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ABSTRACT. The article extends upon previous work by Temlyakov, Konyagin, and Wojtaszczyk on comparing 

the error of  certain greedy algorithms with that of  best m-term approximation with respect to a general 

biorthogonal system in a Banach space X. We consider both necessary and sufficient conditions which cover 

most of  the special cases previously considered. Some new results concerning the Haar system in L 1, Lvo, 

and BMO are also included. 

1. Introduct ion 

Throughoutthis article, let X be areal separableBanach space, and �9 = {q~g, k 6 I} aminimal, 
normalized, dense system in X. We identify I with the set of  natural numbers N --- { 1, 2 . . . .  } 
(although all considerations apply to finite-dimensional spaces, too, we will assume dim X = c~). 
The normalization condition reads IIq~k IIg = 1, k 6 N, and the density requirement says that the 
union of  all linear subspaces VA = span{~bk, k E A} generated by finite index sets A C I is dense 
in X. Minimality is equivalent to the existence of  a biorthogonal system �9 = {~Pk, k ~ I} C X'  
such that 

1 , k = l  
(~l, d~g)x,• = 3~l = 0 , k ~ l 

In order for the following discussion to make sense, we will assume that 

M~ :=  max II~kkllx, < 0o .  (1.1) 
k~ l  

As is well known, this condition is equivalent to requiring that the coefficient sequence f :=  {fk :=  
(~t, f ) x ' •  is a null sequence (i.e., fk --+ 0 i fk  ~ c~) for any f E X. 

Math Subject Classifications. 4lA46, 42A10. 
Keywords and Phrases. nonlinear m-term approximation, greedy algorithms, Haar system, unconditionality, biorthog- 
onal systems in Banach spaces. 

(~ 2001 Birkh~.user Boston. All rights reserved 
1SSN 1069-5869 



326 Peter Oswald 

For later use, we introduce the following notation. In agreement with the above notation, we 
set VA := {f  �9 X : fk = 0, k r A} for arbitrary A C I ,  and denote by gh the generic element of 
V^. If  the index set A is finite, i.e., #A < cx~, then the gA are called polynomials, and we introduce 
the notation 

1A := ~ r �9 v^. 
kEA 

The nonlinear set 

~Zm:= ~ VA 
#A<m 

contains all m-term polynomials, i.e., polynomials with < m non-zero coefficients. The following 
partial sum operators are well defined for any finite A C I:  

:= • 
kcA 

S l \ a f  = f - S A f  . 

For arbitrary null sequences c, we set Icl := {Ickl, k �9 I}, c > c' means that Ickl > Ic~l, k e I ,  
and c* = {c~ = Cl(k), k ~ I} denotes the decreasing rearrangement of c which is defined by a 
one-to-one mapping lc : I ~ I such that Ic*l is monotonically decreasing, i.e., 

]c/co)] ~ ]Clc(2)l ~ . . . .  

Obviously, lc is only unique up to index permutations for ck with equal absolute value. The reader is 
assured that the results of this article do not depend on the specific choice of the index mapping lc. 

Temlyakov [9, 10, 11] has written a series of papers on the error behavior of greedy algorithms 
associated with various classical systems (uniformly bounded orthonormal systems, wavelet systems, 
etc.) in various Banach spaces (Lp-spaces,)rq-Spaces, etc.). Using the above notation, the simplest 
greedy algorithm is given by 

f � 9  X i ) G m f  := Z Ck~bk ' Am := t [ l f ( k ) ,  k = l . . . . .  m] , ~ (1.2) 
J 

k~Ara 

where the mapping I f  : I ~ I was defined above. The name greedy is justified since Gm f = 

Gin-1 f + G1 ( f  - Gin-1 f ) ,  m >__ 2, is the result of recursively applying the greedy operator G1. 
Theoretically, if N = dim X is finite, and all fk are computed exactly, then a simple sort is sufficient 
to define I f  and, thus, G m f  for all 1 < m < N. We will not discuss implementational issues or 
other versions of greedy algorithms. (See [ 11, 3, 4, 12, 13] and the references cited therein; to some 
of them, the approach below carries over with minor modifications.) Rather, we concentrate on the 
worst-case comparison of the greedy approximation error II f - G m  f IIx with its lower bound given 
by the best m-term approximation with respect to qb: 

a m ( f )  X : =  inf [ [ f - g [ [ x  =- inf inf I l f - g A l l x  �9 (1.3) 
gEEm ACI:#A<m gAEV A 

More precisely, we are interested in estimates for the quantity 

IIf  - G m f l l x  
3x, e~(m) := sup , m > 1. (1.4) 

fEX  f f m ( f ) x  

Although similar definitions can be considered for other variants of greedy algorithms, we solely 
deal with the investigation of this quantity which describes the worst case behavior of the greedy 
algorithm Gm for each fixed m with respect to arbitrary f �9 X. 
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When analyzing the approach taken in [9, 10, 11] in various partial situations, it is easy to see 
that it relies on a few basic ingredients, mostly estimates for m-term polynomials. In the preprint 
version [8] of  the present article, we presented a rather technical set of  inequalities yielding upper 
and lower bounds for ax, q~(m) in the general case. We also considered some simplified conditions 
based on monotone comparison functions, and applied them to various examples. When presenting 
our results from [8], V.N. Temlyakov brought to our attention the papers [7] and [15] which contain 
closely related results. In particular, [7] gives a characterization of  all bases qb in X such that 

8x , . (m)  = O(1) , m --+ o o ,  (1.5) 

in terms of  unconditionality and inequalities for the polynomials 1A (the so-called democracy con- 
dition). The connection of (1.5) with the weaker notion of quasi-greedy bases, i.e., �9 for which the 
greedy algorithm converges for any f e X, and with various other related properties is also studied 
in [7]. Similar results have been found in [15] for general biorthogonal systems. 

The aim of this article is to present a unified approach to estimating 3x,~(m), by introducing 
generalizations of  the unconditionality and democracy conditions, and to derive more practical 
criteria if 

v l ( f )  _< [Ifllx _ v2 ( f )  , f E X , (1.6) 

where 1) i , i = 1, 2, are monotone comparison functions. These results can be found in Section 2. 
We also give some new results for the univariate Haar system H.  In Section 3 we prove the 

equality 

8 L p , n ( m ) = 3 m + l ,  m >  1,  p = l ,  o o ,  (1.7) 

which implies that the trivial estimate 

~x. , (m)  < 3MqJm + 1 , m >_ I , (1.8) 

cannot be improved. Finally, the asymptotic behavior of  ~BMO,H (m) and ~dBMO,H (m) is determined. 

2. Abstract Est imates  

Fix a system qb C X satisfying the properties of  Section 1. For arbitrary f E X, define 

tlfllx,*;1 :=  inf .]]gllx , Ilfllx, cb;2 :=  sup ]]gllx �9 (2.1) 
gEX:~>f gEX:~<f 

In general, these quantities are not norms on X (11 �9 [[x,~;1 does not satisfy the triangle inequality, 
while [1 �9 IIx,~,;2 may take the value + ~ ) .  It is well known [5, Proof  of  Theorem 1.3.2] that 

I l f l lx , ,} ;2= sup ~ k f / c ~ b k  (2.2) 
~k=• kEl X 

Obviously, 

Ilfllx, a,;1 < Ilfl lx 5 Ilfllg,~;2 

Let us introduce the quantities 

V f E X .  (2.3) 

AxA,(m) :=  sup I l g A [ I x , , ; 2  
g ^ ~ .  IIgA[Ix,o;1 ' m > 1 , (2.4) 
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and 

II1A, IIx,o;z 
Bx,o(m) :=  sup , m > 1 . (2.5) 

A'NA"=O, I<#A'=#A"<m II1A" HX,~b;1 

The quantities A x,~ (m) indicate how close qb is to being an unconditional basis (indeed, uncondi- 
tionality is equivalent to 

A s , , ( m )  = O(1) , m --+ ~ , (2.6) 

see [5, Theorem I. 3.2] ). On the other hand, { Bx, �9 (m)} is connected to the notion of  democracy resp. 
superdemocracy introduced in [7]. Roughly speaking, 

Bx,r  = O(1) , m --+ c~ , (2.7) 

implies democracy and superdemocracy (and is equivalent to them if (2.6) is satisfied). Examples 
showing that {Ax,v  (m)} and {Bx,v (m)} may behave independently for m ~ c~ can be found in [7]. 
Our first result generalizes Theorem 1 of  [7] as well as Theorem 4 of  [15]. 

Theorem 1. 
For any system cb C X satisfying the assumptions of  Section 1, we have 

6x,r < 1 + 2Ax, o(m) + Bx,~(m)  , (2.8) 

where m > 1. This upper estimate is asymptotically sharp as we have 

3x,r  • max(Ax,r  Bx,r  , m --+ c~ . (2.9) 

We start the proof of  Theorem 1 with a formula for Ax,~(m)  which exhibits the relationship 
with unconditionality more explicitly. Set 

IISARIIx 
Ux,o(m) := sup sup - - ,  m >  1 .  (2.10) 

gEX #A<m Ilgllx 

Note that the second infimum could have been restricted to all A with #A = m, without changing the 
value of  Ux,o(m) (since ~k --~ 0 we can enlarge any A to the necessary cardinality while essentially 
preserving the value of  [[ SAg II x). 

L e m m a  1. 
We have 

Ux, o(m) < A x , . ( m )  = sup sup 
g~X A'f-IA"=0, #At+#A/'<m Ilglls 

I]SA,g - S^,,gHx 
< 2Ux,o(m) (2.11) 

for all m > 1. 

P r o o f .  By definition of  AxA,(m) and by (2.1) and (2.2) it follows that 

IIgAllS,~;2 
Ax ,o(m)  = sup sup sup 

gcX l<#A<m gA~VA:~A<~ Ilgllx 

= sup sup max 
gcX I<#A<m 'k =-t-1 Ilgllx 

IISA,g - Sa"gllx 
= sup sup 

g~X A'n^"=0, #A'+#A"_<m Ilgllx 
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The remaining inequalities in (2.11) are obvious. 

Another preparation is the following, more technical observation. If we define 

and 

then 

1 h [ ~  *,1 : =  inf [[gh + gl\AilX , 
gAeVA, gl\aEVl\A : g A _ i A ,  [Igt\Allt~l 

B~,,(m) :=  sup II1A'IIx,.;2 m > 1 

Ilx,.;1 AffqA"=O, l<#At=#Att<m []IA,,* ' - ' 
(2.12) 

kEA t 

^ 
and g = gA" + g1\A" satisfying gA" > 1A,,, such that 

(1 - e)Bx, . (m)  < - -  
Ilgh'llx 

Ilgllx 

This shows that 

Now, introduce a partitioning of  A ~ = / ~  U .,~ into the two disjoint subsets 

z, = {k A '  : > 1} , .~ --_ A ' \ / k .  

I f /k  = 0 then we can find a real number )~ _> 1 and a set Att, again disjoint from A ~ and ofcardinal i ty  
m'  such that 

~-1 IIgA'llg ~ II1A'llx,~;2 , ~-Xllgllg ~ I[1A,,llx,.;1 

which by (2.12) implies (1 - e)Bx, . (m)  < B~c,,(m) in this case. 

If  1 < rh : =  #/k < m ~ < m then we simply write 

Ilgh'l[x < IlSagA'll  + IIaAgA'llx 
Ilgllx - Ilgllx Ilgllx 

The second term can again be bounded by B} , . (m)  by repeating the above argument with A/, rn ~, 

and gA' replaced b y / k ,  rh = m ~ - rh, and SAga,, respectively. For the first term, recall that by 

definition of  A,  the coefficient bound for gA', and Lemma 1 we have 

IISAgA'llx IIsA llx, ;2 Ax,,(m)[[gllx. 

Thus, altogether we have 

(1 - e)Bx, . (m)  <_ Ax,r + B~, . (m)  , 

B~;,,~(m) < Bx,~(m) < B~,~(m) + Ax , , (m)  , m > 1 . (2.13) 

The lower estimate is obvious since II1A,, IIx,r _< II 1A,, I1~,.;1 by definition. To establish the upper 

bound, let e > 0 be fixed. According to the definition (2.5), we can find disjoint sets A ' ,  A"  of  
cardinality 1 < # A  ~ = # A "  = m ~ < m, and functions 

gA' = Z ~k~bk (Ek = 4-1 ) , 
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which gives the upper bound in (2.13) if s --+ 0. 
We can now prove the upper bound (2.8). For any given f e X, let the index set A,, of  

cardinality # A m  = m be defined by Gm f = SAm f .  For any e > 0, we can find a polynomial 
gA E VA such that g :=  f - gA satisfies Ilgllx -< (1 - s ) - l a m ( f ) x  . Without loss of  generality, we 
can assume that #A = m, too. Now, set 

A I = A k A m  , A H = A m k A  �9 

These sets are disjoint and have equal cardinality m ~ = #A '  = #A"  < m. Since S I \ ( A L ) A m ) f  = 

SI\(AUAm)g, we can write 

f -- G m f  = Sl\(hOAm)g --F SA, f = g -- SAg  -- SA,,g q- S A , f  �9 

Applying the triangle inequality, we get 

IIf  - a m f l l g  IISAg[Ix IISA"glIx IISA' f l I x  
( l - s )  < i + - - +  - - +  - -  

f f m ( f ) x  - -  Ilglls Ilgllx Ilgllx 
II1A, IIX,r 

< 1 + 2 U x , r  + 
- II1A"lls, a,;1 

< 1 + 2 A x , ~ ( m )  + Bx ,  o ( m )  �9 

In the estimation we have used that by definition of  Gin f ,  A ~, and A",  we have 

.A = A, vl< A' 

Letting s --+ 0 and taking the supremum with respect to all f e X, we have (2.8). 
To prove (2.9), we need to establish a matching lower bound. By definition of  U x , r  for 

any s > 0, we can find a non-zero g ~ X and an index set A of  cardinality #A = m such that 

IISAglIx ~ (1 - -~ )Ug ,~ (m) l lg l l s  �9 

Set 

f = (M~l lg l l x  + 1)IA + g  -- S A g .  

Since I~kl ~ Mq~llgllx by (1.1), we have 

l l f  - G m f l l x  = IIg - SAgl lx  >_ ((1 -- s ) U x , r  -- 1) Ilgllx �9 

On the other hand, f and g differ by a polynomial from V^ which gives am ( f ) x  < Jig II g. Altogether, 
for s ~ 0 we obtain 

A s ,  o ( m )  1 , (2.14) 8 x , , ( m )  > U x , r  - 1 > 
- - 2 

where we already have incorporated the result of  Lemma 1. 
Analogously, from definition (2.12), for any s > 0 we find disjoint sets A ~, A"  with #A ~ = 

#A"  < m, and functions gA' ~ VA,, g 6 X, such that 

g A ' < i A  ' , -  Igkl { >1,< 1 ,  keA",kgfA, 

and 

IIgA'IIX ~ (1 - - s )B~c, r  
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Choose any A disjoint with A ~ and A" such that the cardinality of  A = A ~ U A equals m. Set 

f = gA' + SI\(A"UA)g + (1 + e) (SA,,g -a t- 13.) . 

Then 

[[f - Gmf[[x = [[gA' + SI\(A"UA)g[[x 

> ((1 - -e)B~: ,o(m)  - 1 -2Ux ,o (m) ) [ [g[[x  , 

and (by subtracting a suitable polynomial from VA) 

a m ( f ) x  <_ inf [ I f - - g A [ [ x  --< Jig + eSA"g[[x <_ (1 + ~Ux,,~(m)) ][g[[x - 
gArY^ 

Together with Lemma i, (2.13), and after letting 8 -+ 0, this gives 

~x,,~(m) >_ Bx ,~(m)  - 3Ax,  o(m)  - 1 , m >_ 1 . (2.15) 

Combining (2.14) and (2.15), it is not hard to derive the lower bound in 

1 
max (Ax,c~(m), Bx, c,(m)) < ,~x,~(m) < 4 m a x  (Ax,c~(m), Bx, , ) (m))  , 

while the upper bound is obvious from (2.8). This proves (2.9), and completes the proof  of  Theorem 1. 
Note that the proof shows that Ax ,~(m)  could be replaced by Ux,c~(m) in both relations (2.8) 
and (2.9). It is also possible to replace Bx, o(m)  by B~,,t,(m) in (2.9). [ ]  

Although Theorem 1 gives the correct asymptotic behavior for the quantities 3x, c,(m) in the 
general case, its application to particular systems is tedious, partly due to the complicated, implicit 
definitions of  AxA, (m)  and Bx,,~(m). We will show next that the upper estimates can be simplified 
if it is possible to introduce suitable comparison functions vi : X ~ > ~,+ t.J {c~}, i ----- 1, 2, such 
that 

v l ( f )  < l i f l Ix  , [IgAliX < v 2 ( g A ) ,  (2.16) 

holds for all f e X and all polynomials gA e VA and any A with #A < oo (assumption (2.16) and 
the considerations below show that v2 only needs to be defined for polynomials gA, not necessarily 
for general f E X). 

We c a l l a v  : X I  > R+t0{oo}  

�9 monotone if v ( f )  <_ v(g) whenever f < o~, and 

�9 weakly rearrangement-invariant if U(1A,) < flV(1A,,) with some fixed 1 < fl < c~ for all 
finite disjoint index sets A/, A"  satisfying #A r = #A".  

Clearly, these definitions depend on ~,. ff  v ( f )  = Ilfl[ is given by a symmetric sequence norm [[ �9 [[ 
such as (a multiple of) an e~-norm then it satisfies both these conditions (with fl = 1). Some other 
examples of  practical use include Litt lewood-Paley type norms (see, e.g., [10]). 

It is easy to see that the comparison functions 

v x , . ; l ( f )  :m [If[Ix, a0;1 , VX,~;z(f)  := [If[Ix,*;2 

are monotone, and satisfy (2.16). Moreover, this choice is optimal in the following sense: if two 
monotone comparison functions vi, v2 satisfy (2.16) then 

vl ( f )  < vx, ci,;l ( f )  , vx, ,;2 (gA) < v2 (gA) V f e X ,  gA EV A  �9 (2.17) 
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With this observation at hand, we have the following obvious lemma. 

L e m m a  2. 
Assume that there are two monotone comparison functions Vl, v2 such that (2.16) holds. Then 

v2(gA) 
Ux, o(m) <_ Ax,~(m) < A(m) :---- sup , (2.18) 

gAeZm Vl (gA) 

v2(1A,) 
sup (2.19) 

A'OA"=0,#A'=#A"_<m 1)1 (1A,') 

and 

B},o(m) < Bx, o(m) < B(m) := 

I f  either vl or V2 is weakly rearrangement-invariant then B(m) < flA(m). 

Proof.  The inequalities (2.18) and (2.19) immediately follow from the definitions of the quan- 
tities and (2.17). The last statement is also trivial: if v2 is weakly rearrangement-invariant then 
v2(1A,,) < 3v2(1A,) canbeused; if vl is weakly rearrangement-invariant then vl (1^,) > fl-1 v2(1A,,) 
is appropriate. This concludes the proof of Lemma 2. []  

A yet simpler criterion is formulated in the following. 

Corollary 1. 
Let v = vl be a monotone and weakly rearrangement-invariant comparison function such that 

the first inequality of (2.16) is satisfied. Then, 

A x , . ( m )  < A(m) := sup [[gaIIx B x , , ( m )  < fiA(m) . (2.20) 
gA~Z,, v(g^)  ' 

Consequently, we have 

3x,r < 1 -+- (2 + fl)~t(m) , m _> 1. (2.21) 

This result suffices for most of the applications to the examples considered in [9, 10, 11], as 
was demonstrated in Section 3 of [8]. 

R e m a r k  1. Theorem 1 (in conjunction with Lemma 2) and Corollary 1 yield upper bounds for 
3x,r the optimality of which depends on the proper choice of the comparison functions. Some 
simplified lower bounds for either Ax,r  or Bx,o(m) in terms of comparison functions have 
been formulated in [8]. In many situations, using examples based on the polynomials 1A will yield 
matching lower bounds. For example, the quantity B~, ,  (m) can often be estimated from below by 
constructing disjoint A' and A" (#A' = #A" _< m) such that the ratio II 1A, l[ X /II 1A,, 1] X is large (and 
comparable to the upper bounds). For examples, we refer to Section 3 and [8]. 

R e m a r k  2. We conclude with showing the crude estimate (1.8). Obviously, by definition of f 
and Mq, we have 

and 

v ( f )  := M~ l f eo~ < ]lfllx V f e X ,  

]lgA]]X < E ](gA)kl < m ]]~A][eo ~ < mMq~V(gA) 
k~A 

for all gA 6 Zm. Thus, by Corollary 1 we have (1.8). 
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3. Applications to the Haar System 

In this section, we present some applications of the material of  the previous section to the Haar 
system. In most cases, we use Corollary 1. Roughly speaking, the art consists in detecting a suitable 
monotone and weakly symmetric comparison function v for which the lower bound in (2.16) holds 
tightly, and to find the appropriate .4 (m). Matching lower bounds are obtained by using Remark 1. 
As was mentioned before, all univariate examples considered in [9, 10, 11] are covered by our 
approach, see [8] for some more details. 

Here we only deal with the univariate Haar system H = {h~ } which is the prototype of  wavelet 
systems. We use the following notation. Set A1 := [0, 1], and call 

A2J-I+I :=  [ ( l -  1)2-J+1,12 -j+l] l 1 . . . . .  2 j -1  

are the dyadic intervals of  level j > 1. XA denotes the characteristic function of an interval A. With 
each of these intervals, we associate a Haar function hk with support in Ak by setting h 1 := XA 1 and 
h2j- l+l  : =  XA2J+2t 1 -- XA2j+2t for the remaining k = 2 j - I  -4- l > 2. 

We will first consider the Haar system in the Banach spaces Lp :=  Lp(O, 1), 1 < p < c~. 
More precisely, H denotes now the L p-normalized system {1Ak l-  1/phk }. Thus, if we talk about Haar 

coefficients of  f E Lp,  we have in mind the sequence fP - {[A~I1/Pf~}, where f = ~ = 1  fkhk. 

Obviously, f ~  = f .  
Let us start with the case 1 < p < c~ [10]. For these p,  H is an unconditional basis in Lp, 

and the comparison function of  our choice is the Lit t lewood-Paley norm 

For some choice of  the positive constant C t, we have 

v( f )  <_ [[fllLp ~ C2pv(f) V f E Lp(0,  1) ,  

compare [6, III, Theorem 9]. Due to this norm equivalence, ,4(m) < C 2 < oo for all m. Thus, to 
show the basic result of  [10], 

3Lp,n(m) ~ l , m > 1 , 1 < p < o o ,  (3.1) 

i.e., the asymptotic optimality of  the greedy algorithm (up to a constant factor), as a consequence of 
Corollary 1, we only need to verify that v is weakly rearrangement-invariant (the monotonicity i) is 
obvious). The proof  of  ii) with some fl = tip < co is essentially contained in [10, Lemma  2.1-2] 
(note differences in notation), we do not repeat it here. 

Next we come to the case p = co which has been dealt with in [9, Section 6.2], see also [2] 
for earlier results. To be precise, the L~- space  we are dealing with is the closed, separable subspace 
in Loo generated by H.  A suitable comparison function is defined by the norm 

v(f)  :=  f ~ < IlfllL~ �9 

which satisfies i) and ii) (with/5 = 1). Inequality (2.20) is fulfilled with ,4(m) = m since 

k~A 
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for  all Haa r  po lynomia l s  gA ~ E,n. This  gives 

8Loo,H(m) < 3m q- 1 , m >_ 1 , 

where  we  have used Corol la ry  1. 
S ince  2 m > m for  all m > i ,  the two m- te rm Haa r  po lynomia l s  

m-1 

1A = h l  + Z h2J-~+l ' 
j = t  

co r respond  to dis joint  A and A ~ and sat isfy 

IIl^llL~o = m ,  II1a'llLoo = 1 .  

This gives the lower  bound  

m 

1A' = Z h2m+m ' 
l=I  

8L~,H(m)  >__ m , m ~ 1 , 

i f  we cons ider  f = (1 + ~)IA,  + 1A, and let E > 0 tend to zero.  
The  fo l lowing  resul t  shows that  we can do better. Moreover ,  it shows that  the es t imat ion  

techniques of  Sect ion 2 are essent ia l ly  sharp.  

T h e o r e m  2. 

We have the identity 

t~Loo,H(m ) = 3m + 1 , m > 1 . (3.2) 

Since Mq, = 1 f o r  the biorthogonal system �9 = {IAk I -  I hk } o f  H,  this also shows  that (1.8) is the 

best  possible. 

P r o o f .  On ly  an improved  lower  bound  needs  to be  establ ished.  Le t  k > 3, and define 

1 1 
gr = h2rk-l+l  -k- ~h2rk-2+l if" . . .  2(k_2----'~h2(r-l)k+l+l , 

f r  = h2cr-l)k+l -- b k l  gr , 

and 

~ - , k - 2 0 - s  where  bk ----- z..,s=0 "- 2 -- 2 - (k -2 )  > 1. Obviously ,  

and 

b k ,  
gr (X) = - -2  - (k -2 )  , 

0 ,  

r = l , . . . , 2 m ,  

X E A2rk+l , 

X E A2(r - l )k+l+l \A2rk+l  , 

X E [0, 1]\'X2~,-~k+~+l . 

Note  that 

0 ,  
f r (X)  = 1 qt_ 2 - ( k - 2 ) b k  1 , 

- - 1 ,  

X E A2rk+l U ([0, 1]\A2(r-1)k+l ) , 

X E A2(r-1)k+l+l\/k2rk+l , 

X E A-2(r-I)k+l\A2(r-I)k+I+l . 

Ilfrllco  < 1 + 2 - (k -2 )  , l lh2(r -0k+l  --  grl lLoo = 1 + 2 . (3.3) 
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Set 

f -~ Z f r  - [ - (1- - , )  (fr--2h2(r-1)k+l)--(h2(2m-L)k+x -[-g2m) , 
r=l \r=m+l 

Where 0 < ,  < 1 is arbitrary. It is easy to see that the m largest in absolute value coefficients of  f 

are 1, and associated with the Haar functions h2(r-~)k+l, r = 1 . . . . .  m. Thus, 

IIf  - GmfllLoo Z [(f  -- Erm_--i h2,r-l,k+l)(0+)l 
= l - m  + (1 - e ) ( - 2 ( m  - 1 ) -  1 - -bk) l  

= 3m + i - (2m + 1 ) , - -  (1 - , ) 2  - (k-2)  . 

(3.4) 

On the other hand, an upper estimate for am (f)Lo~ can be obtained from (3.3) as follows: 

< max{llfrl[Loo, r =  1 , . . . , 2 m - 1 ,  Ilh2,~m-,,k+l--g2mllLoo} 
< 1 + 2 -(k-2)  . 

Here, we have used that the supports of  the fr ,  r = 1 . . . . .  2m - 1, and h2(zrn-Dk+l --g2m are pairwise 
disjoint by construction. Together with (3.4), letting E --+ 0, and then k ---> oo, we arrive at the 
equality for ~LoQ,H (m) in (3.2). [ ]  

In the final case p = 1, we could not find a suitable u satisfying all the assumptions of  

Corollary 1. We will therefore use Theorem 1 in conjunction with Lemma 2. Set 

:7 } v l ( f )  : =  sup ' Z :lj-l+l ' j ~-~ i , v2 ( f )  : =  : 1  
I=1 

where both comparison functions are monotone and satisfy (2.16). Moreover, v2 (but not Vl) is 
weakly rearrangement-invariant. Recall  that j~l = [Ak Ilk. 

Inequality (2.20) holds with ,4(m) = m, /~ = 1. Examples  for the lower bounds can be 
constructed as in the case p = oe from the polynomials  

m m--1 
1A = Z 2mh2m+l ' 1A' = hi -1- Z 2J-lh2J-l+l ' 

/=1 j=l 

which satisfy Ill^IlL1 = m, II1A'IILx = 1. This gives 

m < 8L1,H(m ) < 3m + 1 , 

which is the known result from [9, Section 6.1]. As should be expected, an improvement as in 
Theorem 2 holds. 

T h e o r e m  3. 
We have the equality 

8Ll,,q(m) = 3m + 1 , m > 1 . (3.5) 
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Proof. 

where 

Obviously, 
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The following example shows the equality in (3.5). For fixed large k and small ~ > 0, set 

, x E A ~ t ,  

, X E  + 1 '  

, X E A '  2m ' 

m - 1  m-1  

f g + E E 221kh221k+l --  2 E (21+l)k = 2 h2(zl+i)t+l , 
1=0 l=0 

A i m  = A22mk+1 . 

2kin 

g = h l  -b ~ . s  = 22kmx[o,2-2km ] �9 

j=l  

m-I 
Crm(f)L1 < IlgllLt + e ~ 221kh22~k+l < 1 + Em . 

/=0 L1 

E. ~ ~---,rn - 1 On the other hand, G i n ( f )  = (1 + j z-~t=0 221kh221k+l �9 Thus, 

m--1 m-1  

f -- G in ( f )  g E 221kh221k+l 2 E (2/+l)k = - - 2 h2fzl+l)k+l . 

l=0 l=0 

From this formula, we see that 

[ ( f  - G i n ( f ) )  (x)[ 

K ' 2 l - I  2 21k (1 - 2 2/k -- 2 z--,j=o 2jk > 4 �9 2 -k )  

_ X-'21 2 j k  2 (2l+l)k+l (1 -- 2 - 2  -k)  > 2 (21+l)k+l -- 2/--,j=0 >-- 

2 2mk --  2 Z.-,j=0~'2m-1 2Jk > 2 2ink (1 --  4 . 2  - k )  

where I = 0 ,  1 . . . . .  m - 1 ,  and the intervals A~r are defined by 

Arr = A2rk+l\A2(r+l)k+l , r = 0 . . . . .  2 m  - -  I , 

This implies 

I I f -  G m ( f ) l l L ,  > (3m + 1 ) ( 1 -  2 - k )  ( 1 -  2 - ( k - 2 )  , 

and together with (3.6) the lower bound in (3.5) if k --+ oo and ~ -+  0. [ ]  

(3.6) 

R e m a r k  3. The examples for the lower bounds in Theorem 2 and 3 also show that no algorithm 
based on nonlinear partial sum operators 

f l > S A ( f ) ( f  ) 

with respect to the Haar system or based on more general scaled versions 

f '  ' J A ( f )  ' J /  ~ E o a ( f ) k f k h k '  

kcA(f) 

where I A ( f ) i  < m and w ( f ) k  > 0 for all k ~ A ( f )  can perform better than within a factor of  ,~ m 
compared to the best m-term approximation in the L ~ -  resp. Ll-norm.  This remark also applies to 
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the tree optimization algorithms discussed in [2] and [1]. It seems to be an open question whether 
better methods of low complexity can be found in these cases. 

Let us investigate the changes if we replace Loo by spaces of functions of bounded mean 
oscillation. We consider two slightly different situations. The space BMO is the subspace of L 1 (0, 1) 
defined as the closure of H under the norm 

1 
[[fllsMO = Ifl[o,l]]-4- sup Ilf - f[AIIL1(Z~) , (3.7) 

AC[0,1] [-~ 

where f lA = [A[ -1 fA f ( x ) d x  is the average value of f with respect to A, and the supremum 
in (3.7) is taken with respect to all intervals A in [0, 1] (for some details, see [6, Section V.3]). 
Analogously, dBMO (the dyadic BMO-space) is defined with the weaker norm 

IIf[[dBMO = Ifl[o,l][ +sup  1 [[f -- fl~xkl[Ll(~k) ( <  IIflIBMo ) �9 (3.8) 
k>l ~ k [  

These spaces traditionally serve as replacements for Loo resp. C in questions of Fourier analysis 
(together with versions of the Hardy space H1, they form 'better' endpoints for the scale of L p-spaces, 
1 < p < oo). Note that Loo is continuously imbedded into BMO and dBMO, more precisely, we 
have 

IIflIBMo ~ Ifl[0,1]l + Jlfllzoo 5 21[fllzoo V f E Loo(0, 1).  (3.9) 

Let us consider the behavior of greedy algorithms with respect to the Haar system (note that 
the Haar functions hk have unit norm in both BMO and dBMO). Obviously, the comparison function 
v ( f )  :=  II flle~ is defined by a symmetric sequence norm and satisfies 

v ( f )  < = + sup < IIfIIdBMO ( <-- [[flIBMo ) (3.10) 
k>_2 

for all f ~ dBMO (resp. f ~ BMO). In order to use Corollary 1, we need estimates for the 
BMO-norm of arbitrary m-term polynomials. 

L e m m a  3. 
For any m-term Haar polynomial g,~ E ]~m we have 

IIgA]IBMO < m I1 ̂  I1,  (3.11) 

and 

Both estimates are asymptotically sharp (up to constant factors). 

Proof .  The first inequality is trivial since 

]]gAIIBMO < ~ /(gA)k / ' [[hkIIBMO = ~ /(gA)k I < m IIgAII,oo �9 
k6A k~A 

The function 

gA (x) = g(2x + 1) , 
g..,[m/2 ] 

g(x)  = ~(x) = z.-,j=l h2i-l+l , x e [0, 1] 

--~(--x) , x ~ [--1, 0) 

(3.12) 

, ( 3 . 13 )  
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is a Haar polynomial for some index set A with #A ----- 2[m/2]  < m. Thus, gA ~ ]~m and, 
obviously, II~A Ile~ = 1. Consider as A the interval of  length 2 -Ira/2] with midpoint at x = 1/2. 
By construction, gA(x) = i [ m / 2 ] ,  x 6 A, depending on whether x < 1/2 or x > 1/2. This gives 
gA I A = 0 and 

IIgAtlBMo >--IAI -a  IIgA IILI(A) = [m/2]  . 

Altogether, this gives the sharpness assertion for (3.11). Since A is not a dyadic interval, this 
reasoning does not lead to a lower bound for the dBMO-norm. 

The inequality (3.12) follows from a coefficient norm equivalence for the Franklin system in 
BMO first established by Wojtaszczyk [ 14] (see also [6, Section VI.5, Theorem 11]) and a well-known 
connection between the Franklin series in BMO and Haar series in dBMO (which follows by duality 
from the corresponding statements for Hardy spaces). We give an elementary alternative proof which 
is based on a neat extremal property of  Haar polynomials in the dBMO norm (see Lemma 4 below). 
Let any gA be given, where II~A Ile~ < 1 and #A < m. Let us observe the following. The function 

gk(X)--(gA--gAlAk)(XlAk[+Xk)= (teAZ:htChk(g'A)lhl) (XlAkl+xk) ' X E [ 0 , 1 ] ,  

where xk is the left endpoint of  Ak, coincides with a certain gA' with A / C N\{ 1 } satisfying #A / < m, 
tlgA, lle~ _< 1, and 

IAkt -1 II g A -  gAl/XkllLl(Ak ) = Ilgkllz~ = IIgA'IIL! 

Thus, 

max IIgAIIdBMO < 1 + max Ilgillz~ , (3.14) 
gA: II~A Ileo~-<l, # A < m  gA: [1#^ Ileo~---1, ACr~\ta}, #A<m 

i.e., estimates for the dBMO-norm reduce to estimates for the more convenient L 1-norm, and can be 
obtained easily. 

Indeed, take any A C N\{1}, #A < m, and set Aj = A n {2 j -1  + 1 . . . . .  2J}, j > 1. Let 

n = [log 2 m] and/kn = Uj<n Aj. Then for any gh with II~A Ileoo --< 1, we have 

[[gAIIL1 < (gA)k hk q- ~ (gA)k hk 
j=n+l L1 

But 

Y~ (gA)khk < ~ 2-J+I"#Aj < 2 - n m < l ,  
j=n+l k~Aj L1 j=n+l 

and, by Lemma  4 below, 

~eX, (~,A)k hk < An < C~/'-n. 
L1 

According to (3.14), this gives (3.12). The sharpness of  this inequality also follows from Lemma 4. 
The polynomial 

2 n 

1A : = ~ h k ~  Zm 
k=2 



Greedy Algorithms and Best m-Term Approximation with Respect to Biorthogonal Systems 339 

will do. This concludes the proof of  Lemma 3. [ ]  

We have postponed the proof of  the following. 

Lemma 4. 
We have 

where 

• ckhk 

k=2 L l 

n () 
An = 2 In - 2kl n 

k = 
k=0 

& 
<_ ~...~Ckhk <: A,,llclle~ , 

k=2 dBMO 

2m'2 -2m(2m ) ' m  

(2m+l ) .2 -2m(  2m ) 
m 

Equality in (3.15) is achieved for ck = 1, k = 2 . . . . .  2 n, 

ProoL 

n = 2 m  

n = 2 m + l  

(3.15) 

According to our above considerations, the best constant An in (3.15) is given by 

A n = max ~ ckh k . 
Ickl--<l k=2 LI 

where we have used that ck = 1 for k > I. Observe that gl is constant on all of  At while g2(x -t- 
2 j)  = g2(x) for all x c A + = A2J+2r_ 1, the left half of  Az. Thus, by the elementary identity 
la + bl + la - bl = 2 max(lah Ibl), we have 

2 n 

cghk = Ilgl + g2 -t- clll/.,(z~D + Ilgl + g2 - -  cI IIL1(A+ ) 
k=2 L1 (At) 

= 2 Ilmax (Igl + g21, Ictl)llL,(A{) --< 2 Ilmax (Igl + g21, 1)IIL,(A~-) 

= IIgl --I- g2 + IlILI(A{-) nt- }}gl '{-g2 -- IlILI(A+ ) ---- ~ c ' k h k  

k=2 LI(A/) 
! 

where c k = Ck for k ~= l, and c~ = 1. Thus, c' is also a maximizer in the above expression for An. 
Repeating this reasoning, we arrive at the statement. [ ]  

It remains to compute An. Obviously, 

k~=22n 1t n ( ) /1 An= hk = 2  -n ~ I a l + . . ' + ~ n l = 2 - n ~ l n - 2 k l  k �9 
L, 6-----(t~ 1 ..... 8n)~{1,-1} n k=0 

ckhk +Clhl + Z hk 
k=2 �9 k=2i+l ~ /~,(At) 

=gl =g2 

2n II 
y ~  Ckhk = 

II k=2 L~(at) 

We will show that this maximum is attained for Ck = 1, k > 2. Let c = {ck, 2 _< k _< 2 n } be a 
maximizer. Let I be the largest coefficient such that Cl ~ 1 (consequently, - 1  _< Cl < 1). Without 
loss of  generality, let l = 2 j -1  q- r for some 1 _< j _< n and r = 1 . . . . .  2 j -1 .  Changing the 
coefficient Cl will only influence the values of  the polynomial on A l . We can write 
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If n = 2m is even, then we continue 

m-1  
4 ( 2  k 

A2m --  22 m Z ( m  - k )  
k=O 

2m( 
22m 22m m 

) 2 m (  ( 2 m  
= ~ 22m - m 

) ) _  8 m ~ 2 (  2 m - 1  

~=o k ) 
2m ( ( 2 m ) ) 4 m  ( ( a m - - 1  
22 m 22m - - - 2 m ~ 2 2 m - 1  m --  1 

4 ~ k ( 2 k )  
) ) -  2~mm k= 1 

) )  2m ( 2 m )  
~ m ' 

The case n = 2m + 1 is treated analogously. Note that A2m+l = (1 + ( 2 m ) - l ) A 2 m  . From Stirling's 
formula we find that 

2m (2me)2m (m)-2m ~ 
A2m N ~ - ~  ' . e l  27rm = " 

Altogether, this establishes Lemma 4. 
After these preparations, we can formulate the following. 

T h e o r e m  4. 

We have  

8BMO, H(m) .~. m , (3.16) 

a n d  

(3.17) ~aBMO,.(m) • lv/i-3722m 

as m ---> 0o. 

Proof.  The upper bounds follow from Corollary 1 and the above Lemma 3. The lower bounds 
can easily be derived from the examples already mentioned (note that, as a happy coincidence, the 
asymptotic sharpness results for the inequalities in Lemma 3 are of the type 1A as required in our 
scheme). For example, to get the lower bound in (3.16), set 

m 

f = gA + (1 q- E) ~ h2,,+l 
l=1 

in the B M O - c a s e ,  where gA is defined in (3.13), and set 

2 n m 

f =  y ~ h k  + ( 1  + E ) ~ h 2 m + l  

k -2  l=l  

in the d B M O - c a s e  (n = [log 2 m], E > 0). In both cases, Gm f = (1 + E) ~-]~n=l h2m+l, thus, the error 
of the greedy approximation can be recovered from the above estimates. On the other hand, the best 
m-term approximations for these two examples are certainly bounded from above by [[1a, ][L~ _< 1 
for some A / C {2 m + 1 . . . .  ,2 m + m}. This completes the proof. [ ]  
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