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INVESTIGATIONS OF DNEPROPETROVSK MATHEMATICIANS RELATED TO
INEQUALITIES FOR DERIVATIVES OF PERIODIC FUNCTIONS
AND THEIR APPLICATIONS

V. F. Babenko UDC 517.5

We present a survey of investigations of Dnepropetrovsk mathematicians related to Kolmogorov-type
exact inequalities for norms of intermediate derivatives of periodic functions and their applications in
approximation theory.

1. Introduction

Let G be a Lebesgue measurable subset of R such that pG > 0. Consider the spaces L,(G), 0 < p Seo, of

measurable functions x: G— R such that

I/p

el = Mxll, ) = JlepPdry <o it O<p<es
G

or

<N, = Wxll,_(g) = supvrai|x()] < eo il p=rco.
teG

In what follows, G denotes either the number axis R, or the secmiaxis R,, or a finite interval /, or a unit circle T
rcalized as the segment [0, 2r] with identified endpoints.

Denote by L (G), re N, 1 <5 < eo, the space of functions x that have the locally absolutely continuous de-
rivative x""1 and are such that x'” € L (G). For 1 <p <o, we set L, (G) = L,(G) N L{(G). Note that if
G=1or G=T, then L(G)c L,(G) forany p. Insome cases, instead of L,(T), we writc L.

An important role in numerous problems of analysis and its applications is played by inequalities for norms of

intcrmediate derivatives of functions x € L;,’ +(G) of the form

(k)” < (
[<“], < @(I,

|x(r)

).

where @: R° > R . is a certain fixed function. For the first time, inequalitics of this type were considered by Hardy
and Littlewood [1] in the case p =g = s = o. It is customary to write these incqualitics in the additive form,
namely,

”xm”q < A||xl|/,+3”x"')”.\~’ (2)

or in the multiplicative form:
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[+, < Kb 8 °. (3)

The problem of derivation of inequalities of the type (2) or (3) with unimprovable constants (exact inequalities) was
studied by many mathematicians.

The first exact results were obtained by Landau [2] (for xe Li’m(RJr) or xe LL(D), k= 1) and Hadamard

(3] (for xe L, (R), k=1).
One of the first complete and outstanding results in this direction was obtained by Kolmogorov (see, e.g., [4]).
Later, inequalities of this type were named “Kolmogorov-type inequalitics.” Kolmogorov proved the following

statement: If x € Li‘w(R), then, forany ke N, k< r, we have

x( r)

1-k/r

“
lo. 1l

<], < lo--ll., T flr

where @, is the rth periodic integral of the function @(f) = sgnsinx with mean value zero on the period (note
that, for 2<r <5 and r=35, k=2, this fact was proved by Shilov [5]). Inequality (4) turns into the equality for
any function of the form ¢,(Ar), wherc Le R, A> 0.

To establish inequality (4), Kolmogorov proved a theorem on the comparison of derivatives. Later, this theo-
rem proved to be very useful for the the exact solution of numerous extremal problems in approximation thcory and
analysis in general. In particular, numerous inequalitics for the norms of intermediate derivatives and various
inequalities of Markov-Bernstein type for polynomials and splines were obtained with the use of this theorem and
different versions and generalizations of it {(for more details, see, e.g., [6, 7]). Furthermore, this theorem is one of
the main premises of the Korneichuk method of comparison of permutations and Z-permutations, which is a power-
ful method for the exact solution of numerous cxtremal problems in approximation theory (scé, e.g., [8,9]).

Later, proofs of the Kolmogorov inequality on the basis of different ideas were proposed. Among these proofs,
we note the proof of Bang proposed in 1941 (see, e.g., [10]) and the proof of Ligun [11, 12].

As already noted, numerous mathematicians studied the problem of finding the exact solutions of Kolmogorov-
type inequalities for functions given on the entire number axis, a semiaxis, unit circle, or finite segment. However,
at present, only several cases are known in which, for certain values of p, g, and s, exact constants in inequalities
of the type (3) were obtained for all pairs &k, re€ N, k < r. Besides the Kolmogorov inequality mentioned above,
these cases are as follows:

for G=R:
(i) p=qg=s=2 (Hardy, Littlewood, and Polya [13]);
(i) p=g=s=1 (Stein [14]);
(11i) g=-eo and p=s=2 (Taikov |I5]):
for G=R,:
(i) p=g=s5=c (Landau [2], Matorin [16], and Shocnberg and Cavarctta [17]);
(i) p=g=s=2 (Lyubich [18] and Kuptsov [19]);

(iii) g=-ec and p=r =2 (Gabushin [20]).
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Exact results for G=R or R, and different values of r, k, p, g, and s were obtained by Arestov, Ber-
dyshev, Buslaev, Gabushin, Magaril-1I'yaev, Sz.-Nagy, Solyar, and many other mathematicians (see [21 -24}).

For exact inequalities for intermediate derivatives of tunctions given on a finite segment, sec {25-28] and the
bibliography therein. In the case of functions given on a unit circle (periodic functions), many exact inequalities
were obtained by Dnepropetrovsk mathematicians. The description of known results in this direction and applica-
tions of known inequalities to the investigation of numerous extremal problems of approximation theory and cx-
tremal properties of polynomials and splines is the main subject of the present paper.

The following question is especially interesting: How should the parameters r, k, p, ¢, and s relate to one
another in order that inequalities of the type (1)—(3) be possible in principle?

It is known that, for G =1 and any given 1 <p,q,s <o, k,re Z, 0<k<r, there exist constants A and B
such that inequality (2) holds for any function xe L) (G). If G iseither R or R,, then inequality (2) holds for

D, §
all functions xe L (G) if and only it [29]

.S
L (5)
p s q
in this case, inequality (2) is equivalent to inequality (3) with
r—k—s_]+q—I k—q-l+p_l
o= ————— and Y I
F~s +p r-s +p

For p, g,s > 1, general conditions for the existence of inequalities of the type (3) in the periodic case were es-
tablished in [30], where it was proved that inequality (3) holds for all functions x€ L (T) and ke N. k<r, il and
only if

|
k r—k—-s +g¢g } )

o< 0y, = min{l—;, r—s_l+p_l

Note that inequalities of the form (3) with o = o, are most interesting.

Inequalities of the type (1)—(3) were generalized in different directions. Thus, Hormander [31] proved the
following inequality: Let Ey(x),, be the best uniform approximation of a function x by a subspace of constants.
Also assume that @,(; o, B) is the rth periodic integral with mean value zero on the period of the 2zn-periodic
function @g(r;a, B) thatis equal to o for re [0,2nB/(a+P)) and —B for re [2nB/(o+P),2m). It was

proved in [31] that, for any function x e L;'m( R), we have

”(Pr—k(* ||xi"’ |L’“x(—””m)¢ w_p ()T 7N

E()((P,-( - ||x‘+’"”°°7le(—r)“m))(ln—k/r 0¥ oo

where ., ()= max{ x(r),0}. It should be noted that inequality (7) and its numcrous generalizations proved to be
usclul for the investigation of different problems of onc-sided and nonsymmectric approximation.
Another way of generalization of Kolmogorov-type incqualities consists of the replacement ol the operators

], <

d*/dx* and d"/dx’ in this inequality by more gencral differential operators or operators of different kind (sce
[32-36] and the detailed bibliography in [36]). In what follows, we consider several generalizations of this sort.
Since the norm in the space L, is a support function of a unit ball in the dual space, inequalities for thc norms
of intermediate derivatives can be interpreted as inequalitics for support functions of convex scts. From this point of
view, taking into account the duality of the best approximations by convex sets (sce [8, Chap. 11), the result obtained
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by Korneichuk in 1961 [37] for the best approximation of the class H® of continuous periodic functions with a

given majorant ®(z) of the modulus of continuity by the class N W (in what follows, N W[f is the class of func-
(r)

tions x e L’,', such that ”x < N) can be regarded as an inequality of the type (2): For x e LI, and any N> 0,

wce have

2n

S,0(x) = sup [ f(Ox'()dt < N|x]y +
0

[Ed}
feH® 2

max (w(r)— Nt).
0<t<n

If fact, this was the first exact Kolmogorov-type inequality obtained in Dnepropetrovsk University. The results of
Korneichuk [38, 39] concerning the estimation of upper bounds of functionals on classes of periodic functions can
also be regarded as Kolmogorov-type inequalities. These results and other results of this type are discussed in detail
in [40, 41}.

In Scc. 2, we present different approaches to the complete solution of the problem of exact constants in Kol-
mogorov-type inequalities for the norms of intermediate derivatives of periodic functions. The list of these ap-
proaches is significantly broader than in the nonperiodic case. In Sec. 2, we also present exact inequalities in the
casc where r € N is arbitrary, k=0, and ¢ and p are quite arbitrary. In Sec. 3, we consider the case of low
smoothness. In this case, the range of the parameters ¢, p, and s for which it is possible to obtain exact solutions
is also broader than in the nonperiodic case. Section 4 is devoted to inequalities for derivatives in which specific
additional properties of the functions under consideration (the number of changes of the sign of certain derivatives)
arc taken into account. In Sec. 5, we discuss the relationship between Kolmogorov-type inequalities and other prob-
lems. In the same section, we present several versions of the theorem on equivalence between the problem of find-
ing cxact inequalities of the type (1) and several other problems. In Sec. 6, we consider applications of Kolmo-
gorov-type inequalities (o the exact solution of extremal problems in approximation theory. In Sec. 7, we consider
applications of these inequalities to the investigation of extremal properties of polynomials and splines. Finally, in
Scc. 8, we briefly discuss other investigations of Dnepropetrovsk mathematicians related to inequalitics for interme-
diate derivatives.

2. Cases of Complete Solution of the Problem on Exact Kolmogorov-Type Inequalities
for Periodic Functions

First, we note the following cases, which are either particular cases of inequalities for the entire axis or can be
obtained by analogy:

{i) p=gq=r=o (Hadamard, Shilov, and Kolmogorov);
(i) p=g=r=2 (Hardy, Littlewood, and Polya);
(iliy p=g=r=1 (Stein);
(iv) g=co and p=r=2 (Shadrin [42}).

The Hadamard-Shilov—Kolmogorov inequality (4) is presented above. The Hardy-Littlewood—Polya inequal-
ity for functions x € L5 ,(T) has the form

“x(k)“z < ||x”|2—k/r||x(r) ||§/" (8)
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Using the Stein method [14], one can easily derive from (4) the following unimprovable inequality for functions
xe Ly andall ke N, k<r:

k/r

" m” ”8r A"] M8k Wy lh—l\/r 9)

—k/
el ™"

(i)l

(here and below, g,(r) := 1/4¢,_;(1)). Note that the Stein method [14] can also be used in some other situations
(for different versions and generalizations of this method, see [43—45]). The Shadrin inequality, which is a periodic
analog of the Taikov and Gabushin inequalities, is not presented here because its formulation is rather cumbersome.

The other results presented in this section were obtained by Dnepropetrovsk mathematicians. We begin the
presentation of these results with one of the most interesting inequalitics proved by Ligun in [46] and formulated as
follows: For any function xe€ L_(T), any k€ N, k <r, and any pe [I, ], the following unimprovable in-
equality is true:

kir

"I

], < A2 w0

- I-k/
lo fl ™"

Incquality (10) turns into the equality for functions of the form @, (1) := n""@,.(nt). In the proof of this incqual-
ity, the method of comparison of permutations was essentially used.

Since inequality (10) is important for the investigation of numerous extremal problems in approximation the-
ory, it was generalized in numerous directions. Thus, various nonsymmetric versions of this inequality (Hormander-
type inequalities) were obtained for the best one-sided and nonsymmetric approximations. Various “onc-sided™ in-
cqualities of the type (10) and their numerous applications are described in detail in [9]. For more general “nonsym-
metric™ inequalities and generalizations of inequality (10) to the case of linear differential operators with constant
coefficients, see [47, 34-36], [6, Chap. 1], and [7, Chap. 1].

The following inequality was proved in [48]: Forany ke N, k<r, and xe L_(T), we have

(,)|1\/r

~(k “ Pr- "H -k
”X( )"l ” ” /r

_ (1
lo, 1%

(X is the function trigonometrically conjugate to x).
Let

2n
ag(x) = —j x(tydt

for xe L;. If re R, r>0, then wesct

|l - -
B.(t) = — z v~ cos(vt —mr/2).
T
v=1I

A function g e Ly such that ay(g) =0 is called the rth Weyl derivative of xe L; (x!")=g) if

x(1) = ag(x) + (B )(1) = ag(x) + [ Bt ~w)glu)du,
0
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Denote by L’;, the set of functions x € Ly such that x"’ € L,. For re R, r>0, we set
2n

Q. = J.Br(t—u)(po(u)du.
0

In [49, 50}, the following inequality was obtained for derivatives of half-intcgral order: Let k,re N and r/2 <

k < r. Then, for any function x e L, the following unimprovable inequality holds:

”(Pr—k-l/"

“ x(k+l/2)
. - 1= (k+1/2
2 g, A

" ” I\+l/2)/1” (/)”k*’l/2 . (12)

In the proof of inequality (10), the theorem on comparison of derivatives, based on the Rolle theorem for the
operator d/dt, was essentially used. However, the operators of trigonometric conjugation and fractional differen-
tiation do not possess such properties. In the proof of inequality (11), this problem was solved by using the Stein—
Weiss lemma (see, e.g., {6, Sec. 1.6]). Incquality (12) is proved by using (10) and (11).

In [51], one can find certain generalizations of the results of [48].

Inequality (10) relates to the casc where [see (6)]

oy, = min{l—!\;, if_i} I _E‘

4 r r—=s +p r

In this case, inequalities of the type (3) are impossible in principle for functions defined on the entire axis or semi-
axis. The following group of results obtained by Babenko, Kofanov, and Pichugov [52-55] is related to the case
where

. k r—k-s"+q7'"| _r-k-s"4q"
(Xk, = mln{l——, 1 _q] }: ] .q|
r r—3g +p r—s +[)

Let k,re N, k<r, and pe[1, ). Then, for any function x e L, the following inequality holds:

(k) ”(p’ k ” i)/ r+p (r} ({‘+f’ I)I(H’f’_l)
“x “oo = " ”(, _/\)/ r+l’ “ " “ "oc ' (13)
Inequality (13) turns into the equality for functions of the form x(f) = a@,(1), a€ R.
For any function ye& L}, we have
(k) llf*'r~k“ (r=k=D/(r=1+p " (" (k+/f‘)/(r—l+/f‘)
||X “"" < (r—k=-1)/(r- 1+p~! ” ” ||\’ ||| : (14)
|( I "
For p =co, this inequality was obtaincd by Ligun (see, e.g., {9, Sec. 6.4].
Finally, for any function x e Lj, we have
(k) Ig’ 1\” (r—k—-1/2)/( r—l+p (r) (l‘_”2+l’_l)/(""l+l’_l)
”i ||2 - ‘ u(r k—1/2)/ r I+p~ 1 ” " "X || : (15)
¢ r
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Inequality (13) is the main inequality. Inequalities (14) and (15) are proved with the usc of (13). The proof of in-

equality (13) is based on the Kolmogorov comparison theorem and method of comparison of permutations.
In 1941, Sz.-Nagy [56] obtained exact inequalities of the form

l (r)

o
Il < KI5 ], ) "

for functions defined on the axis in the case where r=1, g2 p>0, and | <s < e, Inequalities of the form (16)
are called Sz.-Nagy-type inequalities. Below, we present the inequalities of the type (16) for periodic functions x
with zeros and essentially bounded derivatives of order » = 1 obtained by Babenko, Kofanov, and Pichugov in
[57-59].

Let re N and p, g€ (0, ], g> p. Then, for functions xe L (T) with zeros, the following unimprovable
inequality is truc:

"X”q < ”(pl “ “ ”;+l/q /(I‘+l/p)||x(r} (17)

sup (U p=Ug)lr+1/p)
= ) g+t p) I :
oscslo, L., + clfy T

Let Ey(x), be the ordinary best approximation and let Eg (x), denote the best approximations of a function
xeL,(T) frombelow (+) and above (-) by constants in the space  L,(T). For 1 <p<eo, wedenote by c,(x)
the constant of the best approximation of a function xe L,(T) in L,(T). The following exact inequalities arc

true: Let 7€ N, p,ge (0,0], ¢g>p, and m=p+1 or m=eo. Then, for any function x€ L.,, we have

||(P, ” g (r+1] (L p =1 g) r+ 1 p)
||x C’"(x)”q = “ "(r+lfq)/(:+1fp) “ Cn (X )”(I+ e m”x(’)“w ’ (18)
lo,=le.l.1, . : (1 p=11g) (41 p)
+ i (r+1/g)/(r+1/pf| () /2 4 I
0(x), < 7 /( 17 Eo (0 [x ”m ’ (19)
lo, o, LI "
Eo(x)w < ”(pr “oo " “r/()+I/p)E ( (/))(l/p)/(l+l/p) (20)

“ ”I/(I+|/[))
D,

As a consequence of (20), for any function xe L, x L consl, the following exact inequality holds for r € N and

ge (1, 0]:

i nq < ” “(H?I"/IJ;I)/HH)W ”(r+I/q)/(r+l)”x(r)"(|—1/¢I)/(F+l). n
(pr 1 ”

The proof of inequalities (18)—(21) is also based on the method of comparison of derivatives and permutations.

Also note that Babenko and Vakarchuk [60] obtained exact Kolmogorov-type inequalities for functions
bounded on a discrete lattice.

Summarizing the results prescnted above, we conclude that the list of known (in the periodic case) sufficiently
complete results (i)—(iv) of determination of exact constants for Kolmogorov-type incqualities can be extended as
follows:
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(v} gell,e) and p=5=o0 (Ligun);
(vi) g=oo, pe[l,), and s = (Babenko, Kofanov, and Pichugov);
(vil) g=o0, pe[l,0c0), and s=1 (Babenko, Kofanov, and Pichugovy;
(viii) ¢=2, pe|l,e], s=1, and k>r/2 (Babenko, Kofanov, and Pichugov);
(ix) g,pe (0,], g>p, re N, and k=0 (Babenko, Kofanov, and Pichugov).

3. Kolmogorov-Type Inequalities for Periodic Functions in the Case of Low Smoothness

We begin with the case of functions with essentially bounded higher derivative. In particular, Gabushin [61]
proved that, for r=2 and r=3, 1<k<r-1, any p 21, and ¢ = rp/(r—k), the following unimprovable in-

equality holds for functions from L, (R):

“xw“ < 2a/p-1,/q" kuq“ I | r

o,

r—k+1/q
r+llp A
The following statement for periodic functions was proved in [62]: For functions fe L;,‘w(T'), the inequalily

where o =

||<Pr ¢l

|+, < “" T Rl (22)
r k »
where
o= Oy = min{] K L—Iii}
roor+p

holds for any p, g€ [l,co] inthe case where r=2 and k=1 or r=3 and k=1,2, andfor p=1 and g€
[1,e0] inthe case where r=4 and k=3 or r=6 and k=4,5. Incquality (22)iscxacl. For ¢ >rp/(r—k), it
turns into the cquality for functions of the form x(1)=a@ (t+¢), a,c € R. For 1 <q < /(r—k), it turns into
the cquality for functions of the form x(r)=a@,(nr+c¢), a,c€ R, ne N.

The next group of incqualities (see also [62]) was obtained for functions with summable higher derivative. For

any p,g € [l o], the following cxact incquality holds for functions fe L[, i T'):

l@o(:7. 8 "
< sup %]
9 yes=12 oG S

’

*I o (23)

where
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. {1 p }
o = min{§ —, ——— .
2 g(p+1)

If ¢<2, then
H‘PO( ¥ B)HL ATH ||‘P0("1/4 ”4)"/ ,(TH & nLq(T';
[e4
vestulo Ol o feGUa Al o el
for.all p e [1,e]. Morcover, forany p € [1,o], if g> ;+; p_—*—? then

oo, 6)“L ey el )
> .
‘y+8 1/2 ”(P]( 'S S)HL (Tl "gzni,’(’]‘])

For functions fe Lf,v 1(R), an exact inequality of the type (23) was proved in [63] for g=2p/(p + 1).
In addition to (23), the following statement is true: Let pe [1,00) andlet r=3 or r=4. Also assume that if

r=3, then k=1 and g=2p, andif r=4, then k=1 and ¢=3p/2 or k=2 and ¢ 23p. Then, for functions

Xe L’,',, |(Tl), the following unimprovable inequality holds:

(k) (|-
|+, < =l
Il,,
where
r—k—=1+q"
o =0,= _q[
r—1+p

The next two assertions [62] relate to the case of arbitrary smoothness r and certain specific values of 4.
Assumethat re N and k=r—1, k=r-2, or k=r—3 and, moreover, 1 <¢g<2 if k=r-1,g22 if k=

r—2, and ¢ =3/2 if k=r-3. Then the following exact inequality holds for functions x € Lj (Th:

: "2 —k " (-
”x(lx)”q < r (xtl ”x”lu ”f(r)”I )
eIl

where

r—k~1+q_I
r

A =0 =

Finally, assume that ¢, p€ (l,e0], re N, and k=r—1, k=r-2, or k=r-3 andlet 4/3<g<2 and r 2

S5it k=r—1, g24 and r27 it k=r—-2, and ¢ =23 and r 29 if k=r—3. Then functions x e L'I',,‘(T')
satisty the exact incquality
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8r— k“q Wor=k ¥y ) ” ” (,.)”1—0(

|1, <
q

r ”1)

r—k—l+q
r—l+p
We now present more inequalities for functions with the higher derivative from L, 1 <5 < o, In [64], for

where o =0, =

functions x e Lf;h s(R), Arestov established an exact inequality of the type (3) for the following values of parame-
ters: r=2, k=1, p=oo, se [l,eo], g=2s and r=3, k=1,2, g=p =, s [l,]. For periodic functions,
the following two statements were proved in [62, 65]:

Let s € (1,0). Then functions x € Li +(T) satisfy the inequality (as usual, p"=p/(p—1))

s/ (1+5")
L < 2020 LN g gyt 24)
s

with the exponent oo =a;,=1/(s"+ 1). For functions x e LL’X(T), s € (1,00), the following inequality holds:

. 2(2_1\‘,)/(2‘?,“) (2S’ + l)2s [(25"+1)
< TR 7 7
(S/)'\ [(2s"+1) (S, + 1)(s +1)/(2s"+1)

Ey(x')es Ey(0)}! o Eox™ ! (25)

LAT'Y

where

o = 2-1/s _ 1+1/¢
P73 1ys T o 2+1)y

is the critical exponent. The constants in inequalities (24) are unimprovable.

4. Inequalities That Take into Account the Number of Changes of the Sign of Derivatives

For a summable 2rn-periodic function x, we denote by v(x) the number of essential changes of the sign of x
on the period (see, e.g., [8, p. 80]). By virtue of [30], inequalities of the form (3) with o > oy, are impossible.
Nevertheless, as proved by Ligun [66], if we transform an inequality of the form (3) so that it takes into account
certain additional properties of the function x such as, e.g., the number of changes of the sign of its derivatives,
then Kolmogorov-type inequalities with exponent o > oy, are possible. Let us formulate the indicated result of

Ligun. For r.ke N, k<r, pe [1,e0], and xe L, the following unimprovable inequality is true:

r\{1-
[+, = (22)

“ gr—koljl llv o
| gl‘ ”/)

where

r—k
r=1+1/p"

Note that, for p =1, inequality (26) turns into the Stein inequality (6). In [66], Ligun also presented several in-
stances of application of inequality (26) to approximation theory. In [67], inequality (26) was generalized to the
case of differcntial operators with constant coefficients.



Consider inequalities of the form [68]

"x(k)”q < Mﬁ V(x(i))a; ||x|l‘;|
i=

" ”1 -
N

(here, o, o ...., 0, arc nonncgative numbers. o € (0, 1)) for functions xe L (in this case,

r+1

xe L7 (inthis case, m=r+ 1). We consider inequalities satisfying the following conditions:

] -1
(i) o> oy i= mn%_éj;j_i_ii_}

r r—s_l+p_I '

we established that, in several cases, as in (26), it is possible to take

ol -1
o = max{l_ﬁ,r_l%_t_ql_}:
roor—s +p

i Yo =k-ri-a.

i=1
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27)

m=r) and

Note that k¥ — r(1 — o) is the minimum possible value of Z:":] o, for which inequality (27) holds with a con-

stant M independent of f. Indeed, if Z;nzl o; < k—r(l1—a), then, for sufficiently large n € N, incquality (27) is

not satisficd for x{nt), x#const. The fact that incquality (26) possesses properties (i) and (ii) plays an important

role in its applications.

We begin the formulation of results with inequalities of the type (27), which can easily be derived from in-

cqualities (4) and (9).
Let k, re N and k <r. Then, for any function x & 17 the following inequality is true:

. k/(r+l

I (l\')l < V(.Y(’+l)) /V+) "(pr—k ”l " “(r-k+l)/(r+l)" (,-)"I\’/(I'+|)

|'r || - ) ” (r—k+1)/(r+1) Alhy x oo :
(prnl

If k=2, then

”x(k)H <(l(_x_,)_)(r_“/(r_“
;S

g |l (r=k)/ (r=D) || ) [[(k=D/tr=D)
: N e Il

(r—k)/(r-1
&r ||

or

s (r—k - - th=D/r : .
H.\"k)” < (V('\. ))(I b M ﬂt_ﬁ”_:_."xug—/&l)/r“'\,(r)””‘_”/’.
B 2 o LT -

Moreover, for any function x € L. and k=>2, we have

, N [ R - (k-1)/r

“ (L)” < v(x™) r=k 1l I "(r—AH)/r (r)

X < — x| X .
1 7 ”(P, ”:) k+1)/r " "oo

Inequalities (28)—(31) arc exact.

(28)

29

(30)

3hH
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Note that inequality (29) is a particular case of inequality (26). Here, it is presented for completeness of expo-
sition and for the reason that, unlike inequality (26), it easily follows from (9).

In inequalities (30) and (31), the norm “ x(k)nl is estimated in terms of | x|}, and " X nm in equal powers.
However, the number of changes of the sign of derivatives of the [unction x is taken into account differently in
these inequalitics, and one can easily give examples of tunctions {or which (30) gives a better estimate of ” P ”l

than (31), and vice versa.
Using inequality (26), we can establish the following inequality, which is more general than (28) and (30): Let

k,re N, k<r, and pe [1,]. Then, for any function x € Lj™', we have

=1/ pXr=k+Dy/(r+1/ p) - =1+ py/(r+l/ p)
') P ) i (V(x('H))) Y/ I

Hx(k)ul < (v(;c) .

ol kD /1| (RS P L )
<r—k+|)/(r+1/m”"|p ”Y “ . G2

” (pl‘ ”1) ~
Inequality (32) is exact.
Note two more inequalities. Let &, re N, r/2<k<r, and pe [1,%]. Then, for any function xe L*', the

following inequality is true:

e, = (2
2

2

L

=1/ pYr—k+172) /(41 p) . V2= (r—k+1/2)/ (r+1/ p)
) ! / i V(xml)))
2

o, ll, (r=k+1/2)/(r+1 1 | () L= =k+ U2 /(41 )
o, [ VDT Ry 3 "" oo ' (33)
('Pr I)
Moreover,
* | < vy SR I, =k 12/ () (k=1/2)/r 34
H.\’ 2 = ) ”(P “(I'—/\'+|/2)/r “.\"m “'x o (3 )
oo

for x e L. Inequalitics (33) and (34) are exact.

Comparing inequalities (33) (for p = o0) and (34), we can draw the same conclusions as in the case of inequal-
itics (30) and (31). For more incqualitics of the type (27), see [68].

5. Relationship between Kolmogorov-Type Inequalities and Approximation Problems

In the course of solution of numerous cxtremal problems in approximation theory, it was established that they
arc closely related to exact incqualities of the form (1) —(3). In this connection, onc should mention the important
works devoted to the method of intermediate approximation [37, 39] and to the approximation of unbounded oper-
ators by bounded operators |69, 70]. The investigation of this relationship was carried out in [71, 72] and [30, 46]
(for functions defined on R or R, and periodic functions, respectively).

We restrict ourselves to the consideration of the relationship between Kolmogorov-type inequalities and prob-
lems ol approximation of functional classes. We present two theorems that form the basis of such applications. Let
kyre N, p,g.sel,e}, and Ne R_. We set
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WE = {xeL’;(T); =% ”pgl}, w o= {rer,m: x|, <1}

and

k - o .
E(Wq,NWI’,)x = sup. inf r||x—u||5.
xe W, ueNWI,

Assume that, for any seminorm y on L(T) and any subset A ¢ L(T), we have
W(A) := sup{y(x): xeA}.

Theorem 1. Ler re N, k=1,...,r—1, ae (0,1), N>0, and 'p, q,s € |1, ). Then the following as-
sertions are equivalent:

(i) for any function x e LAT), we have
—k RTI B el
e R

(it) for any N >0, we have

=1/(l-a)
k r 1-o Na 3
E(W), NW,) < — (*ch) ;

(iii}) for anv seminorm Yy on L(T), we have
k o PN e 0).
w(w)), < Ky (W)y!=o(W):
(iv) for any function x e Wq"' and any t >0, we have

inf {1 | < &
x € LT ) r

The cequivalence of assertions (i)—(iii) of this thcorem was proved by Ligun (sec Theorem 6.1.1 in [9]).
Assertion (iv) was proved by Babenko, Kofanov, and Pichugov [53].

The next theorem |73, 74] describes the relationship between Kolmogorov-type incqualities for support func-
tions of convex sets and other problems.

Assume that X is a rcal linear space, 8y iszcroin X, p(x) isa certain (gencrally speaking, nonsymmetric)

normon X, Hy p = {xe X: p(x)< 1}, X'(p) is the space of linear bounded (with respect to p) functionals on
X, {x, v) is the value'of a functional ye X'(p) ontheclement xe X, and p*(y) :=sup {(x,y): xe Hy, pt isthe
(nonsymmetric) norm in X'(p). Note that if X is a normed space and p(x) = ||x||X then X'(p) =X*, where X*
is the space of all lincar bounded functionals on X.

Assume that, for MM, C X, xe X, ve X'(p), and an arbitrary sublinear functional ¢ on X,
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Su(y) = sup{{x,): xe M}
is the support function of the set M and
M® = {ye X' (p): Sy <1}, E(u Mg, = inf{p(x-u): ue M},
EM, MI)X,[, := sup { E(x, MI)X,p txeM}, yM) = sup{wy(x): xeM}.

If H,,...,H, c X, then,for xe X andany t€ (t,,...,1,) € R, wesct

j=t

n m
K,(X:Hy...., H,; x:1) := Xjeicr(l)LeHj{p(x - ij) + jg‘lerH;)(xj)}.
j_

Denote by ¥

., the sct of lower-semicontinuous convex functions ®: R} € R,. For ® e F,,, we sct ®(z) =

m?>
~®(z) if ze R™, and D(z) =+oo if z& R™. Alsoassumethat @ is the Legendre transformation of the func-
tion @, ie., @ (v) := Sup{(x, vy—®(x): xe R" } ve R", and z'jnzl N;H; is the algebraic sum of the sets
NjHj.

Theorem 2. Let H,,..., H,, be arbitrary convex sets in X that contain Oy and let ® € F, . Then the

following assertions are equivalent:

m:*

(i) forany xe X'(p) such thar p*(x) 20, we have

, \TRE S
Sp(x) < .D*(x)cb( ) H"’(X)):

P pir

(ii) forany xe X'(p) and N=(N,,...,N,) € R!', we have

m

Sp(x) € D =N)p (o) + ) NSy, (x):
=l

(iii) forany N=(N,,...,N,) € R;'. we have

n .
E(H: NjHj] < O (-N):
J=t X.p

(iv) for any N e Rl and any sublinear functional y on X for which the values W(Hy p) and

W(Hj), j=1,....m, are finite, we have

i}

Y(H) S @ (-N)W(Hy ,) + Y. Ny(H,)):
=1
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(v) for any functional y, y #0, from assertion (iv), we have

W(H]) W(Hn/) ]

(H) < y(Hy )P .
\Il \ll o (W(HX,[)) “V(HX,[))

(vi) forany z€ H and t€ R, we have

K(X:Hy..... H

e B0 < ().

Assertions (i) and (ii) of this theorem are abstract versions of a Kolmogorov-type inequality in the multiplica-
tive and additive form, respectively. Assertion (iii) is an estimate of approximation of a class by a class. Assertions
(iv) and (v) are abstract versions of inequalities for upper bounds of seminorms. Finally, assertion (vi) is an estimate
{on the class H) of a K-functional-type characteristic of a collection of m spaces.

6. Applications to Approximation Theory

Applications of Kolmogorov-type inequalities that are based on Theorems 1 and 2 are described in detail, e.g.,
in [9, 36, 41, 53—55]. In the present paper, we restrict ourselves to the formulation of several corollaries of the in-
equalitics presented in Sec. 2. The estimates for approximation of a class by a class presented below arc established
by using inequalities (13)—(15) and Theorem 1.

Let k,re N, k<r, and pe [1,e]. Then, forany N> 0, we have

)(r + l/p,)/(r— k+l/p’)

r-—k+l/p'(”(pk”°°r+l/p'

k/ —k+l//1'
k o, 1)

—k/(r-—k+l/p')

N (35)

E(WS, nwy) <

k/(r—k+l/p')

(as usual, p’=p/{(p - 1)). The constant coefficient of N~ is unimprovable.

Let r,ke N, k<r, and pe [1,e]. Then, forany N >0, we have

k—1 (r—l+l/p')/(r—k+l/p,)
’ gk ”00 )—‘.—_’) ’
k N« r—k+]/p( r=1+1/p —(k=1)/(r=k+1/p)
E(W! ’pr)w - k I ”(k-l)/(r-kH/p’) N ‘
OF /)’

~k=D/(r—k+1/p’)

The constant coetficient of N is unimprovable.

Let r,ke N, k<r/2, and p € [1,e]. Then, forany N>0, we have

r=k=1/2+1/p’ (”gk”%-—ul/p’
k—-1/2 I(k—I/Z)/(r—k—l/2+l/p')

k=1/2 )(r—l+l/p/)/(r—l\+l/p'—|/2)

—(k=1 2/ (r=k+11p" =172
N (r=ketip=r2)

E(Wy,NW,) _ <

P

or

~(k=1/2)/(r—k+1/p’'~1/2)

The constant coefficient of N is unimprovable.
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Using inequality (12), we can get the following estimate:
Let r,ke N and k <r/2. Then, forany N>0, we have

(k—1/2)/(r—k—=1/2)
- : —k+1/2 rlr—k=172) k=1/2
E(Wf "2 ) < 5202 o, 40 BELNS.LL S (36)
( 2 )m ’ ” / “L_\(T) rN“(pr”Lw(T)
It is well known (see, e.g., [8, Chaps. 4 and 5]) that, for , n € N, we have
.1l (T)

r _ ”

E(W;. H), < Hcp,,,rll,‘pm = (37)

where H iscither 7, ,_; (the sct of trigonometric polynomials whose degree does not exceed n — 1) or S5,
nwe N, p2r—1 (the setof polynomial splines of degree W, defect one, and nodes at the points vr/n, ve Z),
and p’=p/(p-1). For fractional r, inequality (37) is known only for H=7,, ; and p =1 (see (8, pp. 171,
172)).

Using relations (36) and (37) and the method of intermediate approximation, we obtain the following statement:

Theorem 3. Let k.ne N andlet H be either T,, , or S,,,, W22k—2. Then

||(Pk-1/2 ”In_(T)

E(Wzk_l/z,h’)l < ”%,k—l/zn%m V7

7. Investigation of Extremal Properties of Polynomials and Splines

As above, we denote by S, . (n,r€ N) the set of 2m-periodic polynomial splines of degree r, defect one,
and nodes at the points vit/n, ve Z, and by 7, the set of trigonometric polynomials whose degree does not ex-

ceed n. We present inequalities of the Bernstein—Nikol’skii type for splines and polynomials, which can be estab-
lished by using the inequalities presented in Sec. 2 and which are unimprovable in a certain sense. We restrict our-
selves 1o the formulation of applications of inequalities (13)—(15). For known exacl inequalities of the Bernstcin—
Nikol'skii type for polynomials and splines, sce [6, Chaps. 3 and 6], [7, Chaps. 3 and 6}, and [75].

Let n, ke N and p € [I,0). Then

(k)
N U R
I;GN I” €7, I‘lk+”p ” T;I ”P "COS(')"p-
1,#0

An analogous result is truc for splines. Let n, r,ke N, k<r, and p € [1, ). Then

(k)
IS 1ol

sup - sup X -
neN ses, , n e ” D) "[) ”(pr ”I’
s#0
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The statements below contain exact inequalities of the Nikol’skii type in various metrics for trigonometric poly-
nomials and 2m-periodic polynomial splines; these inequalities are proved by using inequalities (18)—(21). Certain
known results in this direction can be found in [6, Chap. 3], [7, Chap. 3], and [75].

Let p,ge (0,o] and g > p. Then

171, lcos()+cll,
SUp  SUD o= = SUp e
neN T,eT, n I|T,,“p cefo.1]llcos¢)+cl|,
T,%0
If m=p+1 or m=-oco, then
. ” 7:1 —CWI(T;I)”q _ ”COS(~)”4
sup  sup 1/ p-lig . TV '
neN T, eT, n ” 7;1 _Lm(Y;I)”p “LOS( )”l’
T,#0
Furthermore,
- Ey(T,), _eosey+1]),
sup - sup [/p=l/q px TP I :
7,20

Analogous results are also valid for splines. Let re N, p,ge (0,0}, and g >p. Then

o wp Ml el
weN seS,, n TS| cefoe ) le-O+ell,
s20
If m=p+1 or m=eco, then
sup  sup : HS_Cm(S)”q _ ”(Pr”q
neN s;sS,,_, nl/[:—l/‘lns—cm(S)“p o, u/?
s#0
and
S Ex), _ lo-le .,
I;EN \e Sus 11”/)_”‘/E(J)£(S)q "(p: ‘"(pr ”oo ”I’ .
s£0

Applications (of somewhat diffcrent kind) of Kolmogorov-type incqualitics to the investigation of extremal
properties of splines can be found in [76].

8. Other Results Related to Kolmogorov-Type Inequalities

Here, we only mention other directions of investigations of Dnepropetrovsk mathematicians related to the de-
termination of Kolmogorov-type exact inequalitics for functions of one and many variabics and give the correspond-
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ing references. First of all, we note that these directions of investigations are more or less completely described in
[54, 55, 77).

In [78, 28, 791, the problem of exact constants in additive inequalities for intermediate derivatives of functions

defined on a finite interval is studied. In [80, 811, analogous problems are considered for differentiable mappings of
Banach spaces and, in particular, for functions. In [82], a Hormander-type exact inequality is obtained for functions
defined on a semiaxis. The relationship between exact constants in Kolmogorov-type inequalities for periodic and
nonperiodic functions is studied in [83—-85]. Finally, the problem of determination of exact constants in Kolmogo-
rov-type inequalities for functions of many variables is investigated in [86-89, 73].

2 19—
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