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Abstract. The mathematical basis of a widely-known variance-mean power relationship of 
ecological populations was examined. It is shown that the log variance (S 2)-log mean (m) plot is 
virtually delimited by two lines log S 2 = log n + 2 log m and log S 2 = log m, thus increasing the chance 
that a linear regression line can be successfully fitted, without a profoundly behavioural background. 
This makes difficult the task of interpreting a successful fit of the power law regression and its 
parameter b in a biologically meaningful manner. In comparison with the power law regression, 
Iwao's rh-m regression is structurally less constrained, i.e. has a wider spatial region in which data 
points can scatter. This suggests that a comparison between the two methods in terms of how good a 
fit is achieved for a particular data set is largely meaningless, since the power law regression may 
inherently produce a better fit due to its constrained spatial entity. Furthermore, it could be argued 
that a successful fit in Iwao's method, when found, is less taxed with mathematical artefacts and 
perhaps more clearly linked to some biological mechanisms underlying spatial dispersion of popula- 
tions. 
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Introduction 

The observation that population mean density, ~, is 
related to variance, V, by a power function, 

V= a/~, 

constitutes one of very few principles in ecology ('Taylor's 
Power Law', Southwood 1978) that has been found to be 
applicable to a wide range of animal species (Taylor 1961; 
Taylor et al. 1978 1980; Taylor and Woiwood 1980). This 
relationship can be conveniently described in a linear 
regression form for logarithmic values of sample variance 
(S 2) and mean (m); 

log S 2 = a + b log m, 

where the parameter b was regarded by Taylor (1961) as an 
'index of aggregation' which takes a characteristic value 
for each species, reflecting the balance between opposing 
behavioural tendencies to move towards or away from 
centres of population density (Taylor and Taylor 1977). 
Whilst Taylor and his co-workers have proposed in a series 
of publications spanning nearly three decades (Taylor 
1961, 1984; Taylor and Taylor 1977; Taylor and Woiwood 

1980, 1982; Taylor et al. 1978, 1980, 1983, 1988; Perry and 
Taylor 1985) that behavioural mechanisms are responsible 
for this remarkably consistent observation, some 
ecologists have remained sceptical about this view (Iwao 
1979; Hanski 1980; Dye 1983; Downing 1986) and con- 
sidered alternative non-behavioural explanations (Ander- 
son et al. 1982; Th6rarinsson 1986; Hanski 1987; Soberon 
and Loevinsohn 1987; Perry 1988). Because the power 
law now seems to be part of current ecological thinking 
with very frequent appearance in population studies (e.g. 
McArdle et al. 1990; Rosewell et al. 1990), it is considered 
worthwhile to clarify the mathematical basis of the law 
itself, the task that has not been done thoroughly. The 
objective here is to present a simple, general mathematical 
argument which has been overlooked in the previous 
debate on this subject and demonstrates that mathematical 
artefacts divorced from behavioural and/or demographic 
ecology of organisms play an important role in 
establishing the above relationship. Furthermore, the 
power law is contrasted to another well-known regression 
method, that of Iwao (1968), and possible implications 
are considered. 
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Mathematical basis of the power law 

Statistically, the sample variance S 2 is defined as 

S2= ~(x i -  :~) 2 
n - 1  ' (1) 

where xi and ~" are a variate and its mean, respectively, and 
n is the sample size. This equation can be rewritten as 

8 2 =  ZXi 2 - n3~2 
n--  1 (2) 

With fixed values of n and :2, Zxi 2 assumes a maximum 
value when one of the variate xi equals n:~ and all the rest 
are zero, i.e. max [yx/2] =n2:~ 2, which can be replaced into 
eqn (2) to give the maximum value of S 2 thus, 

SZm~x = n~ "2. (3) 

Replacing ~ by m following Perry's  (1981) notation of the 
Taylor 's  power law and taking logarithms of the both sides 
of  this equation, we obtain 

log SZm~ = log n + 2 log m. (4) 

This effectively defines the maximum value of the log 
variance for a given combination of n and m. To fit the 
Taylor 's power law we require not only one but several sets 
of  m and S 2, where each S 2 has a theoretical maximum 
value associated with it, depending on the sample size n 
and mean m. In ecological studies, however, researchers 
often try, most reasonably, to employ a fixed value of n as 
far as possible in a series of sampling (Elliott 1981, 1982a, 
b) and in any case it falls well within one order of  
magnitude (Taylor et al. 1980; Drake 1983) which, if con- 
verted to logarithm to the base 10, results in a variation of 
less than 1. Under these circumstances, the equation (4) 
basically describes a linear relationship between log mean 
density and the maximum value of log variance with the 
s lope=2 and the intercept=log n (Fig. 1). Furthermore, 
as noted by many workers (Taylor 1984; Taylor and 
Taylor 1977; Taylor and Woiwood 1980, 1982; Taylor et 
al. 1978, 1980, 1983, 1988; Perry and Taylor 1985; 
Soberon and Loevinsohn 1987; Perry 1981; Elliott 1981, 
1982a, b; Drake 1983), animal populations to which the 
power law analysis has been applied are substantially 
over-dispersed (Kemp 1987), i.e., 

S2> m. (5) 

Taking logarithms of both sides, 

log S 2 > log m. (6) 

Equations (4) and (6) together mean that, in ecological 
investigations, data points for the log mean density-log 
variance plot are virtually gathered from the restricted 
region delimited by the upper line (a) and the lower line (b) 

l o g s  2 [ (a) IogSt=logn+21ogra 

log $2= log m 

i - logn 

log,, 

Fig. 1. The theoretical 'sampling space' (shaded area) of 
ecological data points in the variance-mean regression analysis. 
Lines (a) and (b) define the upper and the lower boundary of the 
space, respectively. 

in Fig. 1. Furthermore, these data points will not be scat- 
tered uniformly within this region but tend to be located 
away from the boundary lines, in particular the upper one 
(i.e., log S E ( I o g  n + 2  log m); this is expected because the 
magnitude of variation encompassed by the majority of 
ecological data to be analysed in this manner is unlikely to 
approach such an extreme value as SEm~x (i.e. all but one 
sampled units containing no individual). All these condi- 
tions will considerably increase the chance that a linear 
regression line can be successfully fitted on a log 
variance-log mean graph. It should here be stressed that 
no biological background, behavioural nor demographic, 
has so far been assumed, except that the populations are 
supposed to be over-dispersed for most of  the spatial 
scales used for investigation, which is a least controversial 
point and acceptable to both the proponents and critics of  
the power law (Taylor et al. 1978; Anderson et al. 1982). 

Given this 'sampling space', it is theoretically possible to 
obtain a linear regression with any value for the parameter 
( =  slope) b as long as afinite number of  points are located 
in this space, although, without further constraints, b is 
most likely to fall in the range of 1.0-2.0; this agrees with 
previous analyses of  empirical data. On the other hand, 
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a universal statistical tendency to approach randomness 
(i.e. the line log S2=log m) as density decreases (small 
m) may also increase the chance of producing b_>2 on 
this constrained graph. Among a set of data points, 
those points with smaller values of  m will tend to lie 
closer to the line log S2=log m and, depending on the 
values of  m with which randomness is achieved for a given 
data set, there is always a possiblity that b becomes 
larger than 2. Similarly, if the values of n associated 
with larger m are on average larger than those associated 
with smaller m among a set of  data points, then the fitted 
regression line is likely to have a steeper slope b. Here, 
there are three general observations to be made, which 
closely relate to Downing's (1986) view on the value of b: 

--Fitting of a linear regression is likely to be more 
successful if 

( i ) there are more data points. 
(ii) data points are scattered over a wider range of 

mean density. 
(iii) data points on the whole are located closer to the 

intersection ( - l o g  n, --log n) of  the two boundary lines 
(i.e. inclusion of samples with low mean densities). 

Discussion 

It is apparent from above that the establishment of the 
power law relationship is greatly facilitated by 
mathematical artefacts coupled with ecological common 
sense (fixed sample size, over-dispersion) and that the 
successful fit of  a regression line to data cannot by itself 
be interpreted as a concrete proof  of  behaviour-based 
density dependence of spatial distribution as has often 
been argued (Taylor 1984; Taylor and Taylor 1977; Taylor 
et al. 1980, 1983; Elliott 1981, 1982a, b; Drake 1983). 
Whilst this need not negate the involvement of  behavio- 
ural mechanisms in the process (indeed behaviour may be 
reinforcing this relationship, together with demographic 
stochasticity [sensu Anderson et al. 1982], sampling 
regimes employed, etc.), the use of the power law as a 
behavioural model in ecology should be treated with 
caution, because of an inherent difficulty in separating 
behavioural or other ecological components from the 
mathematical artefacts described here. The difficulty is, 
the degree to which mathematical artefacts play a part 
is likely to vary from one set of  data to another depending 
on the number, values and scatter, etc., of data points, 
the aspect that has been overlooked in most empirical 
studies. Thus a comparison between different species/ 
seasons/areas, etc. poses a serious problem: what propor- 
tion of the difference in parameter b between particular 
data sets can be ultimately attributed to behaviour, not 
to underlying mathematics and chance? 

It is worth noting that the constrained nature of the 

spatial domain on a log variance-log mean plot, in 
particular the upper boundary line, will also apply to 
theoretical (contagious) relationships such as the negative 
binomial and the Neyman's  distribution, as long as there is 
no substantial, arbitrary variation in n across data; 
uniformly large n will not in itself free a variance-mean 
relation from the mathematical constraints considered 
here. In other words, the fact that theoretical distribu- 
tions all approximate a straight line (Kuno 1991) does not 
mean that linearity of these relations is completely indepen- 
dent of mathematical artefacts on a log variance/mean 
graph. As with empirical data, interpretation of b for 
theoretical data remains an elusive matter, without fully 
knowing the range of b values encountered under different 
parameter conditions for a particular theoretical relation- 
ship. 

It should here be stressed that the above analysis pro- 
vides solely the general mathematical framework of the 
power law and is not intended as a complete explanation 
of why particular empirical data have achieved a highly 
significant linear regression with r E exceeding 0.99 or even 
0.999, for example; such an explanation naturally rests 
with a case-by-case analysis. An important point to note, 
however, is that any explanation conceived, whether 
behavioural or demographic (e.g. Anderson et al. 1982; 
Taylor and Taylor 1977; Perry 1988; Hanski and 
Woiwood 1993), always operates in addition to the 
mathematical constraints demonstrated above. 

In relation to the Power Law, it is interesting to see the 
mathematical basis of the rh-m method (Iwao 1968, 1970, 
1972, 1979; Iwao and Kuno 1971), another well-known 
regression method for analysing aggregation patterns that 
Taylor has criticised as offering unsatisfactory fit to real 
data (Taylor 1984; Taylor et al 1987). Iwao (1968) pro- 
posed that Lloyd's (1967) mean crowding rh is linearly 
related to the mean m: 

~n=a + bm,  (7) 

where a and b are constants. Since rh is defined as 

th = m + S2/m - 1. (8) 

With a fixed value of m, the maximum value of rh is ob- 
tained when S 2 is maximised, i.e. equaion (3). Substitut- 
ing and rearranging (with $ = m ) ,  

r?/max = (n  + 1)m-- 1. (9) 

Similarly, combining equation (5) with (8), 

t h > m .  (10) 

Equations (9) and (10) define the upper and the lower boun- 
dary, respectively, of  the effective sampling region on the 
rh-m plot (Fig. 2). With n typically assuming 10 or more 
in most ecological studies, the space where data points can 
scatter on this plot is much larger than the corresponding 
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Fig. 2. The theoretical' sampling space' (shaded area) of 
ecological data points in the th-m regression analysis. Lines (a) 
and (b) define the upper and the lower boundary, respectively. 

space on the log variance-log mean plot; note that as n 
increases, the upper boundary  line infinitely approaches 
the rn axis. It then follows that constraints of  the data 
sampling space are less pronounced in the Iwao 's  regres- 
sion than in the Taylor 's  and it is all too natural that  the 
latter generally demonstrates a better fit o f  linear regres- 
sion than the former with respect to a particular data set 
(e.g. Drake 1983). For  example, data f rom a freshwater 
chironomid community  (Tokeshi 1986, 1995; Tokeshi and 
Townsend 1987) reveal that, on average, higher values o f  

T a b l e  1. Coefficient of determination (r 2) in Taylor's (log S 2= 
a+b log m) and Iwao's (th=a+t3m) regression analyses for 
different species of chironomid. 

species 
r 2 

Taylor's Iwao's 

Tvetenia calvescens (Edwards) 0.97 
Eukiefferiella ilkleyensis (Edwards) 0.93 
Cricotopus annulator Goetghebuer 0.89 
Cricotopus bicinctus (Meigen) 0.97 
Orthocladius obumbratus Johannsen 0.96 
Rheocricotopus chalybeatus (Edwards) 0.86 
Thienemanniella majuscula (Edwards) 0.91 
Rheotanytarsus curtistylus (Goetghebuer) 0.97 

0.89 
0.89 
0.82 
0.98 
0.99 
0.51 
0.85 
0.99 

2o~ ~ 

1oo 

o ~ I ~  J I I I 
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m 

Fig. 3. rh-m regression of a chironomid community. The re- 
gression line is: Ih=1.13 (+0.37,950/00 C.L.) +1.32 (+0.013) m. 

coefficient o f  determination were obtained for the power 
law regression (r2=0.933__-0.042 [1 SD]) than for the rh-m 
regression (r z = 0.865 _ 0.158 [ 1 SD]), al though three out 
o f  eight species had a slightly higher value of  r 2 with the th- 
in regression (Table 1). It can generally be argued that a 
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Log (variance)-log (mean) regression of a chironomid 
community. The regression line is: log SZ=0.253 (+_0.045, 95% 
C.L.) +1.54 (+0.05) log m. 
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c o m p a r i s o n  o f  goodness -of - f i t  be tween  these two m e t h o d s  

is largely meaningless ,  since the  p o w e r  law regress ion is 
m o r e  faci l i ta ted by m a t h e m a t i c a l  a r tefac ts  (i.e. na r rower  

spat ia l  d o m a i n )  t han  I w a o ' s  regress ion.  It  m a y  in tu rn  

be  suggested tha t  a s ignif icant  fit in the  rh-m regress ion 

(whether  it is l inear  or  s l ightly curv i l inear  mat te r s  little in 

the  present  cons idera t ion) ,  i f  f o u n d ,  can  be m o r e  clearly 
l inked  to some  under ly ing  ecologica l  processes.  F o r  the 
c h i r o n o m i d  c o m m u n i t y  m e n t i o n e d  above ,  a single regres- 

s ion  line on  the  rh-m plo t  gives a very  good  fit to the  ent ire  

c o m m u n i t y  da ta  ( r2=0 .99 ,  Fig.  3), p r o b a b l y  suggest ing 
tha t  species in this assemblage  do n o t  possess s t rongly  

species-specific pa t te rns  o f  d ispers ion.  Interes t ingly ,  a 

p o w e r - l a w  regress ion analysis o f  the  same da ta  has yie lded 
a sl ightly lower  level o f  goodness -of - f i t  ( r2--0.96,  Fig.  4), 

wh ich  m a y  be a fa i r ly  u n c o m m o n  case in view o f  the  above  
reason ing .  In  s u m m a r y ,  the rh-m m e t h o d  is at least  

expec ted  to  be less taxed  wi th  m a t h e m a t i c a l  ar tefacts  t han  

the  power  law m e t h o d .  These  and  o ther  po in ts  m a y  

requ i re  fur ther  c lar i f icat ion,  qui te  apa r t  f r o m  the  pract ice  
o f  goodness  o f  fit c o m p a r i s o n s  which  seems to have  over-  

shadowed  analyses in this d i rec t ion  (cf. Pe r ry  and  Tay lo r  

1988; K e m p  1988). In  conc lus ion ,  despi te  past  cr i t icisms 

and  var ious  p roposa l s ,  I w a o ' s  m e t h o d  remains  as a val id  

a p p r o a c h  to ana lys ing  d ispers ion  pa t te rns  o f  popu la t i ons  
(cf. K u n o  1991), perhaps  s t ruc tura l ly  less cons t ra ined  than  
T a y l o r ' s  me thod ,  as d e m o n s t r a t e d  here .  
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