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THE THEORY OF THE NUMERICAL-ANALYTIC METHOD: 
ACHIEVEMENTS AND NEW TRENDS OF DEVELOPMENT. IV 

M. I. Ront6, A. M. Samoilenko, 1 and S. I. Trofimchuk 

We analyze the application of the numerical-analytic method proposed by Samoilenko in 1965 to auton- 
omous systems of differential equations and impulsive equations. 

UDC 517.9 

This paper is the fourth part of the series [1-3], and, therefore, we continue the enumeration of sections, theo- 
rems, lemmas, formulas, etc. Here, we continue the investigation of the numerical-analytic method which, for sim- 
plicity, is often called the "method." 

3.4. Abstract Scheme of the Method 

In Sec. 1 of [ 1 ], we suggested one possible "operator" formulation of the method. Moreover, the interpretation 
of the so-called Lyapunov-Schmidt equation given in Sec. 2. I of [ 1 ] enabled us to discover a certain relationship 
between the numerical-analytic method and the Lyapunov-Schmidt equation. (To avoid misunderstanding, we de- 
liberately speak of the Lyapunov-Schmidt equation and not of the "Lyapunov-Schmidt method" because, as far as 
we know, the latter notion is not used in the literature.) 

Numerous developments and applications of the numerical-analytic method to various classes of boundary- 
value problems make us think that it would be useful to present the method in the following abstract form: 

Let C ( D )  be the space of continuous vector functions y: D ~ ~ n, (xl . . . . .  x rn) ~ col (y 1 (xl . . . . .  X m), . . . .  

yn (x  1 . . . . .  Xm)), D C I~ m. Denote by K ( D )  ~ C ( D )  the space of functions from C ( D )  that satisfy the additional 

condition 

U ( y )  = co l (Ul (y  ) . . . . .  Un(y))  = O. (103) 

Taking into account that the main purpose of the method considered is the investigation of solutions of boundary- 
value problems, we call (103) an abstract boundary condition. It is obvious that, for example, in the case of periodic 
boundary conditions, K ( D )  is the space of periodic functions. 

Let A: C(D)---~R a be an operator with domain D ( A ) =  C ( D )  and range R a = A C ( D ) c  C(D), which 
gives the equation 

y = Ay .  (104) 

The problem is to find a solution of Eq. (104) that satisfies the abstract boundary condition (103), i.e., a solution y 
K(D) .  

If A were an operator of the type A : K(D)  --~ K(D),  then it would be possible to investigate the solvability 
of Eq. (104) in the space K ( D )  by using the general theorems on the fixed points of operators. However, this is 

impossible in the general ease where R A contains points from C ( D ) \ K ( D ) .  In such a situation, along with 
Eq. (104), one should properly introduce an auxiliary equation 
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Z =  /~Z 

so that 

D~ = t~ = K(D). 

1889 

(105) 

(ii) every solution z ~ K(D) of Eq. (105) that satisfies a certain auxiliary condition 

Bz = 0 (106) 

given on solutions of Eq. (105) and satisfied by all solutions of problem (104), (103) is, at the same time, 
a solution of the original abstract problem (104), (103). 

Since ,4 �9 K(D) -+ K(D) ,  the solutions of Eq. (105) under appropriate conditions can be constructed with the 
use of various iteration processes, in particular, by the method successive approximations 

~ 

Zk+l = Az~, k=O, 1,2 . . . . .  

in which there is a certain freedom in the choice of the zero approximation z0- In the numerical-analytic method, 
this freedom is used to satisfy condition (106). In the method considered, the analytic apparatus of successive ap- 

proximations of the Picard type is used for finding the limit function z* = lira k~o. f~ zk, and the auxiliary (alge- 
braic) equation (106) is solved by numerical methods. 

Note that, in a special case of problem (104), (103), it is not difficult to construct both an extension of the oper- 

ator A, i.e., the operator A, and the operator B (see, e.g., [4, Chap. 1]). 
Let us now present results concerning the application of the method to autonomous systems of differential 

equations and impulsive equations. 

3.5. Autonomous Systems of Differential Equations 

Consider the case where the right-hand side of the system 

dx = f ( t , x ) ,  x , f ~  Nn, 
dt 

is independent of t. It then follows from the main equations of the method (see relations (1) and (2) in [1]) 

t T 

x(t,Z) = Z + IO f ( s ,x (s , z ) )ds -  T !  f(s,x(s,z))ds, (107) 

T 
t 

A(Z) = -~ I f (s ,  x(s, z))ds = 0, (108) 
0 

(i) every solution of  the abstract boundary-value problem (104), (103) is also a solution of Eq. (105); 

It is natural that there should be a certain relationship between the operators A and A, namely, the following con- 
ditions should be satisfied: 
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that, in the autonomous case, we have 

x ( t , z )  = z ,  ~ ( z )  = f ( z )  = O. 

Therefore, the numerical-analytic method determined by the relation 

iI ' 1 x,n (t, Z) = Z + f ( s ,  Xm_l(S, Z)) - -~ S f (% Xm-l(T" z))d'~ ds 
o o 

(see formula (7) in [ 1 ]) "detects" only stationary solutions of the autonomous system 

{ ~ t  = f (x ) ,  x E D c ~ n ,  

x(O) = x(T). 

f ~ n ,  
(109) 

In contrast with nonautonomous systems, where the period of the required solution is known,  in the autonomous 

case, in addition to the initial conditions for the periodic solution, one should also determine its period T. Further- 

more, the T-periodic solutions x = x( t )  of  system (109) are not isolated in the extended phase space. The latter 
makes the theorem on indexes completely inapplicable. 

This suggests the idea of selecting a certain solution x = x 0 ( t )  among all hypothetical nontrivial T-periodic 

solutions x = x ( t  + q~) according to a certain rule and constructing successive approximations on the basis of this 

solution. In this case, it is also natural to change the system of parameters determining the T-periodic solution and 

consider the vector (c I , c 2 . . . . .  cn_: , ~t) instead of the vector of initial values x 0 = (x l0 ,x20  . . . . .  X~o). Here, (c l, 

c 2 . . . . .  ca_ 1 ) are the local coordinates on the hypersurface F of codimension 1 that is " transversal"  to the required 

solution [an analog of  the Poincar6 section], and g = T~ (2x)  determines the period T of  a periodic solution. 

Note that, by virtue of  the transversality of  F, the initial parameters c l, c2 . . . . .  c~_ I, p. are, generally speak- 

ing, isolated in the new coordinates. However,  since even the existence of  a periodic solution is a priori  unknown, 

the choice of  F is neither unique nor evident. 
To solve this problem, the following approach was suggested in [5]. 
It is obvious that every periodic solution intersects each of the sets 

F i = { x ~ n : f i ( x ) = O ,  i = 1 , 2  . . . . .  n}, 

where f = col ( f l  , f2  . . . . .  fn). 
If at least one o f  the sets Fj is a hypersurface [as a rule, this is true in applications], we can set 

F = Fj = { x ~  ]R n" X=Xo(C), c = ( c l ,  c 2 . . . . .  cn_l)~ Dc}.  

The next step is to change the variables 

x = O(0 ,  y),  0 -  t _ t 2 x ,  (110) 
I.t T 

which enables one to study problem (109) near the hypothetical solution x = Xo(t). The function ~ ( 0 ,  y) is 2 x -  
periodic in the first variable and is determined in every special case by the information about system (109) obtained 
from its first approximation. Moreover, the function 
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O(0,  y)" [0 ,2~]x  D 1 --~D 

satisfies all conditions usually imposed on the change of variables, namely, it is continuously differentiable with re- 
spect to the variables 0 and y and satisfies the condition 

det I ~O(0, y) l ;~ 0. 
L 0y 

After the coordinate transformation, at time 0 = 0, the hypersurface F turns into the hypersurface 

= { y e  1Rn: y=yo(c)} ,  

where Xo(C) = qb(0, Y0(C)). 

where 

As a result of the change of variables (110), Eq. (109) takes the form 

dy = F(O,y, g), 
dt 

and (c*, It*) 

]-'I I 0~(0, y) gf(~(0, y)) F(0, y, Ix) = L Oy 

Assume that the scheme of the method enables one to find the 

limm_~oo Ym(O, c*, It*) of Eq. (111), where 

0 

Ym(O,c,l.t) = Yo(C) + ~ [F(O, Ym-l(O,c, gt),~t) 
0 

2~ 
1 I F(s'ym-l(O'c'it)'g)ds] dO' 

2re 
o 

is the root of the determining equation 

1 -So F(O,y*(O,c, it),it)dO = O. 

Then the function 

x = x~(t)  = qb >y t~ -g , c , l t  

(111) 

y) 1 
27z-periodic solution y = y*(0, c*,lx*) = 

m = 1,2 . . . . .  Yo(O,c, it) = Yo(C), 

is a nontrivial periodic solution of Eq. (109) with period T* = 2•it*. Furthermore, x*(0) = Xo(C* ) and x*(t) coin- 
cides with the hypothetical solution x =x0(t).  It is obvious that x = x*(t + q)) determines a one-parameter family 
of solutions of Eq. (109). 
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With the use of the numerical-analytic method, autonomous systems were first studied by Le Lyong Tai [6, 7] 

and Samoilenko and Le Lyong Tai [8] with the use of the change of variables x = ~P(0, y) = eAOy + f0(0)  under 
the assumption that the value of one of the coordinates of the required solution is a priori known. 

Problem 11. Indicate classes of autonomous systems that, after a transformation of the form (110), admit in- 
vestigation by the numerical-analytic method. 

3.6. Autonomous Systems with Periodic External Influence 

First, we establish one general statement concerning the solvability of a nonautonomous periodic boundary- 
value problem of the form 

dx = f ( t , x ) ,  x(O) = x(T) ,  x , f r  !R a. (112) 
dt 

Defini t ion 1 (Carath~odory conditions). We say that the function f (  t, x )  defined on the set [0, T] x f2 ,  

ff~ c I~ n, satisfies the Carathgodory conditions if 

(HKI)  for  every x ~ f2, the function f ( . ,  x) is measurable; 

(HK2) for  almost ali t ~ [0, T], the fimction f ( t ,  .) is continuous; 

(HK3) for  all x, y ~ f2 and almost all t ~ [ O, T], the coordinatewise estimates 

If(t,x)l < rn(t), I f ( t , x ) - f ( t , y ) l  < L ( t ) l x - y l  

are true and the components of  the vector re(t) and the matrix L ( t ) are summable on the interval 
[0, r ] .  

We also assume that the domain f2 satisfies the following condition: 

(HK4) f 2 1 U = { z ~  g2" B(z, 1 3 ) c f 2 } ; e ~ ,  

coordinatewise, we have 

where 

where B (z, [3 ) denotes the convex set o f  x ~ I~ n such that, 

I x - z l  <- 8, 

13 = m a x  (Km)(t), 
t~[0, T] 

K is the linear integral operator defined on the (classes o39 summable vector functions by the formula 

t T ( )s 's t x(s)ds + -~ x(s )ds ,  (113) (Kx)( t )  = 1 - - ~  o t 

and 
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Ixl = I(x ,x2 . . . . .  x . ) l  - c o l ( I x l l ,  lx21 . . . . .  I x n l ) ,  

max Ix(t)l = col ( max ]xl(t) ] . . . . .  max [Xn(t) [ ). 
t t t 

1893 

We introduce a linear transformation - of the space of summable functions into itself as follows: 

~(t) = x ( s ) -  t x(u)du ds. 

0 0 

We also introduce preordering [> of the cone of n-dimensional vectors x = col (x 1 . . . .  xn) with nonnegative com- 

ponents as follows: 

xC>y r ( 3 i ~ { 1 , 2  . . . . .  n}: xi>Yi) .  

Theorem 20. Suppose that the function f ( t, x) in Eq. (112) satisfies the Carathdodory conditions (HK1)- 
(HK3), and the domain ~ satisfies condition (HK4). Assume that the spectral radius satisfies the inequality 
r( S) < 1, where S is the composition of  the linear integral operator (113) and the multiplication by a variable 
matrix L (t), i.e., 

Sx = K(Lx) .  (114) 

Assume, in addition, that, for some m, the corresponding operator function (see (13) in [1]) 

T 
1 

Am(Z ) = -~ f f ( S ,  Xm(S,z))ds  
0 

(115) 

satisfies the following relation on the boundary ~ ~1 of a certain subdomain f~l c ~2: 

IAm(Z)[ t> Ore(Z),  Z E ~ - 2 1 ,  (116) 

where 

T 
1 ( I -  S)-tS m f ( t ,  z) dt. ore(z)  = c ( t )  

0 

If moreover, the Leray-Schauder degree deg(A m, Of 21, 0) ~ 0, then there exists at least one solution x = 
x *(t) of the periodic boundary-value problem (112) such that its initial value x*(0) ~ ~2 l- 

Proof. As shown in Lemma 17 and Corollary 16 in [9], it follows from the conditions of  the theorem that the 
parametrized integral equation (t07)corresponding to the boundary-value problem (112) (see (2) in [1]) has a 
unique solution for every z ~ f2f3, and a single-valued continuous determining function A(Z) of the form (108) is 

given on ~2[~. 
In view of our assumptions, the linear deformation of a finite-dimensional vector field A m (z) of the form (115) 

into A(Z), 
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A(~.,Z) = am(Z)+ ~ , [ A ( z ) - A m ( Z ) ] ,  ~.~[0,1], 

is nondegenerate on s l- Indeed, otherwise, there exist Zo e ~f21 and ~0 ~ [0, 1] such that 

Am(zO) = - ~'0 [A(zO)-  Am(zO) ]. 

Since, according to Lemma 17 in [19], 

IA(z)-Dm(Z)l <- | 

we h a v e  JAm(Z0) t --< [A(z0)--Am(Z0) I <- | which contradicts inequality (116). This completes the proof of 
Theorem 20. 

On the basis of Theorem 20, one can obtain the following result concerning the existence of periodic solutions 
of perturbed autonomous systems of the form 

dx = f ( x ) + g ( t ) ,  t~  [0, T], x , f , g  ~ ]~n, (117) 
dt 

where the function g( t )  satisfies the condition g(0)  = g(T).  

Theorem 21 ([9, Theorem 24]). Suppose that a function f :  ~ ~ IR n is continuous, satisfies the Lipschitz 

condition (HK3) with matrix L, and can be continuously extended from f2 to 1R n with the same Lipschitz ma- 

trix. (We denote the corresponding extension by the symbol f .) Also assume that 

T)-ma.~(L) < qo = 3.4161306... (118) 

and the following relation holds for every z E ~f2 uniformly in h ~ [0, T]: 

T 

I f (z ) l  ~" O0 :=  +t~ (I-gt)-ll~h(t)]dt, (119) 
0 

where, by definition, we set 

gh(t) "= g ( t + h ) ,  

where the right-hand side contains the periodic extension of the function g ( . )  to the entire real axis denoted by 
the same symbol. 

Also assume that, in the domain f2, the function f ( .  ) has a unique zero Zo of  nonzero topological index, 
i.e., 

ind(f, z0) ~ 0. 

Then Eq. (117) has at least one T-periodic solution. 
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Proof. First, we note that, without loss of generality, one can assume that 

Otherwise, the system should be rewritten in the form 

T 

I g(t)dt  --- O. 

0 

T 

dx _ f ( x ) +  1 1 g(s)ds + 
dt 

0 

We introduce the one-parameter family of differential equations 

0 

dx = f ( x ) +  gh(x), h~ [0, T]. 
dt 

v 

Let us now clarify the form of the zero determining functions Ao(z,h) 

Xo(t, z) = z. It is easy to see that, under our conditions, we have 

and 

(120) 

constructed by the zero approximation 

T T v 7 I  v v 7 I  v 
A0(z,h ) = 1 [f(z)+gh(t)]dt  = f ( z ) +  1 g(t)dt = f ( z )  

0 0 

v 

A(z,h) = f ( z )  V h ~  [0, T] 

V R n 7 E  

T 

• L ~ ( I -  S) -I S m I~h(t)l at, 
T 

0 

is well defined by virtue of assumption (118), which, in this case, is equivalent to the inequality 

T 
r ( S )  = ~ - - ' - ~ m a x ( t )  < 1 

q0 

for operator (114). 

Since /~0(z,h) > | V z ~ Ofl and deg(~x0(z,h), 3f2, 0 ) = i n d ( f  z0 )~0 ,  byvirtue of Theorem 20 we 

can conclude that there exists a T-periodic solution P(t,  h) of Eq. (120) such that P(0, h) ~ f2. 

- f (z )+g = ]f(z)+ ~ = ~ V z ~  a f t .  

The right-hand side of (116) 

for all z ~ Of 2. 
Let us apply Theorem 20 to the T-periodic boundary-value problem for Eq. (120) in the case m = 0. Assump- 

tion (119) implies that relation (116) with m = 0 holds on ~ g2, where K and S are operators of the form (113), 

(114), because 
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Let us show that P(t, 0) : [0, T] --> f2. Indeed, if this is not true, then there is h ~  [0,  T] such that the 

inclusion P(0,  h*) ~ ~ f2 holds. However, since P(t, h*) is a T-periodic solution of Eq. (120) for h = h *, this 
implies that A (P(0, h*), h *) = 0, which contradicts our assumption. Further, since P(t,  0) :  [0, T] ~ f2 and 

v 

f ( z )  =-f(z) V z ~ s we conclude that P(t, 0) is a periodic solution of Eq. (117). The theorem is proved. 

Example 7. Consider the problem of 2re-periodic solutions of the equation 

d2x ~ z s i n x  = e(t), t~[0 ,1] ,  x E S  1 = R /2 rcZ ,  (121) 
dt 2 

where c~ > 0 and e(t) s L l [0, 1 ]. Equation (121) is equivalent to the system 

f -~t = Y, 

dx 
~t = - ~ s i n x  +e(t). 

It is easy to verify that this system satisfies the Lipschitz condition (HK3) and the sublinear-growth condition 
If(t ,  x)l < L(t ) lx l+g( t )  with the matrix 

L(t) = L = 
0 

Therefore, the spectral radius of operator (114) is given by 

r(S)  = 1---Lkmax(L ) = 
qo 

and r(S) < 1 whenever 

qo 

9 
o~ < q6 = 11.669948 . . . .  (122) 

~ 2 .  Under these conditions, the determining function A(x, y) is uniquely defined for all x, y ~ By corresponding 

calculations, we obtain 

where 

Consequently, 

/ y ) 
A~ = - o ~ s i n x + ~  ' 

T 

-~.= l f e(t)dt. 
T 

0 

Ao(xo, Yo) = 0 r YO = OAsinx 0 = -- (x 
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If  I~] < ~z, then the approximate determining equation A0(x, y )=0  has two different roots in S 1 x IR. 

out loss of generality, we can assume that Y > 0. Then the two different roots are the following: 

X 1 = arcsin ~ - - ,  x 2 = 7 c - a r c s i n  ~ 

With- 

we have 

The direct calculation yields 

then 

If 

1 

d r ,  

0 

where the operator K is defined according to (113), namely, 

(Kx)(t) = 
t ! 

(1-  t) S x(s)ds + t f  x(s)ds. 
0 t 

/ o) 
( I -  KL)  q = 

{ ~01 = K ( P 2 ,  

~o2 = cc K% +[~L- 

K 2 r = cc cp2 § [. Hence, q02< c~[q~2[ 0 K 2 -1 + [e]. Since 

max [K2.1] ( t )  1 
t~[0,1] 6' 

6 
[%10 -< 1~106_ a 

whenever cz < 6. 
Note that we have restricted ourselves to the simplest estimates. If necessary, the condition 

weakened to (122) by more accurate estimation. 
Combining the last two formulas, we get 

c c < 6  can be 

6 K2"1[~lo ~ + 1~1. r 

Note that the validity of the inequality [~1 < ot is also necessary for the existence of a root of Eq. (121). One 
can verify that this is true by integrating (121) over [0, 1]. 

In what follows, we consider the neighborhood of the point (x 1, 0). (The second point, (x 2, 0), can be inves- 
tigated by analogy.) First, we choose t9 o . For this purpose, we estimate the integral 
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Since 

1 1 f K2.1dt =-~,  
0 

we get 

Further, we have 

1 0.6~X l 
f _ + f I (s)lds cpo(s)ds <_ 1~1o6_ a 
0 0 

= - - + K I ~ I  ds f ggl(S)ds fKq32ds <- f K3"I] [~[0 6-0~ 
0 0 0 

1 
f Kl~lds § I~lo 0.2c~ 
o 6 - a  

because 

1 I l K 3 . 1  = - - .  
o 30 

As a result, we obtain 

6)0 = 

1 0.6a / 
[~lds +1~1o g - ~  

0 
1 0 . 2  C~2 �9 

~Xl~lds+lOlo ~_~  
0 

It is convenient to choose the domain f2 in the form of the rectangle bounded by the lines x = + ~z / 2 and y = + c 

( c > 0 ) .  Obviously, we have Ao(xo, Yo)> 6)o, provided that 

a - ~  

c 2> 

I 0 . 2  ~ 2  
> ~ g l ~ l d s +  I~1o g_-~, 

0 

1 
0.6~ 

~lO(s)lds + I~lo 6 - a "  
0 

(123) 

Moreover, 

( o 1) 
deg (Ao(x,y), ~[2, 0) = ind (Ao(x,y), (xl,0)) = sign det ~: 0. 

- C ~ c o s x  I 0 

Consequently, all conditions of Theorem 21 are satisfied. Therefore, by virtue of this theorem, Eq. (121) has at least 
one periodic solution with the initial value ( t = 0) lying in the indicated rectangle. 

Let us consider a particular case of Eq. (121). We set e ( t ) =  n c o s n t .  Then ~(t) = s innt ,  I~1o = 1, and ~ = 
0. One can verify that inequality (123) holds whenever 
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0.6(~ 2 
c~<4.81269 . . . .  c = + - .  

6 - ~  n 

Therefore, with the periodic perturbation e( t )  = n cosnt, there exists at least one periodic solution x( t ,  (~) of 
Eq. (121) for all c~ < 4.81269 .. . .  This solution is such that 

~t 0.6ct 2 rt x(0, m < ~ + - ,  I x ( 0 , ~ ) l <  - .  
6 - c t  n 2 

R e m a r k  8. Let us compare the estimates obtained above with those obtained by Granas, Guenther, and Lee 
[10, Theorem 10.3]. In [10], an equation of the form 

d2x + g (x )  dx + o~sinx = e( t )  
dt 2 dt 

was considered. Condition (B) in [10, Theorem 10.3] has the form 

1 

o~ + I [e(t)ldt < n .  
o 2 

This condition is not satisfied for Eq. (121) with e(t)  = rt cosnt. Therefore, Theorem 21 complements, to a certain 
extent, the results of [10]. 

3.7. Impulsive Equations 

The numerical-analytic method was first applied to impulsive systems in 1967 by Samoilenko [11]. More pre- 
cisely, a system of the following form was considered: 

dt  2 

8 I  
_ dx dx _ 

ix ~ x=x0 - ~ x=x0+ --Z-t x=x0 - 0, 

dx 

-~t X=Xo- < O, 

Within the framework of the modem classification of impulsive systems (see Samoilenko and Perestyuk [12, 13]), 
this system is referred to discontinuous dynamical systems. 

In [11], with the use of the algorithm of the numerical-analytic method, the applicability of the averaging me- 
thod to this system was justified and approximating solutions were constructed. Analyzing further applications of 
the method to impulsive systems, we outline the integrity and completeness of the investigation carried out in [11]. 
The subsequent applications of the method were more formal in spirit and established conditions of its applicability 
to systems with pulses at fixed moments of time [or, in fewer works and not always successfully, at nonfixed mo- 

ments of time]. 
The paper [14] of Perestyuk and Shovkoplyas (see also Chap. 21 in [12] or Chap. 4.3 in [13]) should be re- 

garded as the first and most important among these works. A somewhat improved version of [14] appeared as 
Sec. 16 of the monograph [15] by Bainov and Simeonov, where the application of the method to periodic impulsive 

systems of the form 
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was considered. 

dx = f ( t , x ) ,  t ;e ti ' 0 < t < T, x ~ f2 c IR n, (124) 
dt 

zXxlt i = H i ( x  ) , i = 1 , 2  . . . . .  p ,  0 < t 1 < ... < tp< T, (125) 

x(O) = x(T) ,  (126) 

In this case, as is customary,  it is assumed that, in the compact domain f2, the fight-hand sides of (124) and 

(125) are continuous in the collection of variables and satisfy the Lipschitz condition with respect to x, namely, 

[ I f ( t , x ) -  f ( t ,y) l]  < Kol lx-y] l ,  

] ]Hi(x) -Hi(y) l  I < K i l l x - y l ] ,  i = 1 , 2  . . . . .  p ,  x, y E  ~z, 

and, moreover, there exist constants M i and a function m ( t )  E L 1 [0, T] such that 

IIHi(x)][ <- mi  V x  E f2, i=  1,2 . . . . .  p,  supll f( t ,x)l l  < re(t). 
x~ff2 

A solution of  problem (124) - (126)  was found as the limit of the uniformly convergent sequence of  functions 

where 

0 O<t i <t 

Xo( t , z )  = Z, m = 0 , 1 , 2  . . . . .  

1 f ( s ,  Xm(S, z))ds + f H  (m) = 

The following theorem was proved: 

Hi(xm(ti, Z)) 
i=1 

T h e o r e m  22. Suppose that m( t )  - M = M i and the following conditions are satisfied: 

(11) there exists a nonempty closed set ~ ~ that belongs to ~ together with its ~ = T M / 2 + p M-neigh- 

(12) 

borhood; 

the following inequality is true: 

K o T p T K o K 1 + p K  1 + < 1. (128) 
3 6 

I f  system (124) - (126)  has a T-periodic solution x = q~(t, z) passing through a point  z ~ ~ at time t = 

0, then the solution is the limit of  the uniformly convergent sequence of  periodic functions 
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tp(t ,z) = lim Xm(t,z) = x*(t,Z) 
m ---)'~ 

defined by relation (127). 

Remark  9. In fact, in [12, 13], more restrictive conditions were considered, namely, the number 
+ 2 p M was used instead of  [3 and, instead of inequality (128), it was assumed that 

T K 0 p T K 0 K 1 
- -  + 2 p K  l + 

3 3 
< 1 .  
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~" = T M / 2  

- 1  + + QKI  < [(oK 1 - S  < 1, 
3 

where 

Q = s u p { ( 1 -  ~ t / i [ 0 , t ] + T i [ t , T ] : t ~ [ 0 , t ] }  

{/ '/ ' } S = sup 1 - ~ ~ a(zk) + a(a:~): t~[0 ,  t] 
0<xk<t  T t<zx <T 

Theorem 22 made it possible to reduce the problem of existence of T-periodic solutions to the problem of the roots 
of  the determining function 

A(Z) = -~ f (s ,x*(s ,z))ds  + ~ ,  Hi(x*(ti, z)) . 
i=1 

The methods for the investigation of  the determining equation A(z) = 0 presented in [12] do not significantly differ 
from those in [11, 16] and, therefore, we do not dwell on them. 

As applications of  Theorem 22, the following scalar impulsive systems (x ~ IR ) in the standard, in the sense of 

Bogolyubov, form were also considered in [ 12]: 

dx - -  = ef ( t ,x) ,  t ~ t  i, O < t < T ,  (129) 
dt 

Axlti = aHi(x ) '  i = 1 , 2  . . . . .  p ,  O < t l < . . . < t p < T .  (130) 

Theorem 23. Suppose that the right-hand sides of  the T-periodic impulsive system (129), (130) satisfy the 
same requirements as in system (124), (125). I f  the averaged system 

dY - e fo(y) - e I r P ] 
d'--; - -T I f (s ,  y)ds + ~ ,  Hi(Y) 

0 i=1 

~,, = TM +MQ, 
2 

In [ 15], more accurate computations were performed, which enabled one to weaken the requirements imposed on the 
impulsive system. More precisely, the following, even less restrictive, conditions were suggested in [ 15]: 
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has an isolated equilibrium state y =Y0, fo(Yo) = 0, and the index of  the mapping fo(Y)  at the point Yo dif- 
fers from zero, then, for  sufficiently small values o f  the parameter ~, the system of  equations (129), (130) has a 
T-periodic solution x = r t, ~ ) such that limE~ 0 cp(t,E) = Y0. 

One can easily notice a certain "asymmetry" in the iterative relation (127) caused by a certain lack of regard for 
the "correction" of the impulsive part. Indeed, only the integrand is corrected in (127). One should expect that, sug- 
gesting a new modification of the method according to its general idea [see Sec. 3.4] such that the above-mentioned 
"asymmetry"  disappears, we can improve the convergence of the method in certain cases. The results of  Trofim- 
chuk [17] show the validity of such assumptions. 

For the determination of solutions of problem (124)-(126), the following recurrence sequence of functions 
Xm(t,z ) satisfying the boundary condition (126) was constructed in [17]: 

Tr ] 
= z + I I t ' s ,  xm(s,z)- ,,o / #m'  ds 

o 

+ Z Hi(xm( t i 'Z ) ) -g i fH(m)]  ' 
O<t i <t 

m = O, 1 . . . . .  Xo(t, z) -- z, (131) 

where the average f H (m) is determined with regard for the weight coefficients as 

fH(m) = 1 f(S, Xm(S,z))ds + Hi(xm(ti, z)) 
12 i=1 

for "~ = KoT + K 1+...+ Kp. (We assume that the constants K i are not simultaneously equal to zero because, 
otherwise, the problem becomes trivial.) 

As is seen, the right-hand side of (131) already has the indicated symmetry property. Furthermore, the practical 
realization of the iteration process (131), in fact, is not more complicated than that of scheme (127) because the main 

auxiliary calculations (the computation of the averages f H (m) and f H m ) are the same in both cases. 

We introduce a piecewise-continuous function M ( t ) :  I --+ IR + as follows: 

M(t)  = 
[1 + = < + �9 

Let [3*= suPte! M(t).  We have 

because ( a - x ) y +  x ( b - y )  < ab 

empty. The functions 

[ ?][" ] + Kot + ri<tKi fm(u)du + Z M i  
t t i < t  

T 

~3" <_ f, m(u)du + Z Mi 
0 i 

for arbitrary x ~ [ 0, a ] and y ~ [ 0, b ]. 

Xm(t,z ) belong to ~2 for z ~ ~[3" because 

Assume that the set ~13" is non- 

ItXm(t,=) -- Z[[ -- M ( t )  ~ f~*. (132) 
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Prior to the formulation of the result on the convergence of scheme (131 ), we introduce the following notation: 

a~(t)= 1 -  x 0 t + ~ x , .  < z 
T, t i<t  - 2 '  

max O, 2 Koti+ • K j - z +  K7 < E K]. 
Y = z =  j=l 3 ~ j=l 

Theorem 24. Suppose that the set ~ .  is nonempty and the inequality q = ~ / 3 + "[ < 1 is satisfied. Then 

the integral equation corresponding to formula (131) has a unique solution x*(t,z) in the domain considered, 
and it can be found by the method of  successive approximations (131). Furthermore, the following estimates are 
true: 

x*(t,Z)-Xm(t,Z ) < ~*[qOL~(t)+y]qm-2(1-q) -1, m>2,  

x*(t ,z ) -z  <_ M(t)  <_ ~*, 

x*(t, z ) -  xt(t, z) <- rain {213", ~*(q~(t)+7)(1 - q)-l}. 

The fimction x*(t, z*) is a solution of  the boundary-value problem (124)-(126) whenever the continuous function 

~x (z) f f ( s ,  x*(s, z))ds + ~.Hi(x*(t i, z)) 
0 i=1 

vanishes at the point z = z *. 

It is interesting to note that, later, considerations similar to those presented above were independently devel- 
oped by Samoilenko and Teptinskii [18]. In [18], the periodic problem of control for impulsive systems was 
studied, which required the examination of an integral equation of the form 

t 

x ( t , z )  = z + + Z [ n , ( x ( s , , . ) - u 2 ] .  (133) 
0 O<t i <t 

In this connection, versions of "pulse control" with 

Ul = 0 ,  U2 = - f ( s ,  x (s ,  z ) )ds  + E Hi(x( t i ,  z))  , 
P 0 i=1 

"differential control" with 

u 1 = ~ f (s ,  x(s, z))ds + E Hi(x(ti, z)) , 
i=1 

u 2 = 0 ,  

and "mixed control" with 
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Ul  = 'E T 1 "T S f (s ,  x(s,z))ds + ~ H i (x(ti,z)) , 
0 i=1 

U 2 = 

were considered. It is clear that the first two versions can be used for the determination of a T-periodic solution of  
an impulsive system. This was carried out in [ 18], again under the condition of control over the differential part. It 
should be noted that less accurate estimates of convergence were obtained there. For instance, instead of  (128), it 
was assumed that 

K~ + 2 p K  1 < 1, K o = K 1 . 
2 

Note that the symmetry properties of impulsive systems were used only in [ 18]. 
The following statement is true: 

Theorem 25. Let the T-periodic system of equations 

f ~ t  = Ef ( t , x ) ,  t ~ t  i, t ~ ,  

Ax[t i = eH(t)[t ,, i ~ Z, 

X E ~  n, 

H ( - t ) = - H ( t ) ,  f ( t , x ) = - f ( - t , x ) ,  and, on the interval (_T, T) ,  themoments ofpulse influence be such that 

are located symmetrically with respect to zero. 
Then every point z ~ ~ is the initial value of a T-periodic solution of this syster~ 

Note that the application of the method to the investigation of impulsive systems with nonfixed moments  of 
pulse influence is justified in [12]. This monograph indicates the possibility of such an application; however, the 
important  technical Lemma 21.3 in [12], as well as the corresponding statements in [19], contains certain 
inaccuracies. We do not discuss these results here. 

Problem 12. Correct the inaccuracy in Lemma 21.3 of  [12] for systems with pulse influence at fixed moments 
of  time of the form 

dx 
- -  = f ( t , x ) ,  t ~ T,i(X), 
dt 

~l t=xi(x)  = I i (x  ). 

Among the other works on this subject, one should also mention the papers of Akhmetov [20] and Akhmetov 
and Perestyuk [21]. In [21 ], the method was applied to the investigation of a periodic impulsive system of the form 

dx 
- -  = A x + f ( t , x , y ~  tc: t  i, 
dt 

dy = g( t ,x ,  y~ t ~ t  i, 
dt 
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ZLvlt=t i = B x  + li(1)(x,y),  AYlt=t i = Ii(2)(x,y),  

1905 

where x ~  IR n, y ~  ~[{m, A and B are real n x n  matrices, and det(E +B) ~ 0. The results obtained in [21] 

complement and generalize the investigations of [14]. 
We also mention the works of Hristova and Bainov [19, 22, 23]. In [19], problem (124), (125) is studied with 

the use of the numerical-analytic method with the two-point boundary conditions 

nxn 
A x ( O )  + C x ( r )  = d, A , C ~  R , det(C) ~e 0. 

In these works, systems with fixed and nonfixed moments of pulse influence are considered. We have already noted 
the inaccuracy of the lemma from [19] in the case of nonfixed moments of pulse influence. In [23], an impulsive 
delay system of the form 

d x  
clt 

= f ( t , x ( t ) , x ( t - h ) ) ,  t ; e t  i, 

Axlt=t i = I i (x ( t i ) ) ,  

where x e N n and the sequence of points {t i ~ R ,  ti+ 1 > r i }, i e Z, is fixed, was considered. In [23], certain con- 

ditions were indicated under which a method for finding periodic solutions based on the ideas of the numerical- 
analytic method and the Galerkin method can be applied to this problem. Simultaneously with [19, 22, 23], the 
Sarafova and Bainov [24] applied the method to the investigation of periodic solutions of the impulsive system of 
integro-differential equations 

t 

= f ( t , x ,  ~. ,~ ( t , s , x ( s ) )ds ) ,  t ~ t i ( x ) ,  
dt 0 

kxl~=ri(x) = I i ( x ) ,  i = 0,_+1,+2 . . . . .  

Existence theorems were proved for both cases t = t i and t = t i ( x  ). 
We also mention the papers of Gul'ka [25] and Butris [26], where the application of the ideas of the method to 

integro-differential equations with pulse influence is considered. Thus, the first part of [26] is devoted to the deter- 
mination of periodic solutions of nonlinear [globally Lipschitzian in the domain of definition] systems of differential 
operator equations with pulse influence of the form 

= f ( t ,  x , A x ) ,  t ~ t i, 
d t  

A x l t = t  i = l i (x ,  Ax  ). 

The indicated work mostly follows the ideas of [14]. It should be noted that rather restrictive conditions are im- 

posed on the operator A, e.g., 

( A x ) ( r )  = ( A x ) ( t  + x) ,  II(Ax)(t)-(ay)(t)ll <- qUx(t)-y(Oll. 

This disadvantage was partially eliminated in the second part of that work [26] where, in a similar way, the system 
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b(t) 

I dt f ( t ,  x ,  g ( s , x ( s ) ) d s  ), 
a(t) 

t C: t i, 

b( t i ) 

Ax[ ,= ,  i = l i (x '  S g ( s , x ( s ) )d s )  
a(t i) 

with per iodic  funct ions  a( t )  and b ( t )  was investigated. 
In [25],  a combina t ion  o f  the ideas o f  the method  with the results obtained by Ts idy lo  and Gu l ' ka  in [27] 

enabled one to prove ,  under certain conditions, the existence o f  a unique T-periodic solution o f  the system 

I t dx = f t ,x ,~ (p(t,s,x(s))ds'k- Z l j ( x ( s j - O ) )  , t * t i ,  
dt o o <sj < t 

A x l t : t  i = l i ( x ) ,  i , j =  0,1 . . . . .  

Finally, we note  that  the results o f  [11] were generalized by Samoi lenko  and Perestyuk in [28]. 

P r o b l e m  13. Justify the application o f  the method to problem (124) - (126)  in the case where  the constants K 0 

and K i in the cor responding  Lipschitz conditions are replaced by matrices. 

This work  was  partially supported by INTAS (grant No.  96-0915)  and O T K A  (grant No. TO19095) .  
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