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ABSTRACT.  The article extends upon previous work by Temlyakov, Konyagin, and Wojtaszczyk on comparing
the error of certain greedy algorithms with that of best m-term approximation with respect to a general
biorthogonal system in a Banach space X. We consider both necessary and sufficient conditions which cover
most of the special cases previously considered. Some new results concerning the Haar system in L1, Loo,
and BMO are also included.

1. Introduction

Throughout this article, let X be areal separable Banach space, and ® = (¢4, k € [}aminimal,
normalized, dense system in X. We identify I with the set of natural numbers N = {1,2,...}
(although all considerations apply to finite-dimensional spaces, too, we will assume dim X = c0).
The normalization condition reads ||¢xl[x = 1, ¥ € N, and the density requirement says that the
union of all linear subspaces V5 = span{¢y, k € A} generated by finite index sets A C I is dense
in X. Minimality is equivalent to the existence of a biorthogonal system ¥ = {y, k € I} C X’
such that

=1
<wz,¢k>x/xx=skz={é Sy

In order for the following discussion to make sense, we will assume that

My = max |Yylly <00, (L.1)
kel

As is well known, this condition is equivalent to requiring that the coefficient sequence f={fi:=
(Y1, f)x'xx ) is a null sequence (i.e., fx — 0ifk — oo) forany f € X.
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For later use, we introduce the following notation. In agreement with the above notation, we
setVpy:={feX: fAk =0, k & A} for arbitrary A C I, and denote by g the generic element of
Va. If the index set A is finite, i.e., #A < 00, then the g5 are called polynomials, and we introduce
the notation

1A :=Z¢k€VA.

keA
The nonlinear set
Tmi= | Va
#A<m

contains all m-term polynomials, i.e., polynomials with < m non-zero coefficients. The following
partial sum operators are well defined for any finite A C I:

Saf=Y fidk, Snaf=f—Saf.

keA

For arbitrary null sequences ¢, we set |c| := {lcxl, k € I}, ¢ > ¢/ means that |cx| > |c; |, k € I,
and ¢* = (¢} = cix), k € I} denotes the decreasing rearrangement of ¢ which is defined by a
one-to-one mapping I, : I > I such that |c*| is monotonically decreasing, i.e.,

o) = e =

Obviously, I, is only unique up to index permutations for ¢; with equal absolute value. The reader is
assured that the results of this article do not depend on the specific choice of the index mapping /..

Temlyakov [9, 10, 11] has written a series of papers on the error behavior of greedy algorithms
associated with various classical systems (uniformly bounded orthonormal systems, wavelet systems,
etc.) in various Banach spaces (L p-spaces, Fg -spaces, etc.). Using the above notation, the simplest
greedy algorithm is given by

feXr—Gufi= 3 ad, Am:={lf(k),k=l,...,m}, (1.2)
keAm

where the mapping ! 7+ I — I was defined above. The name greedy is justified since G f =
Gu-1f + Gi(f — Gu_1f), m = 2, is the result of recursively applying the greedy operator G.
Theoretically, if N = dim X is finite, and all fk are computed exactly, then a simple sort is sufficient
to define [ 7 and, thus, G, f forall 1 < m < N. We will not discuss implementational issues or
other versions of greedy algorithms. (See [11, 3,4, 12, 13] and the references cited therein; to some
of them, the approach below carries over with minor modifications.) Rather, we concentrate on the
worst-case comparison of the greedy approximation error || f — Gy, f || x with its lower bound given
by the best m-term approximation with respect to ®:

‘= inf - = inf inf - ) 1.
om(f)x glenzm f—glx Acllzr}MSm g/trelVA lf —gallx (1.3)

More precisely, we are interested in estimates for the quantity

dx,0(m) 1= sup M , m>1. (1.4)
fex  om(f)x

Although similar definitions can be considered for other variants of greedy algorithms, we solely
deal with the investigation of this quantity which describes the worst case behavior of the greedy
algorithm G, for each fixed m with respect to arbitrary f € X.
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When analyzing the approach taken in [9, 10, 11] in various partial situations, it is easy to see
that it relies on a few basic ingredients, mostly estimates for m-term polynomials. In the preprint
version {8] of the present article, we presented a rather technical set of inequalities yielding upper
and lower bounds for §x, ¢ (m) in the general case. We also considered some simplified conditions
based on monotone comparison functions, and applied them to various examples. When presenting
our results from [8], V.N. Temlyakov brought to our attention the papers [7] and [15] which contain
closely related results. In particular, [7] gives a characterization of all bases ® in X such that

3x,0(m) = 0(1), m— 00, (1.5)

in terms of unconditionality and inequalities for the polynomials 1, (the so-called democracy con-
dition). The connection of (1.5) with the weaker notion of quasi-greedy bases, i.e., ® for which the
greedy algorithm converges for any f € X, and with various other related properties is also studied
in {7]. Similar results have been found in [15] for general biorthogonal systems.

The aim of this article is to present a unified approach to estimating éx,¢ (m), by introducing
generalizations of the unconditionality and democracy conditions, and to derive more practical
criteria if

vi(f) = Iflx =v(f), feX, (1.6)

where v; , i = 1, 2, are monotone comparison functions. These results can be found in Section 2.
We also give some new results for the univariate Haar system H. In Section 3 we prove the

equality
8p,,g(m)=3m+1, m>=1, p=100, (L7
which implies that the trivial estimate
dx,a(m) <3Mym+1, m=>1, (1.8)

cannot be improved. Finally, the asymptotic behavior of 8gpr0, g (m) and 84pmo0, 1 () is determined.

2. Abstract Estimates

Fix a system & C X satisfying the properties of Section 1. For arbitrary f € X, define

Ifllx,e;1 = inf  figllx, I fllx,@2:= sup |lglx- 2.1
geX g2 f geX:p<f

In general, these quantities are not norms on X (|| - | x,¢;1 does not satisfy the triangle inequality,
while || - || x,@;2 may take the value +00). It is well known [5, Proof of Theorem 1.3.2] that

IF %02 = sup | e fush 22)
=%l ges X
Obviously,
Iflx,01 < Ifllx <N flxe2 VS eX. (2.3)
Let us introduce the quantities
Ax o(m) = sup 1EAlX.®:2 >1, (2.4)

BAEZH, llga ”X,<p;1
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and

14 .
Bx.o(m) := sup Aalxez oy 2.5)

ANAT=0, 1<#A'=#A"<m I1A7 1 x,0;1

The quantities Ay, ¢(m) indicate how close ® is to being an unconditional basis (indeed, uncondi-
tionality is equivalent to

Ax.o(m) =0(1), m— 00, (2.6)

see [5, Theorem 1.3.2]). On the other hand, { Bx,¢(m)} is connected to the notion of democracy resp.
superdemocracy introduced in [7]. Roughly speaking,

Bx e(m) =0(1), m-— o0, 2.7)

implies democracy and superdemocracy (and is equivalent to them if (2.6) is satisfied). Examples
showing that (Ax ¢(m)} and { Bx ¢ (m)} may behave independently for m — o¢ canbe found in [7].
Our first result generalizes Theorem 1 of [7] as well as Theorem 4 of [15].

Theorem 1.
For any system ® C X satisfying the assumptions of Section 1, we have

Sx,0(m) <1+ 2Ax ¢(m) + Bx,0(m) , (2.8)
where m > 1. This upper estimate is asymptotically sharp as we have
8x,0(m) < max(Ax,e(m), Bx,e(m)) , m—> 00 . 2.9

We start the proof of Theorem 1 with a formula for Ax, ¢ (m) which exhibits the relationship
with unconditionality more explicitly. Set

S
Ux,o(m) :== sup sup M , m=>1. (2.10)
geX #a<m Nglx

Note that the second infimum could have been restricted to all A with #A = m, without changing the
value of Ux ¢ (m) (since g — 0 we can enlarge any A to the necessary cardinality while essentially
preserving the value of [|Sa g x)-

Lemma 1.
We have
Sarg — San
Ux,o(m) < Ax,¢(m) = sup sup 1558 = Sa78lx <2Uyx o(m) (2.11)
g€X A'NA"=0, #AT+#A" <m igllx

forallm > 1.

Proof. By definition of Ax ¢(m) and by (2.1) and (2.2) it follows that

lgallx o2
Ax o(m) =sup sup sup —_—
geX 1<#A<m greVy:aa<g N8lx

[ X kea cxbdrl
=sup sup max
geX l<#A<m &=%I ellx
ISarg — Spn
= sup sup A8 — Sargllix '
geX ANA"=D, #A/+#A"<m liglx
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The remaining inequalities in (2.11) are obvious.
Another preparation is the following, more technical observation. If we define

1al% 0 == inf lea +gnally »
BAEVA. gnAEVIA 1 Ea=1A. 8nallens ST

and

. ] 1Al x,®;2 212

BX’q,(m) = sup e >1, (2.12)

AN =p, 1<#n/=#A"<m 1107y @01

then

B}k(,q:(m) < Bx¢(m) < B}'},cp(m) +Axo(m)y, m=1. (2.13)

The lower estimate is obvious since |17 || x,¢:1 < |14~ IIj,‘(, .1 by definition. To establish the upper
bound, let £ > 0 be fixed. According to the definition (2.5), we can find disjoint sets A", A” of
cardinality 1 < #A’ =#A"” = m’ < m, and functions

gv =) &b (e==%1),

ke’
and g = ga» + gp s~ satisfying gar > iAn, such that

ligal
(1-8)Byo(m) < —% .
ligllx
Now, introduce a partitioning of A’ = A U A into the two disjoint subsets
A={k€A’Z|§k|>1}, 1—\=A/\1~\.

If A = @ then we can find a real number A > 1and a set A", again disjoint from A’ and of cardinality
m’ such that

8| =2, kedA”, lge| <A, kgA”.

This shows that

—_— — *
2 eallx < Marllxon > A7 Mgy = 100 0

which by (2.12) implies (1 — £)Bx ¢(m) < B;, o {m) in this case.
If1 < :=#A <m' < m then we simply write

lenllx _ [Saenly | [Sasnlx
lelx = lgllx lelix

The second term can again be bounded by B}, o, (m) by repeating the above argument with A, m’,
and g’ replaced by A, m = m’ — i, and Sj g,-, respectively. For the first term, recall that by
definition of 1~\, the coefficient bound for g4, and Lemma 1 we have

IS58a "X = "Si\g"X,q);z < Axom)lgllx -
Thus, altogether we have

(1—¢)Bx,o(m) < Ax,e(m) + By o(m) ,
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which gives the upper bound in (2.13) if e — 0.

We can now prove the upper bound (2.8). For any given f € X, let the index set A, of
cardinality #A,, = m be defined by G, f = Sa,, f. For any ¢ > 0, we can find a polynomial
ga € Va suchthat g := f — gj satisfies |lgllx < (1— &)~ lo, (f)x. Without loss of generality, we
can assume that #A = m, too. Now, set

AN =AMAMAn, A =An\A.

These sets are disjoint and have equal cardinality m’ = #A’ = #A” < m. Since Sn\(aua)f =
SI\(AUA) &> WE can write

f=Guf =Sn@auan8 + S f =8 —Sr8 —Sarg+Suaf .
Applying the triangle inequality, we get
If =Gmflx _, IISagllx | I1Sa7gllx | IISa fllx

(1-¢) <
om(f)x llgllx lglix llgllx
1y .
<1+2Uxo(m)+ ﬂm
11arllx, ;1

<1+42Ax,e(m)+ Bx,o(m) .

In the estimation we have used that by definition of G,, f, A’, and A”, we have
if<liel=l4] veew.wen

Letting £ — 0 and taking the supremum with respect to all f € X, we have (2.8).
To prove (2.9), we need to establish a matching lower bound. By definition of Ux ¢ (m), for
any & > 0, we can find a non-zero g € X and an index set A of cardinality #A = m such that

ISagllx = (1 —&)Ux,e(m)liglx -
Set
f=Mylgllx +D1s +g—Sag.
Since [gx] < My llgllx by (1.1), we have
If ~ Gmflix =llg — Sagllx > ((1 —&)Ux,0(m) —1) llglx -

On the other hand, f and g differ by a polynomial from V which gives o, (f)x < llgllx. Altogether,
for ¢ — 0 we obtain

- Ax,o(m)

8x,o(m) > Ux,o(m) ~ 1> > 1, (2.14)

where we already have incorporated the result of Lemma 1.
Analogously, from definition (2.12), for any ¢ > 0 we find disjoint sets A’, A” with #A’ =
#A” < m, and functions g5s € Vs, g € X, such that

N A n >1, ke A,
gn <1y, }gkl <1, k¢ A

and

lgallx = (1 —&)Bx o (m)liglx -
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Choose any A disjoint with A’ and A” such that the cardinality of A = A’ U A equals m. Set

f=gn+Snaung+ 1+ (Sarg +13) -

Then

If = Gnfllx = |gar + Snanunyg| x
> ((1 - &)Bf (m) — 1 —2Ux,0(m)) ligllx ,

and (by subtracting a suitable polynomial from V)

on(f)x < inf {1f —gallx < llg +eSargllx < (1+eUx.om) liglx -
AEYA

Together with Lemma 1, (2.13), and after letting ¢ — O, this gives
dx,0(m) > By o(m) —3Ax o(m)—1, m=>=1. (2.15)

Combining (2.14) and (2.15), it is not hard to derive the lower bound in

1
g max (Ax,0(m), Bx,o(m)) < 8x,6(m) < 4max (Ax,o(m), Bx,o(m)) ,

while the upper bound is obvious from (2.8). This proves (2.9), and completes the proof of Theorem 1.
Note that the proof shows that Ay ¢(m) could be replaced by Ux, ¢(m) in both relations (2.8)
and (2.9). It is also possible to replace By, () by B;‘M,(m) in (2.9). O

Although Theorem 1 gives the correct asymptotic behavior for the quantities §x, ¢ () in the
general case, its application to particular systems is tedious, partly due to the complicated, implicit
definitions of Ax ¢ (m) and By ¢ (m). We will show next that the upper estimates can be simplified
if it is possible to introduce suitable comparison functions v; : X —> R4 U {0}, i = 1,2, such
that

) =Iflx, leallx < valga), (2.16)

holds for all £ € X and all polynomials g4 € V5 and any A with #A < oo (assumption (2.16) and
the considerations below show that v, only needs to be defined for polynomials g4, not necessarily
for general f € X).

Wecallav : X —> R, U {oo}

*  monotone if v(f) < v(g) whenever f < g,and
* weakly rearrangement-invariant if v(1,/) < Bv(1,~) with some fixed 1 < 8 < oo for all
finite disjoint index sets A’, A” satisfying #A’ = #A".

Clearly, these definitions depend on ®. If v(f) = || f | is given by a symmetric sequence norm || - ||
such as (a multiple of) an £.-norm then it satisfies both these conditions (with 8 = 1). Some other
examples of practical use include Littlewood-Paley type norms (see, e.g., [10]).

It is easy to see that the comparison functions

vx,o;1(f) = [ fllx,e;1, vx,&;2(f) = Il flix,e;2

are monotone, and satisfy (2.16). Moreover, this choice is optimal in the following sense: if two
monotone comparison functions vy, vy satisfy (2.16) then

vi(f) <vxe:1(f), vx ¢;2 (ga) < v2(ga) VieX, grneVa. (2.17)
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With this observation at hand, we have the following obvious lemma.

Lemma 2.
Assume that there are two monotone comparison functions vy, vy such that (2.16) holds. Then

Ux.om) < Ax.o(m) < A(m) = sup 2880 2.18)
encsn V1(ga)
and
Bk o(m) < Bx,¢(m) < B(m) := sup v2da) . (2.19)

ANA" =0, #A'=#A"<m VI(AA7)

If either vy or v2 is weakly rearrangement-invariant then B(m) < BA(m).

Proof.  The inequalities (2.18) and (2.19) immediately follow from the definitions of the quan-
tities and (2.17). The last statement is also trivial: if vy is weakly rearrangement-invariant then
va(1ar) < Bva(1/) canbeused; if vy is weakly rearrangement-invariant then vy (1 4/) > B~ v (1pn)
is appropriate. This concludes the proof of Lemma 2. ]

A yet simpler criterion is formulated in the following.

Corollary 1.

Let v = v| be a monotone and weakly rearrangement-invariant comparison function such that
the first inequality of (2.16) is satisfied. Then,

Axolm) < Aem) = sup V88X g iy < pAGm) . (220)
BAEX, v(g/\)
Consequently, we have
Sx.0(m) <1+ Q2+ pBAm), m=>1. (221

This result suffices for most of the applications to the examples considered in [9, 10, 11], as
was demonstrated in Section 3 of [8].

Remark 1. Theorem 1 (in conjunction with Lemma 2) and Corollary 1 yield upper bounds for
8x,o(m) the optimality of which depends on the proper choice of the comparison functions. Some
simplified lower bounds for either Ay ¢(m) or By ¢ (m) in terms of comparison functions have
been formulated in [8]. In many situations, using examples based on the polynomials 1 will yield
matching lower bounds. For example, the quantity B}(‘ & (m) can often be estimated from below by
constructing disjoint A’ and A” (#A’ = #A” < m) such that the ratio [[15/]|x /|15~ || x is large (and
comparable to the upper bounds). For examples, we refer to Section 3 and [8].

Remark 2. We conclude with showing the crude estimate (1.8). Obviously, by definition of f
and My we have

=Mt f, <iflx vrex,

and

llgallx < Z |@a)k| < m ||§A||gm <mMyv(ga)
keA

for all go € X,,. Thus, by Corollary 1 we have (1.8).
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3. Applications to the Haar System

In this section, we present some applications of the material of the previous section to the Haar
system. In most cases, we use Corollary 1. Roughly speaking, the art consists in detecting a suitable
monotone and weakly symmetric comparison function v for which the lower bound in (2.16) holds
tightly, and to find the appropriate A(m). Matching lower bounds are obtained by using Remark 1.
As was mentioned before, all univariate examples considered in [9, 10, 11} are covered by our
approach, see [8] for some more details.

Here we only deal with the univariate Haar system H = {h} which is the prototype of wavelet
systems. We use the following notation. Set A := [0, 1], and call

By = [0 =027 7] =2

are the dyadic intervals of level j > 1. xa denotes the characteristic function of an interval A. With
each of these intervals, we associate a Haar function h; with supportin Ay by setting kj := xa, and
hyj-1yy = XByjim 1 ™ XBgj iy for the remaining k = 2/~ +1 > 2.

We will first consider the Haar system in the Banach spaces L, := L,(0,1),1 < p < oo.

More precisely, H denotes now the L ,-normalized system {] Ag| ~1/Pp,}. Thus, if we talk about Haar
coefficients of f € L, we have in mind the sequence f? = {|A¢|1/? f;}, where f = 300, fih.
Obviously, f X = f .

Let us start with the case 1 < p < oo [10]. For these p, H is an unconditional basis in L,
and the comparison function of our choice is the Littlewood—Paley norm

00 5 1/2
W) =C;' (Zlfkl xAk>
k=1

Lp

For some choice of the positive constant C,, we have
v(f) < IifllL, SCiv(f) Y feLyO1),

compare [6, III, Theorem 9]. Due to this norm equivalence, fi(m) < Cf; < oo for all m. Thus, to
show the basic result of [10],

Sp,,Hm)~ 1, m>1,1<p<oo, (3.1)

i.e., the asymptotic optimality of the greedy algorithm (up to a constant factor), as a consequence of
Corollary 1, we only need to verify that v is weakly rearrangement-invariant (the monotonicity i) is
obvious). The proof of ii) with some 8 = B, < oo is essentially contained in [10, Lemma 2.1-2]
(note differences in notation), we do not repeat it here.

Next we come to the case p = oo which has been dealt with in [9, Section 6.2], see also [2]
for earlier results. To be precise, the Loo-space we are dealing with is the closed, separable subspace
in Lo, generated by H. A suitable comparison function is defined by the norm

v = 7], Il
which satisfies i} and ii) (with § = 1). Inequality (2.20) is fulfilled with A(m) = m since

lgallz, <3 18a] <m-v(ga)
keA
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for all Haar polynomials g5 € X,,. This gives
OLoo,H(M) <3m+1, m=>1,

where we have used Corollary 1.
Since 2" > m for all m > 1, the two m-term Haar polynomials

m-—1 m
1y =h1 + Z hyi-1yq s 1y = thum ,
j=1 =1

correspond to disjoint A and A’ and satisfy
allL, =m, A, =1.
This gives the lower bound
St g(M)2m, m=1,

if we consider f = (1 + €)1,/ + 14, and let € > 0 tend to zero.
The following result shows that we can do better. Moreover, it shows that the estimation
techniques of Section 2 are essentially sharp.

Theorem 2.
We have the identity

S m(m)=3m+1, m>1. (3.2)

Since My = 1 for the biorthogonal system ¥ = {|Ax|~'hy} of H, this also shows that (1.8) is the
best possible.

Proof. Only an improved lower bound needs to be established. Let k > 3, and define

1 1
8gr = h2rk_1+1 + Ehzrk—2+1 + ... E(sz)hz(r—l)lwl,H ,
and
fr=hye-vky g — b,:lg, , r=1...,2m,

where by = le‘;é 275 =2 —2-%-2 > 1. Obviously,

bk R X € Azrk+1 s
g,(x) - "‘2_(k_2) N X € Az(r—l)k+1+1\A2rk+1 N
0, x € [0, INAse-s1 g -
and
0 . X € Azrk+1 U ([0, 1]\A2(r—1)k+1) s
fr(x) = 1 +2‘(k_2)bk-1 , X € A2(r—l)k+1+1\A2rk+1 s
-1, X € Age-tk 1 \Dgtr—Dk+14g -
Note that

Ifill < 1427%2 0 Jhgeoieny — g, =1+27¢2. (3.3)
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Set
m 2m—1
F=Y_f+a=a| X (f —2h-ves1) = (hoam-viy +82m) |
r=1 r=m+1

where 0 < ¢ < 1is arbitrary. It is easy to see that the m largest in absolute value coefficients of f
are 1, and associated with the Haar functions A,¢—ni sor=1L...,m Thus,

If ~Gmflle, = |(f =20 hoe-vey)©04)]
[—m + (1 — €)(=2(m — 1) — 1 — by)| (34)
= 3m+1-Cm+1De—(1-e2" &2

]

On the other hand, an upper estimate for o, (), can be obtained from (3.3) as follows:

2m
om(f) < | f+20 =€) Y hyer-veyy
r=m+1 Loo
smax {1z, r=1,.,2m = L, [hyenugs = goml,, |
<1427%2,
Here, we have used that the supports of the f,,r = 1, ...,2m —1, and hyem-1x .| — 82m are pairwise

disjoint by construction. Together with (3.4), letting ¢ — 0, and then £ — 00, we arrive at the
equality for 8. g (m) in (3.2). O

In the final case p = 1, we could not find a suitable v satisfying all the assumptions of
Corollary 1. We will therefore use Theorem 1 in conjunction with Lemma 2. Set

2/~1

vi(f) := sup |J?11|’Z |f21j—1+1' izl n(f) = “fl ”el ’
=1

where both comparison functions are monotone and satisfy (2.16). Moreover, vz (but not vy) is
weakly rearrangement-invariant. Recall that fAk1 = | Akl fk

Inequality (2.20) holds with A(m) = m, 8 = 1. Examples for the lower bounds can be
constructed as in the case p = oo from the polynomials

m m—1
15 = szh2'"+l , 1y =h1 + Z2f'1h2,-_1+1 ,
=1 j=1

which satisfy |15z, = m, |1a/]lz, = 1. This gives
m<éL, g(im)<3m+1,

which is the known result from [9, Section 6.1]. As should be expected, an improvement as in
Theorem 2 hoids.

Theorem 3.
We have the equality

Sp,gm)y=3m+1, m=>1. (3.5)
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Proof. The following example shows the equality in (3.5). For fixed large k and small € > 0, set

m—1 m—1
f=g+e Z 22&11221/:4_1 -2 Z 2(2”1)&;12(2#1)&“ )
=0 =0
where
2km )
g = k1 + sz_lhzj—1+1 = 22km)([0,2—~2km] .
j=1
Obviously,
m—1
om(Pry < Mgl +€ D 2% hpy| <l+em. (3.6)
=0 L
On the other hand, Gy (f) = (1 + €) Y15 2%*hoau, 1. Thus,
m—1 m—1
f=Gu(f)=g— 2% hpu =2 2 Dpyg,, .
=0 =0

From this formula, we see that

I(f = Gm (SN
22k _ o 32 odk > 2k (1 — 4. 27K) . xeAy,

> { 2@HDk+ o 5 ojk > p@DKHI(1 2. 27k) | xe Ay,
2k imolpik > g2k (1 4.27K) , xedy,,
where! =0, 1,...,m — 1, and the intervals A/, are defined by
A'r = Azrk+1\A2(r+l)k+1 , r=0,....2m—1, /2m = Agrmkyq -
This implies

If = Gn(Hlly, = Gm+ 1) (1-27) (1-2762)

and together with (3.6) the lower bound in (3.5) if k — oo and € — 0. O

Remark 3. The examples for the lower bounds in Theorem 2 and 3 also show that no algorithm
based on nonlinear partial sum operators

f— San(f)

with respect to the Haar system or based on more general scaled versions

FroSehn =Y o(fihe .
keA(f)

where |[A(f)} < mand o(f)r = O forall k € A(f) can perform better than within a factor of & m
compared to the best m-term approximation in the Loo- resp. Li-norm. This remark also applies to
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the tree optimization algorithms discussed in [2] and [1]. It seems to be an open question whether
better methods of low complexity can be found in these cases.

Let us investigate the changes if we replace Lo by spaces of functions of bounded mean
oscillation. We consider two slightly different situations. The space BMO is the subspace of L1 (0, 1)
defined as the closure of H under the norm

I flsmo = | flio,1y] + SUP If = flallziay » (3.7

IAI

where fla = |A[™! f A f(x)dx is the average value of f with respect to A, and the supremum
in (3.7) is taken with respect to all intervals A in [0, 1] (for some details, see [6, Section V.3]).
Analogously, dBMO (the dyadic BMO-space) is defined with the weaker norm

”f”dBM0—|f|[01]l+Sup | £ = Flal yap (S 150BMO) - (3.8)

IAI

These spaces traditionally serve as replacements for Lo resp. C in questions of Fourier analysis
(together with versions of the Hardy space H, they form ‘better’ endpoints for the scale of L p-spaces,
1 < p < 00). Note that L is continuously imbedded into BMO and d BMO, more precisely, we
have

I flBmo < 1 flonl + 11fllLe £2MfllLe YV f € Loo(0, 1) . (3.9)

Let us consider the behavior of greedy algorithms with respect to the Haar system (note that
the Haar ful}ctions hg have unit norm in both BMO and dBMO). Obviously, the comparison function
v(f) := || flley, is defined by a symmetric sequence norm and satisfies

vip = |7, =[]+ s 4] < 171amo (< 1510 (3.10)

for all f € dBMO (resp. f € BMO). In order to use Corollary 1, we need estimates for the
BMO-norm of arbitrary m-term polynomials.

Lemma 3.

For any m-term Haar polynomial g5 € ¥,, we have

leallmo < m |2al,, (3.11)
and
lgallasmo < € (1 +/logs m) léall,, - (.12)

Both estimates are asymptotically sharp (up to constant factors).
Proof. The first inequality is trivial since
lgallgmo < Z {(@a), ] - MPeligumo = Z [(8a) | <m |éa ”ew :
keA keA

The function

s~ _ xIm2l,
gax)=g2x+1, gkx)= { = X2 B . (3.13)
—2(=x) , xe[-1,0
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is a Haar polynomial for some index set A with #A = 2[m/2] < m. Thus, gp € ¥, and,
obviously, |[ga lle,, = 1. Consider as A the interval of length 2-[m/2) with midpoint at x = 1/2.
By construction, g (x) = £[m/2], x € A, depending on whether x < 1/2 or x > 1/2. This gives
gala =0and

lgallzao = 1A ligallz, ) = [m/2] .

Altogether, this gives the sharpness assertion for (3.11). Since A is not a dyadic interval, this
reasoning does not lead to a lower bound for the d BMO-norm.

The inequality (3.12) follows from a coefficient norm equivalence for the Franklin system in
BMO first established by Wojtaszczyk [14] (see also [6, Section VI.5, Theorem 11]) and a well-known
connection between the Franklin series in BMO and Haar series in dBMO (which follows by duality
from the corresponding statements for Hardy spaces). We give an elementary alternative proof which
is based on a neat extremal property of Haar polynomials in the dBMO norm (see Lemma 4 below).
Let any g be given, where |galle,, < 1 and #A < m. Let us observe the following. The function

g = (ga—eala) ®lAl+x = > (@)l | ElAl+x), xe€l0,1],
leA: AjCAg

where x;, is the left endpoint of Ag, coincides with a certain g o with A’ C N\ {1} satisfying #A’ < m,
Hgarlle, <1, and

1817 | 84 = galagl Ly ay) = lgkllz, = lewlz, -
Thus,

max lgallasmo < 1+ ligall, (3.14)

max
g [l2a g, <1 #A<m 8a:[8a lleeo <t ACN\(1}, #A<m
i.e., estimates for the d BMO-norm reduce to estimates for the more convenient L{-norm, and can be
obtained easily.
Indeed, take any A € N\{1}, #A < m,andset A; = AN{2/71 +1,...,2/},j > 1. Let
n = [log, m} and An = Uj<n Aj. Then for any ga with (g4 ]le,, < 1, we have

el < |3 Gl + 3 | @a)o i

keh, L j=n+1 |lkeA; L
But
o0 o0
2 | X @) = 30 27 #A; 2Tm s,
j=n+1 | keA; L, J=nt

and, by Lemma 4 below,

D (@) <Ascvm.

kEI-\n Ll

According to (3.14), this gives (3.12). The sharpness of this inequality also follows from Lemma 4.
The polynomial

2)1
1y :=) h €3y
k=2
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will do. This concludes the proof of Lemma 3. O
We have postponed the proof of the following.

Lemma 4.
We have
v 2n
Y ahe| <> cihe < Anllclle (3.15)
k=2 L, k=2 dBMO
where

_ 2
n (n) 2m.2 zm(n':l), n=2m 2n
k)= ~

An =Y |n— 2k =
" Zl —92 2m
k=0 @m+1)-272( ) n=2m 1

.

Equality in (3.15) is achieved forcy = 1, k=2, ...,2"

Proof. According to our above considerations, the best constant A, in (3.15) is given by

2'1
A, = max chhk
lex|<1 | &=
k=2 L

We will show that this maximum is attained forcy = 1,k > 2. Letc = {ck, 2 <k < 2"} bea
maximizer. Let / be the largest coefficient such that ¢; # 1 (consequently, —1 < ¢; < 1). Without
loss of generality, let ] = 2/~! 4 r forsome 1 < j <nandr = 1,.. .,2/=1. Changing the
coefficient ¢; will only influence the values of the polynomial on A;. We can write

i 2j—1 on
}: crh = Z cehe +chr + Z hi ,
k=2 k=2 k=2 +1
Li(An) — e Ly (AD
=81 =82

where we have used that ¢; = 1 for k > 1. Observe that g; is constant on all of A; while g2(x +
2/) = go(x) forall x € A" = A,j 5y, the left half of A;. Thus, by the elementary identity
la + b| + |a — b| = 2max(|a|, |b|), we have

on
> ah = lle1+ g2 +allp oty + 81 + 82 =l st
k=2 Li(Ap
= 2 |lmax (Ig1 + g2l et ay < 2 Imax (Ig1 + g2, Dl apy
on
= llg1 + g2+ Ll apy + g1 + 82 = Lgyary = | D ki :
k=2 Li(Ap

where ¢; = ¢ fork # 1, and ¢; = 1. Thus, ¢’ is also a maximizer in the above expression for A,
Repeating this reasoning, we arrive at the statement. O

It remains to compute A,,. Obviously,

2" n
n
I 37 ISR S YT TSR
k=2

L 5==(81,...,8n)€{l,—1}" k=0
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If n = 2m is even, then we continue
4= 2m 2m (_, 2m 4
tn =g 20 (1) = (- () - 2 (V)
k=1
“E (- () EE0)
= hom - T 22m
22m m 22m L k
_2m om _ 2m 4m y2m=1_ o 2m —1 _2m ( 2m
T 2m m 22m m—1 22m m ’
The case n = 2m + 1 is treated analogously. Note that As,, . = (14 (2m)~1)As,,. From Stirling’s

formula we find that
A 2m (2m\*" (m>—2m N [4m
m T am \ 7, e 2rm ¥V om

Altogether, this establishes Lemma 4.
After these preparations, we can formulate the following.

Theorem 4.
We have
dgmo,H(m) < m , (3.16)
and
Sagmo, 1 (m) < /logym (3.17)
asm —> Q.

Proof. The upper bounds follow from Corollary 1 and the above Lemma 3. The lower bounds
can easily be derived from the examples already mentioned (note that, as a happy coincidence, the
asymptotic sharpness results for the inequalities in Lemma 3 are of the type 1, as required in our
scheme). For example, to get the lower bound in (3.16), set

m
f=ern+A+e)) hmy
1=1

in the BMO-case, where g4 is defined in (3.13), and set
2n
f=Y m+( +€)Zh2m+z

k=2 I=1

in the dBMO-case (n = [log, m], € > 0). Inboth cases, G, f = (1+¢€) Y ;- hom4y, thus, the error
of the greedy approximation can be recovered from the above estimates. On the other hand, the best
m-term approx1mat1ons for these two examples are certainly bounded from above by ||15/]1,, < 1
for some A’ C {2" + 1,...,2"™ + m}. This completes the proof. O
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