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STRONG SUMMABILITY OF MULTIPLE FOURIER SERIES
AND SIDON-TYPE INEQUALITIES

0. 1. Kuznetsova UDC 517.518.476

We study different versions of strong summation of N-dimensional Fourier series over polyhedrons and
related estimates for integral norms of linear means of the Dirichlet kernels (Sidon-type inequalities).

Let

fe (™, ifll, = [lfwldu <o, TV= [z m"
TN

We define the Fourier series of this function

fo) ~ Y Fkelt  kx = kx4 ...+ kyxy, (1)
kezV

where

Fo = @™ [ fu)edu

TN
and ZV is the integer lattice in RY. In contrast to the one-dimensional case, there is no canonical method for deter-

mining partial sums of series (1) in a multiple case. Let V be a closed bounded domain in RV containing the ori-
gin O inside it. For n> 0, we set

Swfy = Y flkeik

kenvnzV

(nV={xe RN: x/ne V} is a homothet of V). It is natural to define the sum of series (1) as the limit (if it exists)
of partial sums S,y f as n-»o0, where

Sevf = (zn)—Nf*DnV

is a convolution of the function f and the Dirichlet kernel

corresponding to the set V.
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In what follows, V is a closed bounded polyhedron in RV star-shaped with respect to O, O € intV, and is
such that the extension of any face of it does not pass through O, and W is the set of polyhedrons with the indi-
cated properties. In [1], Podkorytov studied sufficient conditions of regularity of linear methods of summation in
C(TN) over polyhedrons of the set W and showed that all conditions in the definition of W are necessary.

Denote by W, the subset of W defined as follows: A collection of real numbers (ay, ..., 0ty) is “poorly”
approximated (by rational numbers) if the inequality

o ky+...+aykpyll < a1, a= max |k], 2
ISi<N
has at most finitely many solutions in integer numbers & = (ky, ..., ky) (|l x]| is the distance from x to the nearest

integer number). A polyhedron V belongs to the set W, if the coefficients in the equations of hyperplanes
Z o, x;— 1 =0 that determine it form collections of “poorly” approximated numbers. Note that the set of collec-
tions o for which inequality (2) has infinitely many solutions in integer numbers is the set of Lebesgue measure
zero in RY [2, p.36], i.e., almost all collections o are “poorly”” approximated.

Denote by W, the subset of W), that consists of polyhedrons for which o are collections of algebraic num-

bers.
The following theorems on the strong summation of series (1) are true:

Theorem 1. Let a polyhedron Ve W,. Then, for arbitrary fe C(TV), p21, and ne N, we have
n
(n+ 17 Y [SfO)]" < AP ISIL, 3)
1=0
where ¢ =c(N, V)>0 is a constant.

Let O be the set of functions ¢ defined on the semiaxis [0, «), bounded and continuous at zero, and such
that ©{0)=0. For Ve W, and ne N, we set

n
ha(f@ Vix) = (n+ 17 Y o[ f0) - S f)])-
1=0
Theorem 2. Let Ve W, be a polyhedron.

(i) If o€ Q is such that

lim sup (p(u)u“”N < oo,
U > oo

then the equality

lim A, (f,exp(¢)-1,V,x) =0

n—oo

holds for any fe C(TVN) uniformly in x.
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(ii) If

lim sup (p(u)u—l/N = oo,
U~ o0

then there exists a function Fe C(TN) for which

limsup ~,(f,exp(p)-1,V,0) = oo.

n— oo

Theorem 3. Let V& W, be a polyhedron, 1< p <o, andlet {V;} be an increasing sequence of natural
numbers. In order that the inequality

n

(n+D)™ Y

j=0

P
Suvf@|" < clfl2,  ne N, )
hold for any fe C(TV), it is necessary and, if {Vv;} is a convex sequence {v;,,-v; T}, sufficient that

mm(L ¢)
logv; < ¢;j \IN PN/, 5)

For Ve W,, Theorems 1-3 were proved in [3, 4] (see also the history of the problem and detailed bibliogra-
phy therein). As proved in these works, assertion (ii) of Theorem 2 and the necessity of condition (5) in Theorem 3
hold for any polyhedron V, O € intV, and follow from the estimate of the norm of the operator of taking a partial
sumin C(TV) [5]

sup [Suvf]. = @™ [|Duy(x)|dx = log" n )
1fist T

and, moreover, {V;} is not necessarily a convex sequence. The proof of sufficiency in Theorems 1-3 is analogous
to the case V e W, because polyhedrons from W), (as well as polyhedrons from W,) possess the following prop-
erty:

Lemma 1. For an arbitrary polyhedron V € W, there exists a constant d =d(V) > 0 such that the sets
{(n+ dn N1 WA\nrV, ne N, do not contain the points of the lattice zN.

Proof. If T'={xe RV 2 a;x;—1=0} is one of the hyperplanes that determine the polyhedron V, then,
since inequality (2) has at most finitely many solutions in the integer numbers k € Z N we have either Za,-ki -
n=0 forcertain ke Z" and ne N (a is a collection of rational numbers), or there exists a constant cr>0
such that

1Y ok —n| > cra™',  a = max|k,],

forany ne N and ke ZN. For ke (n+ 1)V\nV, wehave a<cn for certain ¢> 0. Since the distance from the

point k to the face nT isequalto | Y, ok —n|(D a?)_m, we set
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d= ¢! mrin (CF(Z 0(,-2)_”2).

Theorem 2 implies that, for arbitrary A >0 and fe C(TV), we have

N
) 11— 0 as n—oo

Y. exp (Al f(0) - Sy f(x)]

=0

S f—

uniformly on T%.

Lemma 2. Ler Ve W,. There exist constants A>0 and ¢ >0 such that

n

sup ~ Z exp(A[ Sy £(0)]

fs1 ™2

”N) ¢, ne N. %)

Proof. We expand the function e in a series and use estimate (3) and the Stirling formula. Then

n

i -
sup - Y eXP(AISIVf(O)l = sup - 2 ElSlVf O)IP/N < ey (Aec!MyP.

l/N)
1=t = If1<1 p=0

. 1
It remains to choose A < ok
For N =1, the assertions presented below are called Sidon-type inequalities [6].

Theorem 4. Let Ve W, andlet {a;} be a sequence of real numbers. Then

N
- ;]
< ¢y lajl 1+[log+—~,{—J : (8)
jzﬂ ]l: nglzj':]lajl }

Proof. For N=1 and V={[-1, 1], this theorem was proved by Fridli [7]. We prove this theorem for N > 1.
Let Lg4 be the Orlicz space [8] of functions defined on the segment [0, 1] that is determined by the A -function

J

TN

n
2 aijv(x) dx
j=1

uf

o) = [e(dr,

where

N-1
( Ae ) L for 0<t <y,
o(r) = N1/ iy

1/N
A (I=NIN for 121y,

N-1)\W N . :
A is the constant from Lemma 2, 7, = (-2—1) , @ is a strictly increasing function, and @(0) = 0. Let w be the

function inverse to @. Then
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fuf
¥(u) = [y
0

is the A-function complementary to ®. Since W(z)=O(In"t) for sufficiently large ¢ and y(t)=ct for t close
to zero, there exists a constant ¢, =c¢ (N, A) such that

¥ () < qlullt+(log" 1ul)" . ©)

/N
Forall u, we have ®(u)= O(e’”“‘ ) Following [6], for a collection of real numbers (ai,...,a,) we set

n
Iay....a,) = Eaﬂ[u_m—un-l]’
j=1

where x , is the characteristic function of the set A < R. Let

wfO) = 3 Siy O 0t o

j=1
for fe C(TV). Then
! S D dx = LIS Swvf0y = 1
;j . aDyy(0|dx = sup = |3 a;Syf(0)] = sup [T, ... a) 1, £(0)]dr.
TNj=1 FIst™ | i= (f1<1 ¢
Applying the Hélder inequality [8, p. 91], we obtain
1 n
-2 aDyjdx < IT@.....ank, sup |1,/ O)l- (10)
TVlj=1 If1s1
The definition of norm in the space L4 implies that
1
lglly < [ @(g)ar + 1.
0

Therefore,

1

1
sup [ L,f )l < sup [@(,f(0)dr + 1 < csup [ exp(A[L,£(0)|"")dr + 1
IfI<1 1111 f1<1y

¢ sup .1.2 exp(A[Sjvf(O)|”N) + 1.
Ifls1foy

According to Lemma 2, the last sum is finite for any n. Consequently, it follows from (10) that
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n

1
" [1X 4Dy
TVij=1

1
dx < c|T(a....,a,)], < cJ‘F(F(czl,...,an))dt + c.
0

In view of (9), the last inequality yields

2. a;Djy(x)

Jj=1

|

TN

1 n
dx < o [Iri[1+(log )" Jar + ¢ = %Zlaj][l+(log+|aj|)1v] +o. (1)
0 j=

Denote
1 n
ha,ll, = n7' Y |-
j=1

Then, replacing a; by a;/[a,|, in (11), we obtain estimate (8).

Theorem S. Ler Ve W,, 1<q<2, let {a;} be a sequence of real numbers, and let {v;} be an in-

creasing sequence of natural numbers. In order that the inequality

n
ajvav(.x)
=1

1/q
n
dx < c[lz |ajqu (12)
n:
=1

S =

TJ‘N

J

hold for any ne N, it is necessary and, if {v ;1 is convex, sufficient that

logv; < c,j(q'l)/qN.

Proof. To prove the sufficiency, we apply the Holder inequality to the sum

l n
sup =| >, a;S, vf(0)
A<t =
and then use Theorem 3 [estimate (4)] with p = _q_q .
q__
To prove the necessity, weset a; =...=q, =0 and a,=1 in(11). Then (11) yields

1

J 'Dvlv(x)ldx < cn 1
™

and the necessity of the condition of Theorem 3 follows from (6).

For N=1 and v; =j, inequality (11) (in fact, obtained in [9]) was proved in [10].

Finally, note that the duality between the strong summability and Sidon-type inequalities for N =1 was estab-
lished in [6]. Without changing the proof, one can obtain an analogous result in a multiple case for any bounded set

V,0e intV.
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