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INTRODUCTION 

A fundamental source of information concerning the ecology of an insect 

population is a cohort life-table, which consists of a record of the development of a 

cohort of individuals through the various life stages from egg to adult. Such data 

often are not difficult to collect and much attention has been given to their analysis; 

these analyses of single-generation stage-frequency data may be distinguished from 

key-factor analyses of life-table data from several generations (e.g. VARLEY and 

GRADWELL, 1960). Early workers were concerned primarily with extracting such 

information from these cohort life-tables as stage-specific mortalities or the number 

of individuals entering a stage (e.g. RICHARDS and WALOFF, 1954; DEMPSTER, 

1961; SOOTHWOOD and JEPSON, 1962; KOBAYASm, 1968). More recent attention has 

been focused on methods which can also predict population density of the various 

stages as the cohort develops (e.g. MANLY, 1974; BIRLEY, 1977, 1979a), and these 

may be used as models for population growth and development. We develop here 

another method which may be used as a population model, but has some advantages 

over methods currently in the literature. The technique allows for distributed 

developmental periods of the various stages (MANLY, 1974; BIRLEY, 1979a). It does 

not assume a constant mortality for successive stages, as do those of MANLY (1974) 

and KIRITANI and NAKASUJI (1967), but instead mortality rates may vary between 

stages. In addition, it does not require the observation of recruitment to each stage 

(cf. BIRLEY, 1977, 1979a). In contrast, recruitment need only be observed to the 

initial stage, and recruitment to subsequent stages is predicted from the estimated 

developmental period and mortality of each stage. 

In the next section we develop the model and then demonstrate its use by 

applying it to a cohort life-table of Callosobruchus chinensis (L.), a bruchid pest of 

stored pulses. We then discuss the importance of the predictive ability of the model 

and the potential use of this technique in developing models for insect populations. 
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D E V E L O P M E N T  O F  T H E  M O D E L  

This life-table model is based on the premise that the developmental period of 

an instar is not fixed, but may vary between individuals so that there is a distribution 

through time of individuals from a single cohort completing development of an 

instar. This distribution of the developmental period may be described by a proba- 

bility distribution f~ whose elements f i ( j )  specify the probability of an individual in 

stage i moulting to stage i + 1  at age j (age is here measured from entry to instar 

i) (BIRLEY, 1979a). These probabilities f~(j)  may be interpreted as the proportion of 

individuals of an initial cohort  x~(0) which moult to the next stage upon reaching 

age j. The  number  of individuals moulting to stage i + 1  between times t and t + l  

(assuming for the moment  that no mortali ty occurs) may now be described by 

x~., (t) = x, (0)f, (t). (1) 

The total number  of individuals of the initial cohort x,(0) which have moulted to 

stage i + l  by time t, y~+l(t), is given by 

t 
y:+, (t) =x, (O)X f ,  ( j ) ,  (2) 

j - O  

and the total number  of individuals remaining in stage i, y~(t), is 

t 
y, (t) =xi (0) - x , ( O ) E  f , ( j )  

j-O 

o r  

t 
y, (t) = x , ( 0 ) [ 1 - ' ~ .  f i ( j ) ] .  (3) 

j = 0  

The summat ion of the probability distribution f i  f rom zero to t in equations (2) and 

(3) is the value of the cumulative probability distribution F~(t), 

t 
F, (t) = E  f , ( j ) .  (4) 

y - 0  

The value F~(t) is the probability that  an individual in stage i will have moulted to 

stage i + l  before the time interval t to t + l  (time is again measured from entry to 

stage / ) .Th i s  value F~(t) may be viewed as specifying the proportion of a cohort  

which has moulted to stage i + 1  up to and including the interval t - 1  to t. The  total 

number  of individuals present in stage i may now be represented by (substituting 

equation (4) into equation (3)) 

y, (t):=x, (0) [ 1 - F , ( t )  ]. (5) 

The distribution f ,  gives the proportion of the initial number  of individuals in a 

cohort which moult to the next stage at different ages. It  is well appreciated, 

however, that  the number  of individuals of a cohort  in any given stage may be 

reduced not only" through losses due to moulting but also through mortality. In order 

that the model may allow for mortali ty it is useful at this point to specify one fur ther  

distribution G, which gives the proportion of individuals in a cohort moulting to stage 
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i+1  as a function of the number of individuals of the cohort #resent in stage i, 

rather than as a function of the initial number of individuals in the cohort. The 

elements G~(j) of this distribution specify the conditional probability of an individual 

moulting to stage i + 1  at age j given that the individual was still in stage i at age 

j - 1 .  The distribution G, may be derived from the distributions f ,  and F, as follows. 

It is necessary to define the proportion of those individuals of a cohort still in stage 

i at time t - 1  which moult to stage i+1  at time t. Recalling from equation (5) that 

the number of individuals present in stage i at time t - 1  is 

y, (t - 1) = x~ (0) [1 - F, ( t -  1 ) ], (6) 

and that the number of individuals changing stages at time t is (from equation (1)) 

x,+l (t) = x, (0)f~ (t), (7) 

then the required proportion of individuals changing stages may be obtained by 

dividing equation (7) by equation(6), 

x,+l (t) x, (o)f, (t) (8) 
y , ( t - 1 ) -  x , ( O ) [ 1 - F , ( t - 1 ) ] .  

The ratio of equation (8) defines the value of G,(t), 

G , ( t ) -~  f , ( t )  
- t _ F , ( t : ~ l )  ' (9) 

and to complete the definition of the distribution G~ it is necessary only to define 

F~(-1)  =0 (the distribution F~ was previously truncated at zero) so that G~(0)=f~(0). 

The relationships between the distributions f, F and G are shown for a 

hypothetical case in Fig. 1. The unimodal (singly peaked) developmental period 

distribution f in Fig. la gives rise (via equation (4)) to the sigmoid cumulative 

distribution F in Fig. lb. These two distributions were combined using equation (9) 

to give the conditional distribution of development G in Fig. lc. In this example G 

has a complex shape, but when the distribution f is narrower or symmetric the 

form of G is a sigmoid relationship similar to that described by F. 

The use of the distribution G now permits development of a life-table model 

where the fate of any cohort may he described by two recursive relationships. 

Considering first the effects of development, the changes occurring in a cohort are 

specified by the two equations 

x~+l (t) = G, (t) y~ ( t -  1), (10) 

y, (t) = E1 - G, (t) 7y, ( t -  1). (11) 

Equation (10) gives the number of individuals of the cohort moulting to stage i+1  

between times t and t + l ,  and equation (11) accounts for these losses in the current 

size of the cohort (since G~(t) is the proportion of individuals changing stages at 

time t, 1 - G , ( t )  is the proportion remaining in stage i). It is possible in this 

framework to consider additionally the effects of mortality on a cohort. The mortality 

will be assumed age-independent within a stage although it may differ between 
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Fig. 1. Three probability distributions relating age to developmental period. (a) 

The distribution of individuals moulting at a given age (f) described by equation 
(13) when p=0.3  and a~=O. O1. (b) The cumulative distribution of individuals 
which have moulted by a given age (F) (equation (4)). (c) The conditional 
distribution of individuals moulting at a given age ((7) (equation (9)). See text 
for discussion. 

s tages.  Th i s  a ssumpt ion  is necessary  if p a r a m e t e r s  are  to be es t imated  f rom data  

because the  age-dependent  developmenta l  per iod would obscure any age-dependent  

morta l i ty .  In other  words,  the d i sappearance  of individuals  f rom a cohort  may  be 

due ei ther  to deve lopment  or mor ta l i ty ,  but  only one of these processes  may  be 

ass igned age-dependency dur ing  p a r a m e t e r  es t imat ion.  A constant  s tage-specif ic  

surv iva l  ra te  & may  be included in the  model  by modify ing  e q u a t i o n ( l l )  to 

y, (t) = s~-i - G~ ( 0  -~Y~ ( t -  1). (12) 

Equat ion  (12) impl ies  tha t  those individuals  r emain ing  in s tage  i suffer a propor t iona te  

mor ta l i ty  of 1 - &  dur ing  the in terval  t - 1  to t, The  individuals  which  moul t  to s tage 

i + 1  at  t ime t (equation ( 1 0 ) ) f o r m  a new cohort  of individuals  in tha t  s tage  and 

now have age  zero;  they would be subject  to a mor ta l i t y  of 1-s~§ dur ing the in terval  

t - 1  to t. Equat ions  (10) and (12) comple te  the deve lopment  of the cohort  l i fe- table 

model  which  now accounts  for the  processes  of deve lopment  and moral i ty .  These  

equat ions m a y  be used ei ther  in analys is  or predic t ion of a l ife-table by app ly ing  

them to all  the cohorts  present  in each s tage  at  every  t ime step.  
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It  remains to specify a formula for the developmental distribution f, .  A number 

of distributions have been used to describe the developmental period of insects. 

Although the normal distribution (which is symmetr ic)  has been used by MANLY 

(1974) in the analysis of life-table data, a large amount of evidence indicates that 

developmental periods in insects are positively skewed (see the review by Howe  

(1966) and also STINNER et al. (1975), BARFIELD et al. (1977) and SHARPE et al. 

(1977)). Consequently, developmental periods have often been described by skewed 

probability distributions such as the gamma and log-normal distributions (HowE, 

1966), special Erlangian distributions (ASHFORD et al., 1970) and the beta distribution 

(STINNER et al., 1975). In contrast to these empirical approaches, SHARPE et al. 

(1977) have described positively skewed developmental distributions by a formula 

which arises from the simple assumption that the developmental rates of individuals 

in a population are symmetrically distributed about a mean value. Transforming a 

symmetric  distribution of developmental rates to developmental periods results in a 

positively skewed distribution. The approach of SHARPE et al. is adopted here 

primarily because these distributions are defined by parameters  with simple biological 

interpretations and also because such distributions have been used successfully to 

describe insect development (BARFIELD et at., 1977; SHARPE et al., 1977). The 

formula used here arises from the assumption that the distribution of developmental 

rates in the population follows a normal distribution. This leads to a distribution of 

developmental period whose elements are defined by (SHARPE et al., 1977) 

j~l 
f~(j) = (k~ai~ /~) - I  f t-2exp l - -  (t-l-/2~)~/2a~2]dt. (13) 

J 

This distribution is specified by the two parameters  p~, the mean developmental rate 

of stage i and a, ~, the variance of the developmental rate. The parameter  k~ is a 

normalizing constant which ensures that the sum of f , ( j )  over the range of j consid- 

ered is unity. Equation (13) depicts positively skewed distributions such as that 
shown in Fig. la. 

ESTIMATING THE MODEL PARAMETERS 

Two approaches to estimating parameters  of models are generally available, that 

of maximum likelihood estimation and a family of empirical approaches. The most 

widespread of the empirical approaches is to treat  the parameters  of a model as 

variables and find the parameter  values which minimize the sum of squared deviat- 

ions between model predictions and observed results (the residuals). This  technique 

is known as "least-squares" estimation. For this life-table model, methods of 

maximum likelihood estimation have not been developed and all the parameter  

estimates have been found by a least-squares technique. The algorithm used for 

estimating the parameters  was that of POWELL (1968). 

Initially, estimates of the mean rate and var iance  in equation (13) for develop- 
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ment of eggs to first instar larvae were obtained (no egg mortali ty was considered, 

as discussed below). This provided a prediction of the number of daily recruits (the 

cohorts) to the first instar stage. The predicted recruitment was used together with 

the observed daily record of the numbers of first instar larvae present to estimate 

the mean and variance of the developmental rate and daily survival of first instar 

larvae. The result provided a prediction of the daily cohorts recruited to the second 

instar stage, and the analysis was repeated for the second instar and subsequently 

in this stepwise manner for all the other stages. This method worked well and 

provided reasonable estimates of the parameters.  Occasionally, however, the estimate 

of daily survival for a particular instar would exceed unity indicating perhaps an 

overestimate of the mortali ty in the previous stage. These errors, presumably due 

to the nature of the sampling regime, were overcome by a simple refinement. 

Whenever the problem arose, the parameters  for development and survival for the 

instar were estimated again simultaneously with the parameters for the previous 

instar (i. e., six parameters  were estimated for the two instars together).  This usually 

provided acceptable parameter  estimates, but if the daily survival estimate again 

exceeded unity it was fixed arbi trar i ly at unity, and values for the developmental 

parameters  for that instar were then estimated together with the developmental and 

survival parameters  for the previous instar. 

A LIFE-TABLE FOR CALLOSOBRUCHUS CHINENSIS 

In order to illustrate the use of the model in analyzing a part icular set of data, 

we present here a cohort life-table for Callosobruchus chinensis, a bruchid pest of 

stored pulses. The eggs of this species are laid on the surface of dried peas or beans, 

and upon hatching the first instar larvae burrow into the cotyledon. The four larval 

stages are passed entirely within a singe bean. Pupation takes place in the cavity 

created by larval feeding, and the adults emerge from the bean a day or two after 

eclosion. More than one larva may develop within a bean, al though there is some 

competition for space. The biology of C. chinensis has been reviewed by HOWE and 

CURRIE (1964). 

The data for the life-table were collected by repeatedly subsampling a population 

of C. chinensis developing in a large plastic box containing cowpeas, Vigna unguic- 

ulata (WALP.). The population was started by isolating adult C. chinensis with the 

beans for 24 hours at 30 ~ and 70% relative humidity, after which the adults were 

removed and the beans returned to these experimental conditions. A number of beans 

were taken from the box daily, the number of hatched eggs on each bean was recorded 

and each bean was then dissected in order to score the number and stage of the 

living individuals present. On each day sufficient beans were dissected so that a 

minimum of fifty living individuals were recorded. Sampling was continued until all 

the observed survivors were in the emerged adult stage. These data provided a 
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Table 1. The observed survival of Callosobruchus chinensis (L.) in beans with various 
numbers of hatched eggs (data pooled from all sampling days). The data in Table 2 
were taken from beans with five or fewer hatched eggs per bean. 

No. of hatched Total observed Total observed Percent Cumulative 
eggs per bean hatched eggs survivors survival percent survival 

1 102 100 98.0 98.0 
2 314 302 96.2 96.6 

3 453 433 95.8 96.1 

4 400 379 94.8 95.7 
5 360 338 93.9 95.3 

6 270 242 89.6 94.5 

record of the number  of individuals in each stage each day over a small  range of 

hatched egg densities. 

In  order to construct  a life-table from such a record it was first necessary to 

ensure tha t  the observed survival  was not influenced by larval  density. This  was 

done by grouping all of the data collected dur ing the daily censusing according to 

the number  of hatched eggs per bean. The  total number  of hatched eggs and the 

total number  of survivors  were pooled for sampl ing  days five to twenty-s ix  for each 

hatched egg density. An overall ratio of survival  at each density was then recorded. 

This  information is given in Table  1 for beans with six or fewer hatched eggs. It  

was concluded, after considering the percent  survival  and the cumula t ive  percent  

survival  at successive densities, that  data f rom beans with five and fewer hatched 

eggs would provide information suitable for a density independent  life-table. This  

provided a sample of over 1600 hatched eggs from twenty- two sampl ing  days, or 

approximately  70 eggs per day, from which to construct  the life-table. 

The  life-table (Table  2) was constructed by pooling the data from all the beans 

sampled on a given day. The  observed n u m b e r  of survivors  present  in each stage is 

given as a percentage of the n u m b e r  of hatched eggs observed on each day. The  

data for days one to five (before all the eggs had hatched) represent  a cohort of 100 

live eggs and no egg mortal i ty  was considered here. The  total n u m b e r  of individuals 

observed each day is also given as a percentage in Table  2, from which we see that  

the n u m b e r  of individuals present  on successive days does not always remain  constant  

or decrease (as would be the case if individuals f rom a single cohort were observed 

throughout  their  life) bu t  occasionally increases. This  is an art ifact  of the sampl ing 

programme where the fate of a single cohort is being approximated by the average 

fate of many  cohorts undergoing sequentially destructive sampling.  However,  this 

did not cause 7serious problems when est imat ing the life-table parameters  and no 

smoothing of the data was necessary (cf. SOKAL and BRYANT's (1967) life-table 

analysis for the house fly). 
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Table 2. Stage-frequency data for Callosobruchus chinensis (L.) per 100 hatched eggs. 

Day Eggs I II III IV Pupae Adults  in Pea Emerged Adults  Total 

1 100.00 100.00 

2 100.00 100.00 

3 1 0 0 . 0 0  " '  100.00 

4 59.00 41.00 100.00 

5 96.77 96.77 

6 91.78 91.78 

7 23.08 71.79 94.87 

8 4.84 74. 19 17. 74 96.77 

9 1.05 57.89 40.00 98.94 

10 1.85 3. 70 89. 81 .93 96.29 

11 4.76 41.67 48.81 95.24 

12 .00 3.53 90.59 94.12 

13 1.23 .00 96.30 97.53 

14 .00 100.00 100.00 

15 1.16 82.56 15.12 98.84 

16 37.68 57.97 95.65 

17 10.61 74.24 84.85 

18 10.47 81.40 1.16 93.03 

19 2.08 70.83 18.75 .00 91.66 

20 22.62 72.62 1.19 96.43 
21 8.22 75.34 16.44 100.00 

22 4.82 38.55 53.01 96.38 

23 12.68 85.92 98.60 

24 8.51 91.49 100.00 

25 1.96 88.24 90.20 

26 88.41 88.41 

Table 3. Est imates  of the  developmental parameters  and survival rates for 
Callosobruchus chinensis (L.) f rom the analysis of the data in Table 2. 

Instar  Developmental Developmental Proportionate Predicted number  Predicted s tage 
rate, ~ ( d a y s - ' )  variance, a~ ~(days -e) daily survival  entering s tage mor ta l i ty (~)  

Eggs 0. 31684 1.9330 • 10 -4 - -  100. 00 0. 00 

1st larvae 0. 46924 4. 9579 • 10 -4 I. 00 100.00 0. 00 

2nd larvae 0. 48279 7. 9570 x 10-4 0, 99430 100.00 1.32 

3rd larvae 0. 48655 5. 9308x10 -8 1, 00 98. 68 0. 00 

4th larvae 0. 22580 2. 9458x10 -4 1.00 98.68 0. 00 

Pupae 0. 31564 1. 3752 • 10 -4 O, 98662 98. 68 4.79 

Adults  "0. 47338 7. 0423 • 10 -4 1.00 93. 95 0.00 
in pea 

Emerged _ _ - -  93. 95 - -  
Adults  
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RESULTS 

T h e  l i fe- table model  of equat ions (10) and (12) was  fitted to the data  in Tab le  2 

and the resul ts  of this  analysis  are  presented  in Tab le  3. The  es t imated  mean 

developmenta l  ra tes  of the egg, four th  instar  larval  and pupal  s tages  were lower  

than those of the other  stages.  The  es t ima ted  var iances  of the development  ra tes  

were smal l  for all stages.  Th is  is par t ly  a reflection of the rapid  development  of 

th is  species  in the exper imen ta l  condit ions used and also indicates  tha t  a sampl ing  

,oorr- . r , , ' - ' , , . .  

+lit o t,. 
, , , t . ' r ' ?  0 2 4 6 8 12 16 20 

lOOt �9 �9 
/ I'~ ,~, 
/ I \  ,st 

= " 

o p,,~, . . . .  ;'-t-*,~ 
,c_. 2 6 10 

loo I" 
l A [c] 

50/ , ~ ~ = e  i~l 2 n ~  e ~ e  d 

o - TT. ,"~. 
4 8 12  

, ~  Ill 
I" "�9 pupae 

"-Lo-- 
, , t q n ~ - -  

1 2  16 20 24 

t Igl 
�9 �9 pre-emergent 

~ adults 

�9 " :  . . . .  ,"~." ,'-t 16 20 24 

l~176 �9 I ~ ~ '~ ~ [hi 
I A Irddl L /adults 

o 

6 10 14 16 20 24 
D a y s  s i n c e  o v i p o s i t i o n  

Fig. 2. The observed (O) and predicted (,,,~) stage frequencies of Callosobruchus 
chinensis (L.) developing from oviposition (day zero) through adult emergence. 
Also shown are the predicted numbers entering each stage each day ( - - ) .  (a) 
eggs; (b)--(e) first through fourth instar larvae; (f) pupae; (g) adults inside the 
pea; (h) adults emerged from the pea. 
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interval of less than one day might have been useful in determining these parameter  

values more accurately. In the case of the thir-d larval instar, the estimated variance 

was sufficiently small that  the predicted developmental period occurred entirely 

within one day ( F i g .  3). For this stage, the estimated value of the variance 

parameter  must be viewed only as an lower limit on the actual value as smaller 

variances would produce the same result: The estimates of daily survival rates for 

all the stages were high, resulting in a predicted overall survival of 94%. The 

estimated mortali ty of second instar larvae probably represents failure to become 

established in the bean. The only other stage in which survival was estimated as 

different than unity was the pupal stage. The estimated pupal survival was lower 

than that of the second instar and accounted for the largest  portion of the overall 

mortality. 

r 1 . 0  

0 . 5  

P o 
a. 

E I A A 

i i i , , , i , i , I i i t I I I i 

3 4 5 6  2 3 4 5  2 3 4 5  3 4 5  3 4 5 6 7 8 9  3 4 5 6  2 3 4 5  

Age [in daysl since entering the stage 

Fig. 3. The predicted distribution of the developmental period of each stage of 
Callosobruchus chinensis (L.). Ages are shown in days from entry to each stage. 
Stages are indicated as follows: E, eggs; I-IV, first through fourth instar larvae; 
P, pupae; A, adults inside the pea. 

The life-table model provides a prediction of the number of individuals present 

in each stage through the course of a cohort 's development and these predictions are 

presented graphically, together with the observed numbers, in Fig. 2. The model 

clearly described well the presence of the various stages. The distributions of the 

developmental periods predicted by" the model are shown in Fig. 3. These distribu- 

tions are all somewhat kurtotic;  indeed one of them is contained entirely within one 

day. This emphasizes the effect of the small estimated variances of the developmental 

rates in Table 3. 

CONCLUDING REMARKS 

The model developed here has two features which, although not unique to th i s  

model, are combined here for the first time. These are the distributed developmental 

period (cf. MANLY, 1974) and different daily survival rates for the different stages. 

This combination provides a powerful tool for the analysis of data from almost any 

regime of insect development or life history. The analysis may be applied to data 

consisting of only estimates of stage densities and recruitment to the first stage, a 
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point of importance where recruitment to each stage cannot be observed directly 

(cf. RUESINK, 1975; BIRLEY, 1979a). The model has proved useful here where 

initial recruitment was a pulse but also has been applied successfully to situations 

where recruitment occurred over several days. It has also been used in situations 

where mortality was higher than in the data presented here and, with slight 

modifications, where mortality was age-specific rather than stage-specific. 

One other important property of this model is the detail with which it reconstr- 

ucts a population's development. It Can clearly predict stage frequencies (Fig. 2), 

thus permitting the development of simulation models of insect populations using 

parameters estimated directly from stage frequency data. In addition, the model 

predicts the daily recruitment to each stge. In this way the number of individuals 

entering each stage is estimated, and total stage mortalities are easily accounted. 

This predicted recruitment may be of fundamental use in discerning optimal control 

strategies for insect pest populations (BIRLEY, 1979 b). It may also be of considerable 

importance when modelling such aspects of population biology as density dependence, 

where the number of individuals entering a stage at a given time may affect the 

stage-specific survival rate. This concept of recruitment density affecting competition 

has been more fully developed in a further study of Callosobruchus chinensis, where 

quantifying competition within and between stages has led from simple life-table 

models (such as those presented here) to more detailed simulation models of population 

growth and development. The results of these studies will be reported in future 

publications. 

SUMMARY 

A model for the analysis of insect stage-frequency data is developed which 

includes stage-specific variable developmental periods and stage-specific daily survival 

rates. The model can predict the development of an insect population through its 

developmental stages and consequently may form the basis for a simulation model of 

the population. 
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