) and ¢' = dp/dt. Here ‘{(FDr)'G}
indicates that D acts only on G and that the (i, j)-element of {(FDr)!G} is given by

{(FDr)'G}ij = Y Fusl{Dr}iaG;l-
a,b

Note that the content of expectation in the right-hand side of (2.7) is an unbiased

estimate of risk in terms of the estimators é(d), G). In Theorem 2.1, putting ¢ =1 and
G = F~!, we obtain unbiased estimate of risk of the classical estimator:

COROLLARY 2.1. Under the loss L, the risk of the classical estimator (2.4) can be
expressed as

(28)  R(£,&)=E[-p+2¢+(1—-p-1+2¢)(2!S 12— 2!S'B'F"!BS!2)].

For improving on the classical estimator é, we consider shrinkage estimators (see
Baranchik (1970))

(2.9) EW) = (1-9/t)(BST'B")'BS 'z,

where 1 is a differentiable function of t = 287 '2. From Theorem 2.1 and Corollary
2.1, we establish the following dominance result:

THEOREM 2.2. Assume that ¢ > 3. If

(i) 9 is nondecreasing, and

(i) 0 <9 <2(¢-2)/(l —p+3),
then the shrinkage estimators (2.9) improve on the classical estimator (2.4) under the
loss L.

For example, one of the shrinkage estimators is the James-Stein type estimator (see
James and Stein (1961))

2JS _ q-—2 -
(2.10) ¢ —(1 (l—p+3)zt.5'_1z)g

for ¢ > 3.

Theorem 2.2 indicates that under the loss L the estimators & () improve on the
classical estimator & by statistics z and S. Since the statistic z has much information on
&, the result of Theorem 2.2 seems to be natural. On the other hand, Tsukuma (2002)
proposed an improved estimator on the classical estimator under the loss function (1.8).
The improved estimator is constructed by means of statistics B and S and hence it is
different from the estimators £(1). See also Kubokawa and Robert (1994).

Remark 2.1. In Theorem 2.1, we replace S by V and put ¢ =1 and G = (I, +
BV ™1B%)~1 to evaluate risk of the inverse regression estimator (2.5) as follows:
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COROLLARY 2.2.
(211) R(£,€) = E|L(§;€)]
= E[-p+2tc{F1(I, + F1)"'}
+ (U -p-D)tr{V(z= B (I, + F)"'BV ™ '2)
x (z - BY(I, + F1)"' BV~ 12)!}
+22'V B (I, 4+ F,) A, + F\)"'BV 'z
+2(tr{F1(I, + F1)™'})
x (2'V7 1z - 2tV7IBY (I, + F1)"'BV™12)
+2(z'VIBY (I, + F) !BV !z
—2'VIBY I, + F)"'Fy(I,+ F1)"'BV™12)],
where the expectation is taken with respect to (B,V,z). Here F; = BV™'B! and
A=—(g+ 1)+ T+ F1)™ + (tr(Ig+ Fi) 7).

Corollary 2.2 suggests that unbiased estimate of risk of the inverse regression es-
timator is the content of expectation of the right-hand side of (2.11) and, however, we
seem unable to evaluate the risk difference of the classical and the inverse regression
estimators analytically.

Table 1. Estimated risks (L1) under multivariate normal distributions with € = (1,1,1,1,1)%.

pgx—'pt CL Js Ave. IN
diag(1,1,1,1,1) 10.86 8.37  22.93% 4.77
(0.241)  (0.156) (0.006)
diag(10,10-1,10-1,10~1,10™1) 8.34 7.45  10.711% 6.09
(0.273)  (0.192) (0.021)
diag(10,10,1,10-1,1071) 22.05 19.76  10.39%  12.66
(0.720)  (0.616) (0.036)
diag(10, 10,10, 10, 10) 51.18 47.56 7.07%  29.55
(2.882) (2.619) (0.074)
diag(1002,10,1,10~1,1072) 24.23 23.61 2.57%  13.11
(0.877)  (0.840) (0.064)
diag(102,102,10,10,1) 44.58 43.80 1.74%  26.45
(1.714)  (1.678) (0.109)
diag(10%,1,1,1,1) 23.91 23.84 0.28% 7.09
(1.408)  (1.399) (0.045)
diag(103,102%,102, 102, 10) 35.00 34.89 0.32%  33.66
(0.390)  (0.388) (0.162)
diag(104,103,102,10,1) 43.17 43.15 0.04%  23.98
(1.061)  (1.060) (0.131)
diag(10%,10%, 103,102, 102) 31.90 31.89 0.02%  34.37
(0.220)  (0.220) (0.197)
diag(10%,10%,1,1072,1075) 26.96 26.96 0.00%  11.25

(0.796)  (0.796) (0.085)
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Remark 2.2. In Theorem 2.2, we have analytical dominance result on the classical
and the shrinkage estimators when the quasi-loss function L is used. On the other
hand we seem very difficult to establish the dominance result analytically under the loss
function L, given in (1.10). Therefore, we have carried out Monte Carlo simulations to
investigate risk performance under the loss L; which can be written as

(2.12) Li(§€) = (- &)'BE'BY(E - &)

The estimated risks are given in Tables 1 and 2 and our simulations are based on 10,000
independent replications which are generated from model (2.2). In Tables 1 and 2, ‘CL’,
“J S, and ‘IN’ denote the classical estimator (2.4), the James-Stein type estimator (2.10),
and the inverse regression estimator (2.5), respectively, and their estimated standard
deviations are in parentheses. Furthermore, ‘Ave.’ is average of improvement in risk
of JS against that of CL, i.e., Ave. = 100(1 — ﬁ*"S/R*)%, where R* and R*’S are,
respectively, values of estimated risks for CL and JS by simulations. For simulations,
we take (n,m,p,q) = (30,20,7,5) and suppose that 8% '3’ is the diagonal matrix
with typical elements and that £ = (1,1,1,1,1)! (in Table 1) and & = (2,2,2,2,2)! (in
Table 2).

From numerical results in Tables 1 and 2, we observe that Ave.’s are large when
the diagonal elements of 3% 13" are small. Hence, our simulations indicate that JS is
better than C'L under the loss L; but it is difficult to prove the domination analytically.

Table 2. Estimated risks (L1) under multivariate normal distributions with £ = (2,2,2,2, 2).

pgx—1at CL JS Ave. IN
diag(1,1,1,1,1) 30.76 28.17  8.40% 18.89
(0.628)  (0.502) (0.018)
diag(10,10-1,1071,1071,10~1) 22.17 21.68  2.20% 23.91
(0.863)  (0.755) (0.061)
diag(10,10,1,107%,1071) 65.41 63.50 2.92% 49.66
(2.052)  (1.941) (0.115)
diag(10, 10, 10, 10, 10) 169.99 166.60 1.99% 116.16
(8.131)  (7.923) (0.266)
diag(1002,10,1,10~1,10~2) 81.25 80.69  0.69% 49.51
(9.692)  (9.576) {0.200)
diag(102,102,10,10,1) 151.29 150.60 0.46%  100.13
(6.096)  (6.059) (0.371)
diag(103,1,1,1,1) 71.79 71.74  0.07% 24.57
(5.679)  (5.669) (0.125)
diag(103, 102,102,102, 10) 122.54 12243 0.08% 124.35
(1.500)  (1.498) (0.568)
diag(10%,10%,10%,10,1) 14549 14547 0.01% 86.36
(3.566)  (3.566) (0.446)
diag(104,104,10%,102,10%) 111.76 11175 0.01%  123.41
(0.776)  (0.776) (0.692)
diag(10°,10%,1,10~2,1073) 81.54 81.54 0.00% 38.66

(2.421) (2.421) (0.268)
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3. Extensions to elliptical errors

In this section we consider calibration problem under elliptical errors. Here, suppose
that the error matrices, € and €, of (1.1) and (1.2) have a joint density function

(3.1) |72 £ (4r{E7 (e + €heo)}),

where f is an unknown function on [0,00) and X is a p X p unknown positive-definite
matrix. Note that the rows of both € and €y are uncorrelatedly distributed but not
independently.

We shall state proofs of main theorems of this section in Subsection 4.2.

3.1 A canonical form
We first derive a canonical form of this setup. Let T be an n X n orthogonal matrix
such that

Y1, =(n'%0,...,00" and YX = [0gx1,(X"X)Y2 0px(n_q1"

Also let YY = [n'/?y, Bt v!]!. Here the sizes of y, B and v are, respectively, p x 1,
g x pand (n—gqg—1) x p. Similarly, let Yo be an m x m orthogonal matrix such that
Yol, = (m'/2,0,...,0)" and denote YoYy = [m!/2y,, v§]!, where the sizes of y, and
vg are, respectively, p x 1 and (m — 1) x p. Thus, by the orthogonal transformations
Y - YY and Yy — YYy, the density {3.1) can be written as

(32)  [BIHL2 fuE (n(y - a)(y @) +(B - B)(B - B) + v'v
+m(yo — 1/2 2B (yo —a - 01/2 2B4€)" + vvol]),

where 8 = (X!X)1/20, £ = chrb2 (X X))~V 2xp, and ¢nm = 1/n + 1/m. Then our
problem is to estimate £ based on (y, B, v, vo,y,) with respect to the loss L given in
(2.3).

3.2 The classical estimator and its improved estimator

Denote S = v'v + v§vg and z = cﬁ,l,,/f(yo —-y). If (a,3,%) are known and
f is decreasing on [0,00), then the maximum likelihood estimator of £ is given by
£ = c—l/Q(ﬁE'lﬁt)“lﬂE_l(yo — a). When (a,3,X) are unknown, we shall replace
(a, 3, %) by their estimators from the data (y, B, S) without data y,. From (3.2) with
a decreasing function f, the maximum likelihood estimator of (e, 3, £) are (&, B, f)) =
(y, B,xS) where & is a certain constant. Hence, we obtain a natural estimator

A _ A ~s=—1 .
(3:3) E=c B2 A) B8 (wo - &)
=(BS'BY)"1BS 2.
Throughout this paper, this estimator is called the classical estimator in case of the
elliptical model (3.2).

Consider an improvement on the classical estimator (3.3) with its extended estima-
tors

(34) &)= (1~ y/t)(BST'B")"'BS %,
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where 1 is a differentiable function of t = 2tS~'2. The estimators are extension of the
estimators (2.9) in the case when the rows of errors € and ¢g follow the multivariate
normal distributions.

Next, we shall evaluate risk of the estimators (3.4). Let g be a scalar-valued function
of (y, B,v,v¢,Y,) and also let

1 [t
FO =5 [ e
t
Denote
(3.5) Eflg) = / g x [Z|~ ™72 £ (@) dyd Bdvdsedy,,
(3.6) Erlg] = / g x |Z|~ ™2 P (z)dyd Bdvduvody,,

where z = tr[2 " {n(y — a)(y — &) + (B - B)"(B — B) + v'v+ m(yo — o — ci/mB') (Yo —

a—c}L{ ,2n,8t§ )i+vdvo}]. Using these notation, we give the risk expression of the estimators

(3.4) as follows.

THEOREM 3.1. Putt=2!S7 'z andl =n+m—q—2. Denote )/ = dy/dt. Then,
under the loss L given in (2.3), the risk of £(¢) can be written as

R(E(¥),€) = Ef[L(E(%);€)]
= Ep[-p—4('/t —¥/t))2!ST'B'F'BS™ 2 + 2¢(1 — v/t)
+(l—p-1)(z'S7 2 - (1—4?/t))2!ST'B'F'BS™'2)
— 4y /t—y/t*)2'ST'B'FT'BS 2
x (287 'z - (1-4¢/t)z!S"'B'F'BS™12)
+29(1 - ¢/t)(2'ST 2 - 2'ST'B'F'BS™'2)),

provided a suitable condition is satisfied.

In Theorem 3.1, the content in Ep[-] is not unbiased estimate of risk in case of an
elliptical density except normal density. The ‘suitable condition’ in Theorem 3.1 are the
same as those of both Lemmas 4.7 and 4.8 in Subsection 4.2. From Theorem 3.1, we
have an expression for risk of the classical estimator (3.3):

COROLLARY 3.1.
R(€,€) = Ep[-p+2¢+ (1 —p—-1+29)(2'S 'z — 2!S™'B'F'BS'2)],
wherel=n+m—q—2 and F = BS™'!B*.
Therefore, we get a dominance result under elliptical errors.

THEOREM 3.2. Assume that we want to estimate € in (3.2) and that ¢ > 3. If
(i) % is nondecreasing, and



LINEAR CALIBRATION WITH ELLIPTICAL ERRORS 457

Table 3. Estimated risks (L1) under multivariate ¢-distributions (joint) with € = (2,2,2,2,2)*.

pgx-1p CL JS Ave. IN
diag(1,1,1,1,1) 33.61 30.27  9.96% 18.92
(2.706)  (1.923) {0.019)
diag(10,10~%,1071,1071,107 1) 24.83 24.18  2.64% 25.48
(0.755)  (0.657) (0.088)
diag(10,10,1,107%,10~1) 74.08 7093  4.26% 52.75
(4.821)  (4.421) (0.173)
diag(10, 10,10, 10, 10) 208.59 201.76  3.28%  122.68
(12.236)  (11.799) (0.412)
diag(100%,10,1,101,10~2) 94.77 93.79  1.04% 70.39
(3.626)  (3.533) (0.546)
diag(102,102, 10,10, 1) 215.29 212,71 1.20%  140.34
(9.534)  (9.234) (1.081)
diag(103,1,1,1,1) 86.44 86.39  0.06% 37.25
(6.428)  (6.400) (0.589)
diag(103,102%,102, 102, 10) 215.26 214.72 0.25%  199.35
(5.898)  (5.862) (2.054)
diag(10%,10%,102,10,1) 243.89 243.80  0.04%  130.14
(15.338)  (15.327) (1.431)
diag(10%, 104,103,102, 102) 206.49 206.42  0.04%  202.59
(12.058)  (12.034) (2.695)
diag(10°,10%,1,1072,109) 161.42 161.42  0.00% 63.42
(36.580)  (36.578) (0.780)

(i) 0 <y <2(¢—2)/(l —p+3),
then the estimators (3.4) improve on the classical estimator (3.3) under the loss L.

The result of Theorem 3.2 is an extension of that of Theorem 2.2 and suggests that
for our elliptically contoured distribution (3.1) we establish the robustness of improve-
ment via the shrinkage estimators (2.9).

Although the risks of the estimators (2.5) and (2.6) can also be expressed by usage
of notation (3.6), we omit these derivations.

3.3 Monte Carlo studies

Finally, using Monte Carlo simulations in special case of the parameters, we shall
investigate the risk behavior of the improved estimators (3.4) under the loss function L;
given in (2.12). We supposed that the errors are jointly distributed as a multivariate
t-distribution whose density function is given by

(3.7) | T2 4 (1/k) tr(B 7 ete + T eheg) ) KT tmIP)/2,

where ¢; = T[{k + (n + m)p}/2]/{(xk)("+™)?/2D[k/2]} and k > 0. Here, we denote by
I'(z) the Gamma function.

Our simulations are based on 10,000 independent replications which are generated
from the canonical form (3.2). For this numerical studies we assume that (n,m,p,q) =
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Table 4. Estimated risks (L;) under multivariate ¢-distributions (i.i.d.) with £ = (2,2, 2,2, 2)*.

px-igt CL JS Ave. IN
diag(1,1,1,1,1) 32.41 28.78  11.22% 19.19
(0.874)  (0.696) (0.017)
diag(10,1071,10-1,10~1,10~1) 26.10 25.33 2.94% 27.65
(0.797)  (0.701) (0.073)
diag(10,10,1,1071,10~1) 73.61 70.61 4.07% 57.06
(2.579)  (2.344) (0.136)
diag(10, 10, 10, 10, 10) 231.04 224.48 2.84%  134.66
(12.614)  (12.239) {0.306)
diag(1002,10,1,101,1072) 106.33 105.22 1.04% 69.51
(9.048)  (8.863) (0.353)
diag(102,102,10,10,1) 219.90 218.45 0.66%  143.39
(6.347)  (6.284) (0.708)
diag(103,1,1,1,1) 80.65 80.58 0.09% 31.97
(2.428)  (2.423) (0.247)
diag(10%, 102,102,102, 10) 219.38 219.11 0.12%  207.21
(4.593)  (4.585) (1.366)
diag(104,10%,102,10,1) 233.01 232.98 0.01% 136.22
(6.432)  (6.431) (1.051)
diag(10%,10%, 103,102, 10?) 192.30 192.28 0.01%  214.54
(2.349)  (2.348) (1.875)
diag(10%,102,1,1072,1075) 118.04 118.04 0.00% 61.50
(7.568)  (7.568) (0.502)

(30,20,7,5) and that £k = 5. We simulated the risks of the classical estimator (3.3),
the James-Stein type shrinkage estimator with ¢ = (¢ — 2)/({ — p+ 3), and the inverse
regression estimator £ = (I, + BV 'B*)"1BV !z where V = v'v. These estimated
risks are given in Table 3.

In Table 3, ‘CL’, ‘JS’, and ‘IN’ denote the classical, the James-Stein type, and
the inverse regression estimators, respectively, and their estimated standard deviations
are in parentheses. Furthermore ‘Ave.’ indicates average of improvement in risk of J.S
against that of CL. We suppose that the parameter 83X ! 3" is the diagonal matrix with
typical elements and that & = 0 and € = (2,2,2,2,2)%.

Moreover, since the error distribution (3.7) does not denote independent sampling,
we also conduct a simulation study based on independently and identically sampling
model from the multivariate ¢-distribution. Here, its density function is given by

BTV 4+ (1/k)eEn e} RHR2 0 =1 nn+],.. n+m,

where ¢; = T[(k + p)/2]/{(xk)P/2T[k/2]}, € = [€1, . ..,€]t, and €0 = [€nt1, .- -, €ntm]t-
For this simulation, the assumptions for (n,m,p,q,k) and parameter (£, a, 3X~'3")
were the same as those in Table 3. This simulation result is given in Table 4.

From Table 3, we can see that JS performs better than CL in all cases and, par-
ticularly, Ave.’s are large when the diagonal elements of 8X '3 are small and close
together. Thus, we seem that JS is better than CL even if the loss function L; is
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used. On the other hand the risk performance of Table 4 are similar to those in Table 3.
Hence, although there are simulations in small cases of parameters, it is expected that
the improvement with the estimator (3.4) remains robust under the loss Ly even if all
the rows of the error matrices € and €g are identically and independently distributed as
an elliptically contoured distribution.

4. Proofs

4.1  Proofs of Theorems 2.1 and 2.2

First, to prove Theorem 2.1, we shall state definition of differential operators and
calculation formulae with respect to the differential operators.

Let z be a p x 1 vector and also let u and u be, respectively, scalar-valued and p x 1
vector-valued functions of z. Furthermore let S be a p X p symmetric, positive-definite
matrix and let A and H be, respectively, scalar-valued and p x r matrix-valued functions
of S. Denote differential operators in terms of z = (2;) and S = (S;;) by

1+6; 0 )

Vupx1=(9/0z) and DS;pXP:({DS}iJ’):( 5 35
ij

where §;; is Kronecker’s delta. The actions of V, on u and on u = (u;) and those of Dg
on h and on H = (H,;) are defined as, respectively,

‘ ([ bu . [ 0u; . & Oy
VzU,pX1-—(azi)y vzu,pxp_(azi)’ vzuv:le_iZ:;azi,

1+6;; Oh P 1+ 6, OHy;
Dsh;po:< +2 Jﬁ), and DSH;pxr:(§ :—4"2—““‘?95?:).
17 k=1 1

Next we give the following lemmas in terms of calculus for operators V, and Ds.

LEMMA 4.1. (Haff (1979, 1981, 1982)) Let Dg be a p x p matriz whose elements
are linear combinations of 8/08;; (i =1,...,p,j =1,...,p). Also, let Hy and Hy be
p X p matrices whose elements are functions of S. Then we have

(l) DsH{H; = (DSHl)Hg + (HiDg‘)tHg,

(i) DS = {(p+1)/2}1,,

(iii) (H1Dg)'S = {tr(H1)}I,/2+ H,/2,

(iv) {Dg}i;S% = —(S% 8% 4 §9i 87ty /9,
where S is the (a,b)-element of S7.

LEMMA 4.2. Let ¢ be a function of 2tS™ 'z and also let G be a q x ¢ matriz-valued
function of F = BS™!B* where B is a q¢ x p matriz. Assume that G is symmetric.
Furthermore, let Dp be a differential operator with respect to F, i.e., Dp;gxq= ({(1+
6i;)/2}0/0F;;). Then we have

(i) tr[V.(¢B'GBS 'z - 2)!| = 2¢'2'ST'B'GBS 'z + ¢ tr(FG) — p,

(ii) Dg¢p = —¢'S™122t871,

(i) {DsB'GBS™ 'z}, = —{S'B'|(FDp)!G)|BS 'z}, — (1/2){tr(FQ)} x
{871z}, - (1/2){S'B'GBS 'z},
where ¢' = d¢(t)/dt and {h}; denotes the i-th element of a vector h.
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PROOF. (i) Now, it follows that V,¢ = 2¢'S™ 'z and V,2¢ = I,. Thus we can
see that

tr[V,(¢B'GBS ™'z — 2)]
= tr[(V.¢)2! ST B'GB] + ¢ tr[(V,2})S ' B'GB] — t1(V,2")
=2¢'tr(S™ 22! ST ' B'GB) + ¢ tr(ST'B'GB) — tr(I,).
(ii) The (4, j)-element of Dg¢ is equal to
{Ds}ij¢ = ¢'{Ds}i; ('S 2) = ¢' Y _ zazs{Ds}i; S?.
a,b

Hence, from Lemma 4.1 (iv), we have the equality (ii).
(iii) It follows from Lemma 4.1 (i) that

(4.1) {DsB'GBS™ 'z}, = {(DsB'GB)S™ 'z}, + {(B'GBDs)'S 'z},.
Applying Lemma 4.1 (iv) to the second term of the right-hand side in (4.1), we obtain
(4.2) {(B'GBD3)'S 'z},

=Y {B'GB}a({Ds}iaS")z

a,bc

= —(1/2)[tr(BS™'B'Q)|{S7'z}; — (1/2){S"'B'GBS™'z},.
Next, we evaluate the first term of the right-hand side in (4.1). We observe that
(4.3) {(DsB'GB)S 'z}, = Y [{DsB'G};|{BS ™'z},
J
= Y [Bra{Ds}iaGr;1{ BS ' 2};.

J,a,b
Here, from chain rule and F = BS™!B?, we get
OGy;

]. [ (1+5,a)g§f:]

Z Bba . [{DF}chbj] . [BceBdf{DS}iaSef]
a,b,c,d,e,f

=-3 Z By - [{DF}cdGh;l - BceBdf(SeaSzf_i_Selsaf)
abcdef

= —{S™'BY(BS™'B'Dr)!G}j,

> Bua{Ds}iaGe; = Y Bba- [ (1+ 5cd)
a,b

a,b,e,d

Il

where the third equality is given by Lemma 4.1 (iv). Hence, using the above result and
(4.3), we can see that

(4.4) {(DsB'GB)S™'2};, = —{S 'B'{(FDr)!G}BS™'2},.

Finally, combining (4.1), (4.2) and (4.4), we get the equality (iii). O
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LEMMA 4.3. Let ¢, F, and G be defined as in Lemma 4.2. Denote é(d), G) =
GBS~ 1z. Then we have

tr[Ds(B'€(¢,G) - 2)(B'€(¢,G) — 2)']
=2¢'2'S"'B'GBS ™ '2(2!S7 'z — ¢2!ST!B'GBS™'2)
+2¢2!S7IBY(I, — ¢GF){(FDr)'G}BS™ 'z
+ ¢[tr(FG))(2'S7 'z — ¢p2!ST'B'GBS™'2)
+ ¢(2!S'B'GBS 'z — ¢2!S"'B'GFGBS'z).

Proor. We observe that
(45)  tr[Ds(B'(¢,G) - z)(B'§(¢,G) — 2)"]
=23 _{Ds(B'€($,G) - 2)}:{B'4(¢, G) - 2}

=2) {(Ds¢)B'GBS™'z+ ¢DsB'GBS™'2},{¢B'GBS 'z - z},.

Hence, in the first braces of the last right-hand side of (4.5), we apply Lemma 4.2 (ii) to
the first term and Lemma 4.2 (iii) to the second term to obtain the desired results. [J

Next, we state the Stein identity of the multivariate normal distribution and the
Stein-Haff identity of the Wishart distribution for our problem. These identities are used
to derive the unbiased estimate of risk for the estimators £(¢, G).

LEMMA 4.4. (Stein (1973)) Let z ~ N,(B€,%). Also let u be a px 1 vector whose
elements are differentiable functions of z. Then we have

E[(z - B€)'= 7 u] = E[tr(V,ub)]
provided the expectations exist.

LEMMA 4.5. (Haff (1977)) Let S ~ W,(X,1). Also let H be a p X p matriz whose
elements are differentiable functions of S. Then we have

Ete(X'H)) = E[(l—p—1)tr(ST'H) + 2tr(Ds H)|
provided o suitable condition is satisfied.

PrROOF OF THEOREM 2.1. From Lemmas 4.4 and 4.5, the risk of é(qb, G) under
the loss L can be expressed as

R(&(¢,G),€) = E[L(4(9,G), £)]
= E((z - B'%€)'=7 (2 - B'€) + 2(2 - B'€)'T7(B'(¢, G) - 2)
+tr{=7(B'($,G) — z)(B'€(¢,G) — 2)'}]
= Elp+2tr{V.(B'%€($,G) — 2)'}
+ (1 -p-1)tr{SH(B'E(¢,G) — z)(B'€($, G) — 2)'}
+2tr{Ds(B'€(¢,G) — 2)(B'&(¢,G) — 2)'}].
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Thus the desired result can be given by applying Lemma 4.2 (i) and Lemma 4.3, respec-
tively, to the second and the last terms in the brackets of the last right-hand side of the
above equality. (1

Next, to evaluate risks of the classical and the inverse regression estimators, we give
the following lemma.

LEMMA 4.6. Let F be a g X q symmetric, positive-definite matriz. Then we have
() (FDp)'F~ = —(g+1)F"'/2,
(i) (FDF)(I, + F)™ = ~(1/2)(Iq + F) g+ DIy — (g + F)™ = (6l +
F)='DIg}.
ProOF. (i) From Lemma 4.1 (i) and (ii), we can see that
Oyxqg = Dp(FF™') = (DpF)F~! + (FDp)'F~!
=(q+1)F'/2+ (FDp)'F .

Hence we have the equality (i).
(i) Similarly, we observe that from Lemma 4.1 (i) and (ii)

Ogxq = Dr{(Iq+ F)(I, + F)_l}
= (q+1)Ig+ F)7' 2+ {(I;+ F)Dp} Iy + F)™!
and from Lemma 4.1 (i) and (iii)
04xq = Dp{(Iq + F)—I(Iq + F)}
={Dr(I;+ F)""}Iq+ F) + (tr{(Ig + F) "' NIg/2+ (I + F) 7' /2.
Thus, we can write the above equalities as, respectively,
(4.6) {Ig+ F)DpY(Iq+ F)7 = ~(¢+ 1)(Iq + F)7!/2,
(4.7) Dp(I,+ F)™' = —(tr[(I,+ F)"'\I, + F) /2 - (I, + F)™?/2.
Here it follows that
(4.8) {(Iy+ F)Dp}Y I+ F)' =Dp(Iy+ F)™' + (FDp)'(Ig+ F)™1.
Hence, combining (4.6)—(4.8), we obtain the equality (ii). O

ProOF OF COROLLARY 2.1. The proof is given easily from the combination of
Theorem 2.1 and Lemma 4.6 (i). O

PROOF OF THEOREM 2.2. Under the loss L, the risk of the estimators (2.9) can
be expressed as

R(E(%),€) = E[L(E);€)]
= E[-p—4('/t —/t)2!ST B F'BS 1z + 2¢(1 — ¢/t)
+(l—p—1)(2!8712 - (1 —¢?/t*)2!S ' B'F 'BS™2)
— 4@t —p/tH)2!ST'B'F'BS T2
x (2!87 'z — (1 —¢/t)2!ST'B'F'BS™2)
+2q(1 —/t)(2!S7 'z — 2!ST'B'F1BS'2)],
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where t = ztSA_lz. Here, put to = z!S™'B*F 'BS~'2. Thus, the risk difference
between § and £(¢) can be written as

(4.9) R(E(¥),€) — R(E,€)
= B[4’ [t —/tD)to — 2qp [t + (I — p — V)t /t2
—4(y' [t — /) to{t — (1 = ¥/t)to} — 2q(t — to) /1.

From the assumptions that ¢ > 0 and that 1 is nondecreasing and the fact that t—£y > 0,
the fourth term in brackets of the right-hand side of (4.9) can be evaluated as

(4.10) — 40"/t = p/P)to{t — (1 — ¢/t)to}
= —4y'to(t — to + Pto/t)/t + 4Pto(t — to) /t° + 4%t /13
<0+ 49(t — to) /t + 49%to /12

Similarly, we obtain
(4.11) —4(y' [t = /t)to < deto/t®  and - 2qip/t < —2quto /.

Thus, combining (4.9)-(4.11), we have

R(E(¥),€) — R(E,€) < E[dyto/t* — 2qipto/t* + (I — p — 1)p2to /12
+ 4p(t — to)/t + 4p*to/t? — 2q1(t — to) /1]
= E[{(l —p+3)y* — 2(q — 2)¥}to/t* — 2(q — 2)¥(t — t0) /1]
< B[{(l — p+3)¥* — 2(g — 2)y}to/t?].

Hence, we complete the proof. O

ProOF OF COROLLARY 2.2. Replacing S by V in Theorem 2.1 and using Lemma,
4.6 (ii), we can immediately get the desired result. O

4.2  Proofs of Theorems 3.1 and 3.2
In this subsection we give proofs of theorems and corollary in Section 3. The statistic
(y, B,v,v0,yY,) is the same defined as Section 3. First, we define the useful notation.
Let w = (ui,...,up)’ be a p x 1 vector whose elements are functions of y =
(y1,--,9)" and yo = (o1,--.,yo0p)"- Also let V, and V,, be p x 1 differential op-
erators with respect to y and y,, respectively. Define

8Uj
Jy;

Buj
o

(412) (Vyut),-j = and (vyout)ij =

fori=1,...,p,7=1,...,p.
Further, let W = W(S) = (W;;) be a p x p matrix such that the (i, j)-element W;;
is a function of § = (S;;). Let

P
(4.13) {DsW};; = Z diaWaj,
a=1
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where
1 Is}
dig = 5(1 + 6ia)ﬁia
with 8, = 1 for i = a and 6;, = 0 for i # a. Put v = (v},...,v},_, ;)" and vy =
(Vh_g - 0)t withl =n+m—q—2. Also put v; = (va1,...,vp) for i = 1,...,1.

Hence we have S = viv + vjvy = 3._; viv;.

Now, we adapt the Stein and Stein-Haff identities with respect to the elliptically
contoured distribution due to Kubokawa and Srivastava (1999, 2001) for our problem.
Since the proofs are given in much similar way as in Kubokawa and Srivastava (1999,
2001), we state the following formulae without the proofs:

LEMMA 4.7. Let E¢[-] and Er[:] be defined as (3.5) and (3.6), respectively. Let u
be a p x 1 vector whose elements are functions of (y,y,). Fori=1,...,p, assume that
the elements of u are differentiable with respect to y; and yo; and that

() Brli(y — 0)'S ")) and E(l(yo — & — c/2B'€)" S ul] are finite;

(ii) limy, 400 uy'F(y? + a2) = Opxp and limy, 100 WYSF(YE; + a2) = Opxp for

any real a.
Then we have
(1) Erl(y — @)'=" u] = Ep[tr{V,u'}/n),

(i) Erl(yo ~ & — cilmB'€) B ] = Eptr{Vyou'}/m].

LEMMA 4.8. Let W be a p X p matriz whose elements are functions of § =
Z£:1 viv;. Fori=1,...,l, j = 1,...,p, assume that the elements of W are differ-
entiable with respect to v;; and that

(i) Ef[|tr(S7IW)|] is finite;

(ii) lime, ;400 Vi W (L, viv;) L F (0} + a?) = Opxp for any real a.

Then we have

Eftr(Z7'W)] = Ep[(l — p - D) tr(ST'W) + 2tr(DsW)).

Next, using Lemma 4.7, we get the following lemma to evaluate the risk of the
estimators (3.4):

LEMMA 4.9. Let £() be defined as (3.4). Then we have
() Efl(z - 89S (z — B'€)] = Belpl,
(i) Brl(z — BT (BE(W) — 2)'] = Epl-26//t — $/t2)2'S ' B'FBS 12 +
(1 —%/t)q - p]

provided the conditions of Lemma 4.7 are satisfied.

Proor. (i) From z = c;},,/t?(yo — vy), we observe that

(4.14) Efl(z - B'€)'=" (2 - B*¢)]
= Eyleq b (yo — o — c/2.8'€)'S 7 (yo — o — cl/2,B'€)
—2¢; % (yo—a— /28T (y - a)
+ ey —a)!S 7 (y — a)].
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Hence, applying Lemma 4.7 to each term of the right-hand side in (4.14), we can see
that

Ef|(z - B€)'E7 (2 - %)) = Erlc; b tr{Vyy (Yo — @ — ¢/ 8'€)"}/m
— 2 b0 {Vyo (y — )} /m
+ Cum tr{Vy(y — @)’}/n]
= Er[p).

(ii) First, we use Lemma 4.7 to get

(415)  Efl(z - B'9)'SH(BE(¥) - 2)]
= Blenim(o — o — ci/n8€) 5™
x{(1-9/t)B"(BS™'B")"'BS™ — I,}(yo - v)
~ Com(y —)'®7
x{(1-y/t)B(BS™'B*)"'BS™" — I, }(y, - y)]
= Epley m(1/m) tr{Vy,[(1 — ¢/t){(yo —y)'ST'BY(BS™'B")"'B
— (o - u)']}
— Cam(1/m)er{Vy[(1 — 9/t)(yo — y)'S™'BY(BS™'B)"'B
— (w0 — )}
Here, the fact that V,, (¢/t) = 20;1,,/12(1/)’/t—¢/t2)5‘12 and V,(¢/t) = —2c;,1,,<2(1/)'/t~
Y/t2)S 1z yields
(4.16) Vil = %/)(yo ~ y)'ST' B (BS™'B*) ™' B — (y, — v)']
= -V, [(1 - 9/t)(yo - y)'S™'BY(BS™'B")"'B - (yo — v)']
=2/t —¢/t>)S 22! BY(BS™!B)"'B
+(1-y/H)S'BY(BS'B)"'B - I,.
Hence, applying the above result (4.16) to the last right-hand side in (4.15), we have the
equality (ii). O

PROOF OF THEOREM 3.1. From Lemmas 4.8 and 4.9, the risk of é(@b) under the
loss L can be expressed as

R(&(v),€) = Ef[L(£(%),8)]
= Ej[(z - B'€)'=71(z - B'€) + 2(z - B'E)'SY(B'E(Y) — 2)
+tr{SH(B'E() — z)(BE(Y) — 2)')]
= Ep[-p— 4/t —¢/t*)2'ST'B'FBS 2 + 2(1 — ¢/t)q
+(-p-1)te{STH(BE(¢) — 2)(B'E(y) — 2)'}
+2tr{ Ds(B'§(s) — z)(B'€(¥) — 2)*}).

Thus, applying Lemma 4.3 and Lemma 4.6 (i) to the last term in the brackets of the last
right-hand side of the above equality, we get the risk expression of £(v). O
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ProOOF OF COROLLARY 3.1. This is similar to proof of Corollary 2.1 and is omit-
ted. O

ProOF OF THEOREM 3.2. This is similar to proof of Theorem 2.2 and is omitted. [
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