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Abstract - -A new method for the detection of gait cycle phases using only two 
miniature accelerometers together with a light, portable digital recorder is proposed. 
Each subject is asked to walk on a walkway at his/her own preferred speed. Gait 
analysis was performed using an original method of computing the values of 
temporal parameters from accelerometer signals. First, to validate the accelerometric 
method, measurements are taken on a group of healthy subjects. No significant 
differences are observed between the results thus obtained and those from pressure 
sensors attached under the foot. Then, measurements using only accelerometers are 
performed on a group of 12 patients with unilateral hip osteo-arthritis. The gait 
analysis is carried out just before hip arthroplasty and again, three, six and nine 
months afterwards. A mean decrease of 88% of asymmetry of stance time and 
especially a mean decrease of 250% of asymmetry of double support time are 
observed, nine months after the operation. These results confirm the validity of  the 
proposed method for healthy subjects and its efficiency for functional evaluation of 
gait improvement after arthroplasty. 
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1 Introduction 

NOWADAYS, APPRECIATION of the incidence of physical handi- 
caps and post-operative results after arthroplasties is often based 
on subjective estimation of the clinical evaluation. This does not 
reflect the real functional capacity of the patient in his/her usual 
activity. Considering this, several authors have established 
questionnaires from which functional scores are developed. 
Although the questions on such a scale are standardised, the 
answers are often subjective and the discrepancy between the 
patient's and the physician's evaluations is significant 
(LIEBERMANetal., 1996; ANDERSON, 1972; LIANGetal . ,  1990). 

Because of the lack of objectivity and reproducibility, other 
scientific studies have developed analysis of the specificity of the 
different phases of the gait cycle. The time span of each phase of 
the gait cycle gives the temporal parameters. Evaluation of 
temporal parameters during walking is a means, not only to 
assess some aspects of pathological walk among osteo-arthritic 
patients, but also to quantify their subsequent improvement after 
hip or knee arthroplasty (WALL et al., 1981; GIANNINI et al., 
1994). Temporal parameters are also used to predict force 
parameters of gait as an alternative to direct ground reaction 
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force measurements for determining daily histories of habitual 
lower limb loading quantities (BREIT and WHALEN, 1997). In 
addition to gait analysis, temporal parameters are useful in 
several clinical fields, such as electrical stimulation (GRAUPE 
et al., 1987), prediction of future fall (MAKI, 1997) and 
estimation of metabolic rate (HOYT et al., 1994). 

Complete gait analysis, using a video camera (FERRIGNO et 
al., 1985), a walkway with implanted sensors or a force-plate 
(HIROKAWA and MATSUMARA, 1987; MACELLARJ and 
GIACOMOZZI, 1996), allows these measurements but requires a 
dedicated laboratory. Ambulatory systems using foot switches 
or pressure sensors attached to the sole are used for the 
monitoring of temporal parameters (ROSENROT 1982; ZHU et 
al., 1991; ABU-FARAJ et al., 1997). These techniques present, in 
general, satisfactory results in normal walking. However, in 
pathological gait, many problems, such as shuffling, difficulty of 
appropriate positioning, connecting attachment, mechanical 
failure and patient acceptance, render their use limited. 

To compensate for the lack of information concerning 
pathological gait, an analysis based on accelerometry has 
proved to be an excellent alternative to establish the real indi- 
vidual characteristics of movement in daily life conditions 
(AMINIAN et al., 1998). In recent years, technical progress has 
made it possible to realise miniature acceleration sensors with 
integrated conditioning and a calibrating module. In addition, 
owing to very low consumption, these accelerometers can be 
supplied by battery and are a promising tool for long term 
ambulatory monitoring. The possibility to detect, during 
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Table 1 Characteristics of 12 patients 

Patients l 2 3 4 5 6 7 8 9 10 11 12 

Sex (M: male, F: female) M M M F F M F M F M M M 
Age, years 74 55 62 55 76 76 54 65 61 55 71 70 
Weight, kg 80 91 102 73 70 87 63 86 74 87 80 82 
Height, cm 170 177 177 161 156 177 162 180 165 180 168 174 
BMI, kgm -z 27.7 29.0 32.6 28.2 28.8 27.8 24.0 26.5 27.2 26.9 28.3 27.1 
Hip left left fight fight left left left left right fight left fight 
Pain before surgery, months 4 36 18 360 60 18 120 48 12 168 60 360 

normal gait, simple parameters such as step and cycle time from 
trunk or heel acceleration has already been shown (EVANS et al., 
1991; AMINIAN et al., 1995). 

In this paper, an original method to compute precisely the 
value of  temporal parameters using accelerometry is proposed. It 
has been successfully applied to assess some aspects of  patho- 
logical walk among osteo-arthritic patients and to quantify their 
subsequent improvement after hip arthroplasty. 

2 Method 

2.1 Measurement 

An accurate measurement of  lower-limb acceleration signals, 
namely thigh acceleration, needs to be recorded for successful 
determination of  temporal parameters. Two piezoresistive accel- 
erometers and a light, portable measuring device Physilog were 
used to achieve this task. The two uni-axial accelerometers were 
attached to each leg, slightly above the knee articulation, and 
measured the tangential component of  each thigh acceleration in 
the sagittal plane. These accelerometers (IC sensors 3021) are 
accurate, miniature and inexpensive; they have a relatively wide 
frequency range (0-350Hz) and measure up to -4-5 g. The 
signals were digitised (12 bits) by a portable datalogger* and 
stored on a 1 Mbyte SRAM memory card (AMINIAN et  al., 
1995). At the end of  each recording session, the data in the 
memory card were transferred to a computer for analysis and 
evaluation. 

First, to validate the accelerometric method, measurements 
were taken from a group of  five healthy subjects. In addition to 
accelerometers, two FSR pressure sensors t were placed inside 
each shoe, under the heel and the first metatarsal (big toe). In this 
way, the moments of  heelstrikes and toe-offs were directly 
detected. Each pair of  sensors was connected in series, and the 
output was simultaneously digitised and recorded by Physilog, 
with those from accelerometers, at a sampling rate of  60 Hz. An 
additional, similar test was performed with a patient suffering 
from hip osteo-arthritis, to compare the accelerometric method 
with the FSR during a pathological gait. 

Next, measurements using only accelerometers were taken 
from a group of  12 patients with unilateral hip osteo-arthfitis. 30 
healthy subjects (45-77 years, 51-91 kg, 1.5-1.86 m) were used 
as a control group. Each subject walked at his/her own preferred 
speed. The walkway, 35 m long, was covered twice for each 
experiment and was marked at 5 m intervals. A switch connected 
to the Physilog recorded the time needed to walk 5 m and 
estimated the speed of  walking. Hip arthroplasty was carried 
out on the patients. Table 1 shows the characteristics of  each 
patient. The gait analysis was carried out just before the 
operation and again, three, six and nine months afterwards. 

*Physilog, BioAGM, CH 
tlnterlink, LU 
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2.2 Algorithm 

To compute temporal parameters, such as duration of  swing 
and total or double stances of  a gait cycle, it is necessary and 
sufficient to determine for each leg the precise moments of  
heelstrike (when the foot first touches the floor) and toe-off 
(when it last takes off) during that cycle. These events give rise to 
distinctive features on thigh acceleration signals in the form of 
rather sharp negative peaks. Although the amplitude of  these 
peaks can, for example, depend on the subject's velocity, weight 
or painful articulation (in the case of  arthritic patients for 
instance), they are nonetheless always locatable as long as it is 
known where to look. 

Successfully to achieve this task, we should bear in mind the 
following observations. The swing phase of  a gait cycle is 
characterised by a positive thigh acceleration that reaches its 
highest values at around mid-swing (see Fig. 1). This derives 
from the fact that the subject pushes the swinging leg forward, 
while taking support on the other leg. Prior to the swing phase, in 
a quick movement backward involving hip and knee articula- 
tions, the foot is taking off the floor to avoid scuffling or hitting 
the floor. As a result, a sharp negative acceleration can be 
observed that is associated with toe-off. At the end of the 
swing period, the leg is brought to a halt and put on the floor. 
This is the heelstrike and is also characterised by a sharp negative 
acceleration. 

Taking advantage of  these facts, we have developed an 
algorithm along the same lines that can be seen on the flow 
chart of  Fig. 2. The algorithm is designed to extract from the 
right and left thigh acceleration a r and at, recorded during 
walking by Physilog, four series of  points in time. These series 
contain the precise instances of  heelstrikes and toe-offs of the 
right and left feet. For clarity, let us consider a r as the input. It is 
obvious that a I will be treated in the same way. We begin by 
identifying the time corresponding to the global maximum 
values Ps of  the smoothed thigh acceleration signal a6l (low- 
pass filtering at 3 Hz). The Ps samples represent approximately 
the moment of mid-swing during a gait cycle; however, their 
exact significance is not of  interest to us. They will only be used 
as a reference to compute the average gait cycle g% and to select 
the intervals in which negative peaks reminiscent of  heelstrikes 
and toe-offs are to be found. Therefore we next look for local 
minima ofarf inside intervals [Ps + 0.15 gc,,,, Ps + 0.3 g%] and 
[ps-0.15 gCm, Ps-0.3 9c,,,]. The result is two different series of  
samples Phi (heelstrikes) and Ptl (toe-offs), which is almost what 
we are looking for. However, we ultimately want to locate these 
moments on the unfiltered signal at, as, in filtering, a slight shift 
may have occurred. To do so, we proceed in two separate but 
similar steps. First, we apply a new low-pass filter at 6 Hz to arfl 
and we detect the minima of  this new function arf 2 in the close 
vicinity of Phl and Ptl. Two new sample series Ph2 and Pr2 are 
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thus obtained. Then, we look at a r in the immediate vicinity of  
Ph2 and Pt2 to find the minimum peaks. The result is the final time 
samples Phr and Ptr" 

This process of  gradually focusing on the exact position of 
heelstrikes and toe-offs on the unfiltered thigh acceleration 
signal can be carried out, if necessary, in more than one 
intermediate step. Once we are in possession of  Phi (left 
heelstrike), Pt/(left toe-off), Phr (right heelstrike) and Ptr (right 
toe-off), every temporal parameter of  a gait cycle can easily be 
computed as a percentage of  gait cycle cjc averaged over N 
consecutive gait cycles. These parameters are 

(a) duration of each gait cycle 

9c(i) = phr(i + 1) -- Phr(i) 1 < i < N (1) 

(b) left stance (time between left heelstrike and left toe-off) 

LS(i)  = prt(i) - phi(i) (2) 

Fig. 2 
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(c) right stance (time between right heelstrike and fight toe-off) 

RS(i) = ptr(i) - Phr(i) (3) 

(d) left double support (time between fight heelstrike and left 
toe-off), also known as left double thrust support time (WALL 
et al.) 

LDS(i) = ptt(i) - Phr(i) (4) 

(e) fight double support (time between left heelstrike and right 
toe-off), also known as right double thrust support time (WALL 
et al.) 

RDS(i)  = ptr(i) - pht(i) (5) 

To achieve a good level of  precision for these parameters, 20 or 
so gait cycles are needed. This means that the subject on whom 
we carry out our study is asked to walk at his/her preferred speed 
for at least 30 m in a straight line. An increase in this distance 
might improve the accuracy of  the measurement, but, from a 
clinical point of  view, walking 30 m is reasonable for gait 
analysis in orthopaedic patients. 

3 Resul ts  

3.1 Detection algorithm 

Using the algorithm of  Fig. 2, left and right heelstrikes (toe- 
offs) were detected from thigh accelerations, and the values of LS 
and R S  were computed for 16 consecutive gait cycles (N = 16). 
Simultaneously, the period of  stance was detected from the FSR 
signal (Fig. 1), and the corresponding left and right stances over 
a period of  16 cycles were computed. Fig. 3 compares values 
obtained from accelerations (ACC) with those of  FSR. A good 
agreement (R = 0.97) for both the left and right stance is found. 
The difference between ACC and FSR for normal subjects is not 
significant (N = 80, p >  0.8), and the 95% confidence interval 
on the mean is: -0 .02  s < mean(ACC)-mean(FSR) < 0.02 s. The 
averaged values of  LS and RS, in s, and as a percentage of the 
gait cycle are pres.ented in Table 2. 

The efficiency of  the accelerometric method during patholo- 
gical gait, tested on one patient, was compared with the pressure 
sensors. Fig. 4 show two examples of  walking, where the FSR 
signal provides erroneous results, whereas .temporal parameters 
are correctly assessed from accelerations. In Fig. 4a, the first and 
third swing obtained from the FSR signal are approximately the 
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from accelerometry (ACC) compared with that obtained from 
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Medical & Biological Engineering & Computing 1999, Vol. 37 



same and correspond to those obtained from the acceleration 
signals. However, the pressure sensors detect that the second 
swing has dropped to half its value, although there is no 
significant change in the acceleration patterns. This result 
could be caused by shuffling at the beginning of the swing 
inducing some pressure on the FSR that does not interfere with 
the thigh acceleration. In Fig. 4b, an artefact is present during the 
first stance in the FSR signal, owing probably to the fact that the 
foot was not acting properly on the pressure sensors, involving, 
during a short time, a strain drop on these sensors. The thigh 
acceleration was not affected by this artefact. 

3.2 Hip osteo-arthritis patient analysis 

The detection algorithm was then applied to data from 30 
normal subjects. The results were averaged over 20 consecutive 
gait cycles to estimate the normal range of  temporal parameters. 
These normal ranges (mean :t: s.d.), defined as a percentage of 
the gait cycle, are as follows: 

59% < RS, L S  <_ 63% 

9% < RDS, LDS < 13% 

These values correspond to the established values for the normal 
population, which are around 60% for the duration of stance and 
10% for the duration of  double support, and remain largely 
unchanged throughout most adult life (ROSE and GAMBLE, 
1994). 

Stance and double support time were also detected from the 12 
patients before the operation and at 3, 6 and 9 months following 
the operation. Figs. 5 and 6 show these values (averaged over 20 
consecutive gait cycles) compared with normal data. By plotting 
RS against LS, normal data are distributed around the diagonal 
and centred about 60%, whereas most of the pre-operative data 
are spread far from the normal data (Fig. 5a). After the operation, 
post-operative data move towards the normal data and, at 6 
months, nearly reach the normal values. The post-operative 
improvements are better shown with the variation in RDS and 
LDS. The pre-operative data are spread generally, far from the 
diagonal, depending on the degree of pathology (Fig. 6a). In 

addition, data from patients with an arthritic left hip are 
distributed above the diagonal, whereas data from patients 
with an arthritic fight hip are mostly below the diagonal. This 
is owing to the asymmetry of pathology: RDS (LDS) is shorter 
than LDS (RDS) for patients with an arthritic right (left) hip. This 
discrepancy decreases strongly 3 months after the operation 
(Fig. 6b) and becomes almost normal after 9 months (Fig. 6d). 

A student's t-test was performed on the data of the normal 
population (N I = 30) and of  patients (N 2 = 12) before and after 
the operation. According to this analysis, pre-operative data (RS, 
LS, RDS, LDS) are significantly different from the normal data 
(p < 0.005). For all the patients, the speed of walking before and 
after the operation and the difference between fight and left 
double support [RDS-LDSI are shown in Fig. 7. The speed 
changes significantly only 6 months after the operation 
(p<0.005),  whereas [RDS-LDS[ becomes significantly 
different 3 months after the operation (p < 0.05 at 3 months, 
and p < 0.005 at 6 months and 9 months). Furthermore, IRS-LSI 
changes significantly from the pre-operative only after 9 months 
(p<0.10).  

4 Discussion and conclusions 

Comparisons between the normal population and patients on 
the one hand and pre-operative and post-operative patients on 
the other hand are carried out from temporal parameters obtained 
at a speed freely selected by the subject. This is because, at a 
freely selected speed, people walk in a dynamically equivalent 
manner (CHAN and CHILDleSS, 1991). This is shown in Fig. 8, 
where the difference between left and right double support is 
presented as a function of  the freely selected speed for a normal 
subject. This difference is less than 2%, which is not significant 
compared with the resolution of the measurement. In addition, as 
illustrated in Fig. 7, the change in the freely selected speed is not 
a powerful indicator of  gait ability, as the relative increase in 
speed after nine months and over 12 patients is only 25%, 
whereas, for the same period, a decrease of  88% in the 
asymmetry of the stance time IRS-LS[ and, especially, a 
decrease of  250% in the asymmetry of  the double support time 
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[RDS-LDS[ were observed. It can be concluded that the double 
support time is the temporal parameter that allows control of  gait 
symmetry recovery during rehabilitation. Any discrepancy 
between the durations of  left and right double limb support 
depends on the affected hip. Right osteo-arthritic patients have a 
left double support longer than the right. The reverse is true for 
left osteo-arthritic patients. The recovery of symmetry is 
progressive for every patient. The contrast with the almost 
equal values for a population of  normal subjects is pronounced. 
This result underlines that the weight transfer phase is the most 
demanding task during the gait cycle and certainly a painful one 
for arthritic patients. Furthermore, a tendency towards normality 
was also observed after arthroplasty. 

If  we consider patients 3, 4, 5,7 and 10 (Fig. 7b), IRDS-LDS[ 
shows no progression after arthroplasty and is already low 
before arthroplasty (maximum 5%, patient 3). The clinical 
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evidence regarding this result is as follows: first, all patients 
had a discrete (unnoticeable unless looked for) limp, except 
patient 3 who had a moderate (anybody could notice it) limp 
before surgery; secondly, these patients are younger (mean age 
60.4 years) than patients 1,2, 6, 8, 11 and 12 (mean age 67.4 
years). The first group has a greater functional capacity to 
compensate for a painful hip joint than the second group. 

Patients 1, 2, 6, 8, 11 and 12 have a rapid correction of IRDS- 
LDSI 3 months after arthroplasty. We explain it by the fact that 
pain is the responsible factor (before osteo-articular deformation 
and neuromuscular impairment) for the limp of  osteo-arthritic 
patients before and after surgery. Three months after surgery, 
these patients had no more pain (pain is the principal indication 
for.a hip arthroplasty) and almost no limp. Patient 9 is the only 
one still having hip pain at 6 months after surgery and has none at 
9 months. This explains the slow progression of  IRDS-LDSI 
after surgery. 

Experiments performed on normal subjects have shown no 
significant difference between results obtained from accelero- 
metry and those of  pressure sensors attached under the foot. 
Additionally, accelerometers are less sensitive to artefacts 
present in pathological walking (e.g. foot shuffling, as shown 
in Fig. 4), as accelerations are measured on the leg and involve 
many advantages, such as high sensitivity, reproducibility, 
simple attachment, robustness and handling. 

The error concerning the single and double support time 
depends on the mid-swing, heelstrike and toe-off detection 
time. This error is related to the time resolution of the system 
and parameters involved in peak detection (cutoff frequency of 
filters, threshold and intervals for peak searching). Errors 
reported in Table 2 show that the time resolution, which 
corresponds to the sampling period (0.017 s), is a major part of  
this error. By increasing the sampling rate, the resolution can be 
improved. However, a higher-frequency component of  accel- 
eration could be measured, and it is therefore necessary to adapt 
the cutoff frequency of  filtering for mid-swing detection and the 
threshold to eliminate small peaks and enhance heelstrike and 
toe-off detection. A cutoff frequency of  3 Hz represents a good 
optimum in our tests. The intervals for heelstrikes and toe-off 
detection ([Ps 4- 0.15 gc m, Ps -4- 0.3 gCm] ) are fixed empirically 
in terms of  mean gait cycle time; however, for very slow speeds, 
an increase in these intervals is necessary. 

The proposed method for temporal gait parameter estimation 
using accelerometry reveals a promising monitoring tool for 
functional evaluation of  gait improvement. The system used 
only two miniature low-cost accelerometers, with a light, 
portable (less than 300 g) digital recorder, and involves no 
discomfort for the patient, who can carry it for a long period 
of time. Although the results introduced in this paper concern 
short-time measurement (a few minutes), the system allows 
long-term recording for up to 12 h during free living conditions. 
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Table 2 Left stance (LS) and right stance (RS) obtained from accelerometers placed on each thigh (ACC) and FSR placed under each foot (FSR) 
as percentage of gait cycle, for 5 normal subjects 

LS, s RS, s LS, % RS, % 

ACC FSR ACC FSR ACC FSR ACC FSR 

1 0.72 4- 0.04 0.73 4- 0.03 0.74 4- 0.04 0.73 4- 0.03 63 4- 2 63 + 2 63 4- 2 62 4- 2 
2 0.61 + 0.02 0.59 4- 0.02 0.64 4- 0.02 0.65 4- 0.02 60 4- 2 58 4- 2 60 4- 2 61 4- 2 
3 0.564-0.04 0.574-0.03 0.574-0.02 0.584-0.02 61 4-3 62-t-2 594-2 61 4-2 
4 0.564-0.02 0.554-0.03 0.594-0.01 0.574-0.01 624-3 61 4-3 634-2 61 4-2 
5 0.604-0.01 0.63 4-0.01 0.59 4- 0.01 0.61 4-0.01 61 4-2 63 4-2 604-2 624-2 

By combining these temporal parameters with other gait 
features, such as movement  co-ordination, distance parameters 
and pain level, a new functional score for gait improvement and 
treatment evaluation can be defined. 
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