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The well-known Poisson formula for counting statistics is generalized to the situation 
where the radioactive source studied, with mean lifetime 1/~., decays appreciably during the 
total time of observation T. A general expression is given for the modified probability ~.P(k) 
of observing k events in a short time interval t o = T/n, where the resuRs are averaged ove~ 
the period of observation T. This corresponds to the experimental distribution which is 
obtained by pooling together all the n ~" 1 individual measurements of k made with a given 
source. The deviation from the simple Poisson law, which neglects decay, depends essen- 
tiaUy on the quantity o = h �9 T. If O is of the order of unity, the deformation is strong 
enough that it can serve as the basis of a new method for measuring the half-life of the 
nuclide involved. 

Introduction 

For  m a n y  applications in the field of  radioactivity mesurements ,  the well-known 

Poisson formula 

Pu(k) = k! " e - u '  /~ > 0, (1) 

for the probabi l i ty  o f  observing exact ly k = 0, I ,  2 , . . .  events wi th in  a f'txed t ime 

interval t, when  ta = a t  is the corresponding expecta t ion value, gives a most  useful 

and sufficiently accurate descript ion o f  the random emissions originating from a 

radioactive source. For  metrological  or o ther  purposes where one has to meet  the 

most  exact ing standards, ref inements  o f  Eq. (1) may be needed,  however.  The rea- 

sons can be broadly  classified as exper imental  or  theoretical.  Am ong  the  experi- 

menta l  causes for observing deviat ions from Eq. (1) - assuming a correct funct ion-  

ing of  the measuring equ ipment  - t h e r e  are in part icular the count ing  losses. In  

fact, the probabi l i ty  densi ty  for the t ime interval 5 = tj+t - t j  be tween the arrival 

t imes tj o f  consecutive events belonging to a Poisson process is given by  the expo- 

nent ia l  

f(~i) = p -  e -p6 ' for 8 i> 0, 

*Invited paper. 
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which reaches its maximum at 5 = 0. Hence, as a consequence of the t'mite length 

of a pulse and the limited resolving time of a counter, such losses can never be 

completely avoided. For high count rates, dead-time losses may become a serious 

problem; their treatment will be deferred to the section "Dead-time corrections". 

What about the "theoretical" reasons for violating the Poisson law which, it 
would seem, is often chosen mainly for its simplicity? If  all known influences due 

to the counting equipment and the (slow) decay are properly taken into account, 
then the most recent and accurate experimental checks (Ref. 1 , also for earlier re- 

ferences) show no significant deviation from Eq. (1). Thus, the basic properties 

needed for a,l integer-valued random process to be of  the Poisson type (essentially 

independent increments and singly-occurring events; for details see e.g. Refs 2'3) 

seem to be sufficiently well realized in the nuclear systems available for observa- 

tion. Earlier claims for the detection of real deviations were no doubt caused by 

incomplete dead-time corrections. 

However, there is an important feature common to any source and which is 

neglected in the derivation of Eq. (1), namely its finite lifetime. It is the purpose 

of this paper to show how the effect of decay modifies the Poisson law. 
Although one cannot expect such a basic and obvious influence to be an en- 

tirely new subject of study, the relevant literature is scarce. An early attempt by 
RUARK and DEVOL 4 to tackle this problem is still quite interesting, although it 
does not go sufficiently far to be of real use. The main result obtained for a de- 

caying source is given in their Eq. (16). For a source which consists at t = 0 of  
N atoms, each of which has a probability p = 1 -- exp( -Mo)  of decaying within 
a time to, the probability of observing k counts in the time interval from T1 to 

T1 + T2 is denoted by Pk(Ti, TI + T2). The overall efficiency of the detector is 
written as gA. Although the expression indicated by the authors is correct, it is 

given in a form which hides some of its essential features. However, the result 

can be obtained readily in the equivalent form (still using their notation) 

Pk(TI ,TI  + T2) = (N} (1 - rr)N-k �9 lrk , (2) 

with 7r = gA e -xT~ (1 -- e -xT2 ), 

where the binomial structure is now clearly visible, s Unfortunately, this does not 

yet provide a generalization of the Poisson law since the result given above assumes 

a single sampling interval T2. What we would like to have, instead, is an expression, 

applicable to a single source, where T2 covers successively the whole period of  ob- 
servation. The necessary averaging process, although clearly recognized by the au- 
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thors (Ref. 4, p. 358), could not be performed. The RUARK and DEVOL approach, 

especially in some more developed form, is likely to be useful for measurements 

with microscopic sources where N is no longer a very large number and, as a con- 

sequence, the usually supposed exponential diminution of activity with time be- 
comes questionable. 

In a previous attempt to generalize the Poisson law we started by deriving the 
probability densities for the arrival times of pulses for the case of an exponential 
decay of the source. 6'7 However, this approach soon became too complicated and 

it had to be abandoned for mathematical reasons before useful results concerning 
the modified counting statistics could be obtained. 

The approach presented in what follows avoids these difficulties by restricting 
to larger sources where N >> 1. In order to emphasize the main ideas, we shall 
omit most of the mathematical details, some of which, however, can be found in 
an earlier publication, s 

As is well known, the development in time of the activity stemming from a 
given radionuclide may be quite complicated, especially if the decay is an inter- 

mediate step in a longer chain process. These more intricate situations, although 

they may be of practical interest, will not be considered here. In a majority of  

cases the decay can be described by a simple exponential law. However, it may 

be difficult or impossible (for instance when betas are observed) to pick out one 
single nuclide when the source available contains other isotopes or impurities as 

well. Then, one may have to deal with the case where the count rate of the source 
available for experimentation is given by 

s 
p(t) = • Pos" e-xst +/3, (3) 

S=I 

where S denotes the number of decay branches considered, with respective mean 

lifetimes l/Xs, and /3 is a constant background rate. Unfortunately, it turns out 

that a closed form of the probability distribution can only be derived for S = 1. 

Evaluation of the modified distribution law 

It will be assumed in what follows that the total measuring time T has been 
subdivided into a large number n of  counting intervals which cover the whole 
range T and are of equal length to = T/n. Our goal is to obtain an expression for 

the probability of  observing exactly k events in to (independent of  its location 

within T). Assuming Poisson statistics, this probability is given, according to Eqs 
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(1) and (3), for the interval number  j (i.e. for (j - 1) to ~< t <j to) ,  by 

(pj " to)k 
Pj(k) = k! . e - p j ' t o ,  

s 
where Pi = ~ + Z Pos " e j "  xt~ 

s=l 

and* 0 ~ < j < n .  

I f  all the n results obtained within T are pooled together,  we have 

(4) 

1 rr-I t o .  e-gto 
xP(k) = - - -  ~ P j ( k ) =  ~ (/~to + ~ M s )  k"  e x p ( - ~ M s ) ,  

" n i=o T . k !  j s s 

with M s = PostO �9 exp(- j ;ks to)  , s = 1 , 2  . . . . .  S. 

Since n >> 1 this is, to  a good approximation (putt ing jto = t), 

e -g T 
x P ( k ) - - -  f ( g +  ~ Ms) k ' e x p ( - Z M s ) d t ,  

T ' k !  o s s 

with. g = flto. 

Expansion of  the multinomial  gives 

T S S 
e-g ~ __k!gr~ f YiMsrS. e x p ( -  ~ Ms)dt  , 

S 0 s=l s=l x P ( k ) -  Tk! (rs) rs 

L 
where (rs) includes all summations for which 

s 
I~ r s = k  , with r s = O ,  1 ,2  . . . . .  k.  

s=o  

(5) 

*Use of the mean activity instead of the one corresponding to the beginning of to would 
amount to replacing j by j + (1 -- e-Mo)/(Mo), a correction which is neglig~le for n ~" 1. 
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Unfortunately, this requires for S > 1 the evaluation of  integrals which are un- 

known. Thus, for instance even the case S = 2 leads to an integral o f  the type 

T 
f exp [--(ri ),t + r2 )~=) t --/go i e -x '  t __/.tO 2 e -x2 t] dt, 
o 

which we cannot solve. 

We therefore must restrict ourselves to S = 1, dropping the subscript s in what 

follows. Putting poto =/ao,  we have for a single branch 

e -g k k! T 
xP(k) - Y. g k - r  f M~ �9 e -M~ dt = 

Tk! r=o ( k - - r ) !  r! o 

- ~ { r J  g k - r ~  f e x p ( _ r M _ / a  oe -M)d t .  (6) 
Tk! r=o o 

In the absence of  background (g = 0), this can be further simplified to 

1 T 
xP(k) = oP(k) " ~ f e x p [ - k k t  + /ao ( l  - - e -Xt ) ]d t ,  (7) 

o 

where oP(k) = (/go/k!)" e -~~ is the Poisson probability without decay O, = 0). 
It should be noted that the general case [Eq. (5)], although at present not amen- 

able to  a closed mathematical form, may be treated numerically by a computer  
program (at least for moderate values o f  S), but this approach will not be follow- 
ed here any more. 

On the other hand, the integral appearing in Eq. (6) can be evaluated further 

and it is this situation with a single branch which will be described in what fol- 

lows. In the evaluation of  Eq. (6) use can be made of two special mathematical 

devices, namely the exponential integral function Et(/z) and the incomplete gamma 

function 7(k,/a), which are usually defined 9 by the integrals 

- x  

E t (#) = f - -  dx, for /~ > 0, 
x 

P 
7(k,/~) = f e -x �9 x k -  1, for k > 0. (8) 

o 
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As has been shown in Ref. s , use of these definitions allows us to bring Eq. (6) 

into the form 

e-g 
- for k = 0: xP(0) = - -  {Et01t ) - -  E,(/ao)} , (9) 

O 

- for k~> l: xP(k) = ~ {gk [E,~t) -- E,(/ao)] + ['~(r, go) -'r(r,/a,)]} 

-o  where 0 = XT and /at =/.to �9 e 

In the absence of background the general expression [Eq. (9)] reduces to 

1 
xP(k= 0 ) = - ~  [E,(/a,)--E,(/ao)] and 

1 
xP(k i> l) - [7(k,/ao) -- 7(k,/a, )]. (10) 

To show more directly the deviation from the corresponding Poisson distribu- 

tion oP(k) without decay (O = 0), the result [Eq. (10)] can be written in the form 

of the product 

xP(k) = o P(k)- Ck, 

where the correction factor Ck is given by 

eU~ [ [Et( /at)--Et( /ao)] ,  for k=O, 
Ck = - -  I ( l O  

0 /aok[3,(k,/ao)--3,(k,/at)] for k>~ 1. 

It is interesting to note that an expression for the modified probability distribu- 
tion for the case without background was found at much the same time and quite 

independently by a group from Columbia University, New York. t~ It is completely 
equivalent to Eq. (10). As the motivation for the research and the approach chosen 
in Ref. t~ to tackle the problem differ in many respects from Ref. 8, it is worth 

while to study both papers. 

Some examples of  deformed distributions, as described by Eq. (10), are plotted 

in Fig. 1 for illustration. Two other examples (for/1o = 10 and 50) can be found 
in Ref. s 
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Fig. 1. Decay-modified Poisson probabilities zP(k) for #0 = 20 and some values o f  O = hT. 

Background is assumed to be neglig~le. The case O = 0 corresponds to the normal  
Poisson distr ibution.  For  clarity, the  discrete distr ibutions are indicated by cont inuous  
lines. 

For very small perturbations, i.e. 0 <  O ~  1, approximate formulae may be use- 
ful and sufficient. A particularly simple expression for the correction factor Ck is 
given by 

1 - -  e - ~ ( k -  ~'o ) 
C k = (12) 

O(k --Uo) 

A second-order expansion in O(can also be derived which reads 

0 0 2 
C k ~ 1 - - - - -  (k--  P o ) 2  + ~ [(k-- Po) 2 --Uo]. (13) 

For details again see Ref. s 
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The moments  o f  the modified distn~oution 

Direct evaluation of the moments of k, defined for order r = 0, 1, 2, . . .  by 

E(k r) = ~ k r" xP(k), (14) 
k=0 

first looks like a rather hopeless enterprise, in view of the complicated form of 
the probabilities xP(k) as given in Eqs (6) or (7). The situation changes completely, 

however, upon realizing that Eq. (14) involves two summations (namely over the 
number k of events and the observation time T) the order of which may be in- 
terchanged. 

If we define a "momentary" expectation value of k by 

Et(k) = p(t) �9 to = g +/ao �9 e -xt, (15) 

then the process is at any given time t of the Poisson type, with expectation Et(k ). 
The first moment (or expectation value) is now obtained by an averaging over 

the total measuring time T, thus 

1 T 
= f Et(k) dt. (16) xE(k) -  x[Et(k)] T o  

Use of Eq. (15) gives readily 

/ao 
x E ( k ) = g +  ~ ( l - e - ~  for tg:/=0. (17) 

This result is in agreement with the corresponding expression given by TEICH 
et al. (Eq. (14) in Ref.l~ 

The variance of k is obtained in a similar way. Since for any given time t we 
have 

Et(k 2) = Vt(k ) + E~(k), 

time averaging yields 

xV(k) = x[Et(k 2)] --  x[Et(k)]  2 �9 

This, when written more explicitly as 

~,V(k) = --+- o f [Vt(k) + E~(k)] dt -- o f Et(k ) dt , (18) 
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corresponds to an equation given previously by LEWIS et al. ~ in a somewhat dif- 

ferent form. Some rearrangements then lead with Eq. (15) to the expression 

~V(k) = xE(k) -- ~,E 2 (k) + g2 + _ _  
2g#o 

O 
uo e_/O) ( l - e  ( 1 -  = 

=xE(k  ) + [ x E ( k ) _ g ] 2  1 e -~  - 1  , for 04=0. (19) 

For g = 0 this agrees with a result given in Ref. i t Eq. (19) appears to disagree 
with the corresponding expression (Eq. (16)) in Ref)  ~ , but the missing contribu- 
tion xE(k) turns up in the "count number domain", although the exact reason for 
this remains obscure to the present writer. 

It is interesting to note that the ratio 

R =  xV(k)--xE(k) O I l + e - ~  ) 
[xE(k)--g] 2 - 2 l - - e _  o 1 (20) 

is a function of O alone. For small values of O one has the simple approximate 
relation R ~ 02/12. Therefore, if the experimental values for E and V are inserted 

in Eq. (20), we can determine numerically the corresponding (positive) value of O 
which, in turn, permits the evaluation of  the half-life of the nuclide under study as 

TI/2 = (1/29" In 2 = (T/d) �9 In 2. (21) 

Obviously, for a situation such as the one described above where not only the 
moments but the whole probability distribution xP(k) can be calculated, it will be 

preferable to deduce the half-life from a least-squares fit of  the theoretical distri- 

butions to the observed data points. To simplify the numerical adjustment, we re- 
strict the choice to curves the mean of  which agrees with the experimental value 
while treating the lifetime as an unknown parameter, but more general strategies 
are possible and may be preferred by others. The present approach circumvents 
the need to  know explicitly the initial count rate Po (or alternatively /ao). A com- 
puter program performing the necessary numerical work has been written and suc- 
cessfully used. Fig. 2 shows as an example a fit to measurements I a made with a 
decaying source of 11~in m. The half.life corresponding to this adjustment is 
T = (3245--+ 30) s which agrees very well with the currently accepted value. 
Since O was only about 0.9, a longer observation of the decay would no doubt 
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Fig. 2. Experimental measurement of a modified counting distr~ution for a ~L~Inm source. 'a 
The theoretical curve giving the best fit assumes a hag-life of 3245 s. About N = 10 000 
measurements, each of duration t o = 0.2 s, have been made. This figure is taken from 
Ref. i 3 

have resulted in a smaller uncertainty. The pooling of the individual counts can be 

performed during the measurement, using for instance an electronic device such as 

the one described in Ref. t4 The accumulation of the data can be followed on the 

screen of a multichannel analyzer. 

Dead. time corrections 

As mentioned before, the experimental data obtained in such measurements are 

often somewhat distorted by counting losses due to the dead time of  the measur- 

ing device, especially if a source with relatively strong initial activity is used in 

order to get better counting statistics. No such correction has been included in the 

approach described above. 

Some attempts to derive explicit  expressions for xP(k)which take care of dead- 

time effects soon became too complicated and had to be abandoned. On the other 

hand, it turned out to be possible to take these distortions into account for the 

evaluation of the moments. The approach used will be sketched in what follows. 

Technical details of the derivation and more general results are given in two sepa- 

rate reports) s,l 6 
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To simplify the presentation, let us assume that background can be neglected. 

The count rate due to the source then follows as a function o f  time a simple ex- 

ponential law 
- h t  

rt = Po " e (22) 

The distortion due to a dead time r is well understood. Since in this type of  

experiment the beginning of  a counting interval o f  length to is chosen indepen- 

dently o f  the arrival of  pulses, we are in the situation which corresponds to an 

equilibrium process (see e.g. Ref. 17 for this classification). Therefore, the count 

rate, after passage of  the dead time, 

rt 
p(t) = - - ,  

1 + rtr 

is given by the expressions 

for r non-extended, 

or (23) 

p(t) = r t �9 exp ( - r t r ) ,  for r extended. 

For both types of  dead time we have further assumed that ~,r < 1, a condition 

which is normally very well fulfilled. In any case the parameter Po stands for the 

unperturbed countra te  at the beginning o f  the experiment (t = 0). As previously, 

with E t ( k ) =  p ( t ) - t o ,  the expectation value of  k for the total observation time T 

is given by 

1 T 
= f Et(k) dr. xE k) T- o 

With the abbreviations b = Po~" and B = b .  e -~  this leads to 

- for a non-extended dead time: 

~0 T e -xt dt /ao 

hE(k)-----T f 1 + b e  -at - b 0  
- -  [ln(1 + b ) - - l n ( 1  +B) ] ,  (24a) 

- for an extended dead time: 

T /20 
x E ( k ) =  /'to f e -kt e x p ( - b e - X t ) d t  = - - - -  [e -B - - e -b ] ,  (24b) 

T o bO 

always assuming that neither r nor ~, vanish. 
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It may be interesting to mention that quite recently I found, to my surprise, 

that a formula given long ago by SCHIFF, la when properly interpreted, is in fact 
identical with Eq. (24b), or more exactly with the corresponding more general ex- 
pression indicated in Ref. ~ 6 where background has also been taken into account. 

The evaluation of the variance is a bit more cumbersome. As before, the start- 

ing point is LEWIS' formula Eq. (18). The variance for a dead-time perturbed 
Poisson process is well known from previous studies (see e.g. Ref. i 7). For the pre- 

sent purpose the "exact" expressions may be somewhat simplified by dropping a 
small contribution which is independent of time and which differs for the various 
counting processes. We then have, - still to a very good approximation, since b ,~ t0/r 

- the following expressions for the variance of  k 

r t to 

Vt(k)= (1 + r t )  3 or Vt(k ) = r  t t  o 
eft r -  2rt, r ] 

! exp(2r t r) 
q (25) 

which are valid for a dead-time of the non-extended or the extended type, respec- 
tively. 

Substitution of Et(k ) and Vt(k ), as given in Eqs (23) and (25), into Eq. (18) 
leads to some integrals which will not be given here explicitly; they are all of  an 
elementary form and can be readily evaluated. The final result for the time-aver- 
aged variance of  k can be stated as follows 

- for a non-extended dead time: 

+.o[, ,] , [ 1  1 1} ~V(k) = ~ ~E(k) " 
bO l+b I +B 20 (l +b) 2 (I+B) 2 

-- xE 2 (k), (26a) 

- for an extended dead time: 

hV(k) = xE(k) -- E 2 (k) + 
Uo(#o -- 2b) 

4b ~ 0 
[(1 + 2B). e - 2 B -  (1 + 2b).  e-2b]. (26b) 

The expressions [Eq. (24)] for the first moment and Eq. (26) for the second 
moment generalize the previous formulae [Eqs (17) and (19)] for the presence of 
a dead time, covering thereby the majority of practical situations. 
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A quantity which can be easily obtained from a measurement of  the distribu- 
tion of k is the so-called Lexian ratio which is defined by 

L = xV(k)/xE(k). (27) 

It will be of  interest to know how sensitive this ratio is to dead times. Whereas 

f o r ,  = 0 and no background we have simply 

L = 1 + x E ( k ) ' R ,  

where R is a function of  O, as indicated in Eq. (20), the dependence on r is more 

complicated. It has been calculated numerically for some values of O, assuming 

xE(k) = 10. As can be seen from Fig. 3, the neglect of the effect of a dead time 

would resulting in attributing to an experimental Lexian ratio too low a value of  

O. This influence augments rapidly with increasing ro = r/to, especially for a dead 
time of the extended type. 

Conclusion 

A method has been described for modifying the Poisson law in order to take 
account of  the decay of a radioactive source during the measurement. This results 
in a modified probability distribution ~,P(k). For small values of  the characteristic 

parameter 0 = AT, simple approximations are available for estimating the necessary 
corrections. 

If  the distortion of the Poisson distribution by decay is strong enough, the ob- 

served effect can be used for an evaluation of the half-life of  the nuclide involved 

by fititng theoretical curves to the experimental data. In this way we can avoid 
a number of  awkward problems connected with the adjustment of  an exponential 
or of  a straight line, if  the logarithmic form is used. The difficulty arises parti- 

cularly for results such as k = 0 or 1, as may occur towards the end of  a decay. 

These data, which are therefore frequently eliminated, turn out in the new ap- 
proach to contain valuable information which can be readily used. 

If the influence of dead-time on the measurements cannot be neglected, the 

evaluation of ~,P(k) is no longer possible in an analytical way and numerical meth- 

ods have to be used. However, the moments of  the distorted distribution can still 
be evaluated exactly. By comparison with the experimental values, for instance in 

the form of the LeMan ratio, a preliminary value for the half-life can then be 
readily obtained. 

Further refinements of  the method are possible and new practical applications 
are being worked out. 
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Fig. 3. Effect of the dead time r on the Lexian ratio L = hV(k)/hE(k)as a function of r o =r/ to,  

for some values of 0 = hT. All data assume an experimental mean value hE(k) : 10. The 
dashed curves are for an extended dead time 
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